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Capturing of a magnetic skyrmion with a hole
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Magnetic whirls in chiral magnets, so-called skyrmions, can be manipulated by ultrasmall current densities.
Here we study both analytically and numerically the interactions of a single skyrmion in two dimensions with a
small hole in the magnetic layer. Results from micromagnetic simulations are in good agreement with effective
equations of motion obtained from a generalization of the Thiele approach. Skyrmion-defect interactions are
described by an effective potential with both repulsive and attractive components. For small current densities
a previously pinned skyrmion stays pinned whereas an unpinned skyrmion moves around the impurities and
never gets captured. For higher current densities, jc1 < j < jc2, however, single holes are able to capture
moving skyrmions. The maximal cross section is proportional to the skyrmion radius and to

√
α, where α is

the Gilbert damping. For j > jc2 all skyrmions are depinned. Small changes of the magnetic field strongly
change the pinning properties; one can even reach a regime without pinning, jc2 = 0. We also show that a
small density of holes can effectively accelerate the motion of the skyrmion and introduce a Hall effect for the
skyrmion.
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I. INTRODUCTION

Topologically stable magnetic whirls, so-called skyrmions,
have recently gained a lot of attention both due to their inter-
esting physical properties and their potential for applications.
A single skyrmion is shown in Fig. 1. A skyrmion is a smooth
magnetic configuration where the spin direction winds once
around the unit sphere. This implies that the spin configuration
is topologically protected and can unwind only by creating
singular spin configurations [1,2]. In bulk chiral magnets,
lattices of skyrmions are stabilized by Dzyaloshinskii-Moriya
interactions and thermal fluctuations in a small temperature
and field regime [3]. In films of chiral magnets they occur
as a stable phase [4] in a wide range of temperatures in the
presence of a stabilizing field. Single skyrmions are metastable
in an even broader regime of parameters [4]. They have been
observed in a wide range of materials, including insulators [5],
doped semiconductors [4,6], and metals [3,7,8], with sizes
ranging from a few nanometers up to micrometers and from
cryogenic temperatures almost up to room temperature [8]. In
bilayer PdFe films on Ir substrates, single nanoscale skyrmions
have been written using the current through a magnetic tip [9].

Due to their efficient coupling to electrons by Berry phases
and the smoothness of the magnetic texture, skyrmions can
be manipulated by extremely small electric current densities
[10–14]. Therefore the potential exists to realize new types of
memory or logic devices based on skyrmions [2,15]. Several
studies have therefore investigated the dynamics of skyrmions
in nanostructures and their creation at defects [15,16].

In this paper, we investigate how a single defect affects
the dynamics of a single skyrmion in a magnetic film;
see, e.g., Fig. 1. As an example of a defect we consider
a vacancy, i.e., a single missing spin, or more generally a
hole in the magnetic film with radius small compared to
the skyrmion radius. This problem is of interest for at least
two reasons. First, this is perhaps the most simple example

*jmueller@thp.uni-koeln.de

FIG. 1. (Color online) Snapshot of a micromagnetic simulation
of skyrmion driven by a current (D = 0.3J/a, μB = 0.09J/a2, vs =
0.001aJ ex , and α = β = 0.4) in the presence of a single vacancy: a
missing spin (gray sphere). The trajectory of the skyrmion center is
indicated by a red line.

of a nanostructure which can interact with the skyrmion.
As we will show, one can use such defects to control the
capturing and release of skyrmions via the magnetic field and
the applied current density. Second, defects are always present
in real materials. As long as the typical distance of defects is
small compared to the skyrmion radius, the effects of a finite
density of defects can be computed from the solution of the
single-defect problem. The influence of a finite defect density
on a lattice of skyrmions has been studied using micromagnetic
simulations by Iwasaki, Mochizuki, and Nagaosa, Ref. [12].
Interestingly, they observed in their simulations that skyrmions
move efficiently around defects. While a different type of
defect (enhanced easy axis anisotropy) was considered by
them, a similar phenomenon will also be of importance for
our study.

Besides the use of micromagnetic simulations, the main
theoretical tool will be the analysis of effective equations of
motion for the center of the skyrmion. Thiele [17] pioneered
the approach to project the effective equations of motion on
the translational mode of a magnetic texture. This approach
has also been successfully applied to skyrmions and skyrmion
lattices [12,16,18,19]. Here, we combine this approach with
microscopic evaluations of an effective potential describing the
defect-skyrmion interaction. The resulting effective equation
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of motion for the skyrmion accurately reproduces the results
of the micromagnetic simulation and allows for an analytical
analysis of the skyrmion dynamics.

In the following, we will first introduce the model, derive
the effective potential and resulting equations of motion, and
use them to investigate how skyrmions are captured, released,
and deflected by a single defect. Finally, we study the effects
of a finite but low density of defects.

II. THE MODEL

To describe the magnetization of the system we use classical
Heisenberg spins M(r) with uniform length ‖M(r)‖ = 1 on a
square lattice. The corresponding free energy functional in the
continuum reads

F [M] =
∫

d2r
J

2
[∇M(r)]2 + DM(r) · [∇ × M(r)]

−μB · M(r), (1)

including the ferromagnetic coupling J , Dzyaloshinskii-
Moriya interaction D, and the Zeeman interaction with the
magnetic field B = (0,0,B). μ is the magnetization per area.
For a single spin 1/2 per square unit cell with lattice constant
a0 and g factor g = 2 one has, for example, μ = μB/a2

0 .
On a square lattice we use the following discretized version

F [M] = −J
∑

r

Mr · (
Mr+aex

+ Mr+aey

)

−Da
∑

r

(
Mr × Mr+aex

· ex + Mr × Mr+aey
· ey

)

− Bμa2 ·
∑

r

Mr, (2)

where ex and ey are unit vectors in the x and y direction,
respectively. The lattice constant a and the interaction strength
J are set to 1 in the following. If not otherwise stated, we use
D = 0.3J/a and μB = 0.09J/a2. For these parameters the
ground state is ferromagnetic. Hence the single skyrmion is
a topologically protected, metastable excitation. A vacancy at
position Rd is created by setting the magnetization M at this
site to zero.

The micromagnetic dynamics of each spin in the presence
of an electric current density j are described by the Landau-
Lifshitz-Gilbert (LLG) equation [20–22]. In the continuum
case the LLG equation reads

[∂t + (vs · ∇)]M = −γ M × Beff

+αM ×
[
∂tM + β

α
(vs · ∇)M

]
, (3)

where vs is the drift velocity of spin currents which is directly
proportional to the current density j and γ = gμB/� is
the gyromagnetic ratio. Note that we set vs,α, and β to a
constant value, not taking into account that depending on the
microscopic realization of the defect, they might be modified
in proximity of the defect. At least for defects small compared
to the skyrmion radius and sufficiently small currents, this
approximation is justified as the forces on the skyrmions add
up from all parts of the skyrmion (see below). The (very
weak) effects of changes to the current pattern around a

notch in a nanowire have been studied in Ref. [16]. The
effective magnetic field is given by Beff = − δF [M]

μδM . α and
β are phenomenological damping terms. Note that α = β

is a special point as in this case the magnetic texture drifts
with the current as long as no defects are present, M(r,t) =
M(r − vs t). In our lattice model we rewrite Eq. (3) using
∂iM(r) = 1

2a
(Mr+aei

− Mr−aei
).

III. EFFECTIVE DYNAMICS OF SKYRMIONS

A. Generalized Thiele approach

The LLG equation describes the movement of every
magnetic moment in the system. As we do not want to describe
every spin but the movement of the skyrmion center, which
is a collective movement of spins, we apply the so-called
Thiele approach [17]. Originally, this approach is based on the
approximation that the skyrmion is a completely rigid object.
While this approximation fails in the presence of a local defect,
we will show that one can nevertheless use this approach if
one performs a microscopic calculation of the potential V (r)
describing the forces between skyrmion and defect.

Our goal is to derive an equation of motion for the center R
of the skyrmion (R is defined below), which takes into account
deformations of the skyrmion. If the motion of the skyrmion is
sufficiently slow, we expect that for each fixed R the skyrmion
configuration is in a local minimum of the energy. We therefore
approximate

M(r,t) ≈ M0(R(t) − Rd ,r − R(t)). (4)

The magnetic configuration M0 depends on the distance of
skyrmion center R(t) and defect position Rd and is determined
from the condition that

V (R − Rd ) = F [M0(R − Rd ,r − R)] − F0

= min
R−Rd fixed

F [M(r)] − F0 (5)

is at a local minimum for fixed distance of skyrmion and defect,
R − Rd . V (R − Rd ) is the effective potential describing the
skyrmion-defect interaction. The offset F0 is chosen such
that V (R → ∞) = 0. Note that the standard Thiele approach
neglects the deformation of the skyrmion, i.e., the dependence
of M on R − Rd .

To calculate M0 and F [M0] numerically, we have used
two different methods. In the case in which R is located on
one of the lattice sites, we fix the position R of the skyrmion
by setting the magnetization at r = R to (0,0,−1), opposite
to the ferromagnetic background. This approach is similar
to the method used in Ref. [14] to numerically calculate the
potential of the skyrmion-skyrmion interaction. In a second
approach, we first compute the skyrmion configuration Mc(r −
R) in the clean system without a defect. To determine the
energy minimum in the presence of the defect for fixed R, we
minimize F [M(r)] with the boundary condition that M(r) =
Mc(r − R) for |r − Rd | > r0. It turns out that this procedure
rapidly converges with r0 and r0 = 4.5a gives accurate results
in the considered parameter range. The results for V (R − Rd )
determined from the two methods are almost identical; see
inset of Fig. 2.

In Fig. 2 the resulting potentials V (|R − Rd |) are shown. In
the continuum model, Eq. (1), the effective potential depends
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FIG. 2. (Color online) Potential V (R − Rd ) of the skyrmion-hole
interaction as a function of distance shown for D = 0.3J/a and var-
ious magnetic fields from μB = 0.05J/a2 (red) to μB = 0.12J/a2

(blue) in steps of �μB = 0.01J/a2. Inset: Raw data used to calculate
the smoothened potential shown in the main figure. The dark red (light
green) data have been obtained for μB = 0.09J/a2 using the first
and second algorithm described in the text. The spread in each curve
arises as on the square lattice the potential does not only depend on
the distance from the defect but also has a tiny angular dependence.
For comparison, we also show the estimate for the potential which
is obtained when deformations of the skyrmion are ignored (dashed
line).

only on the distance of skyrmion and defect, |R − Rd |, whereas
in the lattice there is a small angular dependence (raw data
are shown in the inset of Fig. 2). For simplicity, we average
over this angular dependence. We fit an exponential law for
very large |R − Rd | and interpolate the curve by a polynomial
otherwise. The shape of the potential not only quantitatively
but also qualitatively depends on the strength of the magnetic
field, which will be important for the following discussion.

To derive an effective equation of motion for R(t), we
proceed as follows [17]. First, both sides of the LLG equation
are multiplied by μ

γ
M× such that μBeff = − δF [M]

δM is isolated
(using that Beff can be chosen to be perpendicular to M).
Second, M is replaced by M0 defined in Eq. (4). Third, to
project onto the translational mode in direction i the resulting
equation is multiplied by dM0

dRi
and integrated over space.

The resulting differential equation for R(t), the generalized
Thiele equation, can be written in the following form:

− dV

dR
= GR × (Ṙ − vs) + δGR · vs

+DR · (αṘ − βvs) + βδDR · vs , (6)

where the potential V , the gyrocoupling GR, and the matrices
δGR,DR, and δDR are functions of the distance from the defect,
R − Rd . V is defined in Eq. (5); the other terms are determined
from

(GR)i = sεijk

∫
d2r

1

2
M0 ·

(
dM0

dRj

× dM0

dRk

)
, (7)

(DR)ij = s

∫
d2r

dM0

dRi

· dM0

dRj

, (8)

(δGR)ij = s

∫
d2rM0 ·

[
dM0

dRj

×
(

dM0

dRi

+ dM0

dri

)]
, (9)

(δDR)ij = s

∫
d2r

dM0

dRi

·
(

dM0

dRj

+ dM0

drj

)
, (10)

where we included the spin density

s = μ

γ
, (11)

e.g., s = �/(2a2
0) for a single spin 1/2 in a unit cell of length

a0. Note that some of the derivatives are with respect to
the skyrmion position R and further that the combination
dM0
dRi

+ dM0
dri

= − dM0
dRd,i

describes the change of the skyrmion
configuration when only the position of the defect changes.

If the deformation of the skyrmion (and therefore the
derivatives d

dRd,i
) are ignored, then the correction terms

δGR and δDR vanish and one can replace d
dRi

by − d
dri

to
recover the Thiele equation in the standard form. Within this
approximation, the gyrocoupling GR = G is in the continuum
limit topologically quantized to a multiple of 4πM (M is the
magnetization per unit cell set to 1 within our conventions).
This is, however, not the case if the dependence of M0 on
R − Rd is taken into account.

The most important effect of the deformation is that they
strongly modify the effective potential V (R − Rd ), as is shown
in the inset of Fig. 2. Taking into account the adjustment of
the magnetic texture to the defect is important as it gives rise
to corrections of order 1.

Changes of the gyrocoupling and dissipative tensor are,
in general, also of importance when nanostructures lead to
a significant deformation of the magnetic texture. They are,
however, not important for the situation considered in our
paper. We study the case where the radius ad of the defect is
much smaller than the radius of the skyrmion, as . In this case
the deformations affect only a small part of the skyrmion and
give therefore only small corrections of order (ad/as)2 � 1
on the right-hand side of the generalized Thiele equation (6).
This is shown in Fig. 3, where |GR|, Dr

R, and Dt
R are shown

as a function of the distance from the defect, |R − Rd |. Here

FIG. 3. (Color online) |GR|, Dr
R, and Dt

R shown as a function
of the distance from the defect, r = |R − Rd |, for D = 0.3J/a and
magnetic field μB = 0.09J/a2.
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Dr
R = êr · DR · êr and Dt

R = êφ · DR · êφ describe the dissipa-
tive tensor projected on the radial and tangential direction,
respectively, with êr = (R − Rd )/|R − Rd | and êφ = ẑ × êr .
Far from the defect, one recovers the results predicted by the
standard Thiele approach with Dr

R = Dt
R and |GR| = 4π in

the continuum limit, whereas there are small deviations of a
few percent when the distance of the defect is of the order
of the skyrmion radius. Similarly, the corrections arising from
δDR and δGR are also small. For the following analysis, we
will therefore neglect the modification of the right-hand side
of the Thiele equation (6) using

−dV

dR
= G × (Ṙ − vs) + D · (αṘ − βvs), (12)

with space-independent G = limR→∞ GR and D =
limR→∞ DR while the modified potential is fully taken
into account.

B. Comparison of the generalized Thiele approach
and micromagnetic simulations

Using the numerically determined potential, see Fig. 2,
one can directly calculate the trajectories of the skyrmions
using the Thiele equation, Eq. (12). In Fig. 4 the trajectories
are shown for two values of the damping constants, i.e.,
α = β = 0.4 and 0.04. The properties of these solutions will
be discussed in Sec. IV. Here we compare them to full
micromagnetic simulations of the system. In the simulations
we integrate the lattice version of the LLG equation, see
Sec. II, for a single skyrmion in a ferromagnetic monolayer.
We choose the boundary conditions to be periodic. However,
the size of the simulated layer is substantially larger than the
skyrmion. Boundary effects should hence be negligible. To
track the center of the skyrmion R, we used R ≈ ∑

i(M
z
0 −

Mz
i )ri/

∑
i(M

z
0 − Mz

i ) summing only over sites with Mz
i <

Mz
0 = −0.3.
Comparing the results from the micromagnetic simulations

and the simplified Thiele equation, we find that the two
approaches agree quantitatively with high precision. Tiny
deviations arise partially from using the simplified Thiele
equation (12) instead of (6) neglecting, e.g., the spatial
variations of GR and DR shown in Fig. 3. The other source
of error is that the motion of the skyrmion leads to internal
excitations and emission of spin waves not captured by the
generalized Thiele approach. These effects are expected to be
larger for smaller α but even for α = 0.04 they give only
small quantitative corrections in the considered parameter
regime. Most importantly, these corrections do not affect the
physics of capturing and depinning discussed in the following
paragraphs.

C. Scaling of the effective potential and dimensionless units

Most results presented in this paper have been obtained
for a fixed value of the Dzyaloshinskii-Moriya interaction,
D = 0.3J/a, and for a defect described by a single missing
spin in a two-dimensional lattice. As skyrmions are smooth
objects, one can use simple scaling relations to determine the
effective potential and therefore also the equation of motion
and the skyrmion trajectories for other parameters.

FIG. 4. (Color online) Comparison of trajectories of the moving
skyrmion obtained from the full micromagnetic simulation (colored)
to the results of the effective potential approach (black). The vacancy
is placed in the origin. For better orientation, the green (red)
circle indicates the minimum (maximum) of the effective potential.
Parameters are D = 0.3J/a, μB = 0.09J/a2, vs = 0.001aJ ex , and
α = β = 0.04 (top), α = β = 0.4 (bottom).

Within the continuum theory, the free energy, Eq. (1),
in the presence of a defect of radius ad is invariant under
the transformation r → r′ = r/λ, ad → a′

d = ad/λ, J →
J ′ = J , D → D′ = λD, and B → B′ = λ2B. The shape of
the skyrmion is thereby determined by the scale-invariant
dimensionless parameter

ζ = JμB

D2
, (13)

with ζ ′ = ζ (called κ2/Q2 in Ref. [23]).
The scaling invariance implies that the effective potential

in the continuum limit can be written as

Veff(r) = JV

(
ζ,

adμB

D
,
rμB

D

)
≈ a2

d

Jμ2B2

D2
Vζ

(
rμB

D

)
,

(14)

where V and Vζ are dimensionless scaling functions with

dimensionless arguments and Vζ (ξ ) = 1
2

d2V (ζ,γ,ξ )
dγ 2 |γ=0. For the
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FIG. 5. (Color online) Rescaled potentials, Ṽζ = Veff/E0 with

E0 = a2Jμ2B2

D2 , see Eq. (15), as a function of the rescaled distance
r/r0 with r0 = D/μB. Parameters are a = ad = 1 and ζ = 1.

last expression, we assumed that ad is much smaller than the
skyrmion radius and used that the term linear in ad vanishes.

Strictly speaking, the above derived equation is fully valid
in the limit that the lattice constant a is much smaller than both
the skyrmion radius and the defect radius ad . But even for a
defect given by a single missing spin (ad = a), one can use
that the skyrmion radius as is much larger than a. Therefore
the dependence of the effective potential on J,D, and μB can
be described as

Veff(r) ≈ a2 Jμ2B2

D2
Ṽζ

(
rμB

D

)
. (15)

Note that Ṽζ (ξ ) will in general differ from Vζ (ξ ). This
prediction is confirmed in Fig. 5 which shows Ṽζ obtained
for a single missing spin and various skyrmion sizes obtained
by changing D and B such that ζ = 1 remains fixed.

The scaling properties for the skyrmion trajectories can
simply be obtained by realizing that both G and D are
invariant under the scaling transformation as can directly be
seen from Eqs. (7) and (8). Therefore the (generalized) Thiele
equations (6) or (12) are invariant if one uses for fixed defect
radius ad the scaling r → r/λ, D → λD, B → λ2B such that
dVeff/dr → λ3dVeff/dr and simultaneously rescales the drift
velocity vs → λ3vs and the time t → λ4t .

An important consequence of this analysis is that the
typical drift velocity vs of electrons or the corresponding
critical current density, jc, to depin a skyrmion from a defect
scales with the third power of the inverse skyrmion radius
as ∼ D/μB:

jc ∼ vs ∼ as
−3. (16)

This is part of the reason why skyrmions can be manipulated
by ultrasmall current densities [11].

It is also an interesting question how the potentials change
when instead of a single magnetic layer NL > 1 layers are
considered. For a line defect where all spins are removed in
a line perpendicular to the surface and for NL 
 1 one can
use that away from the surface the magnetic configuration
is translationally invariant in the z direction. Therefore, the
effective potential is simply given by multiplying Veff by NL.
As also the gyrocoupling and damping matrix scale linearly in

NL, the equation of motion for the skyrmion center remains
unmodified as long as the phase with a single skyrmion in
a ferromagnetic background remains stable. Increasing NL

allows us to eliminate all effects of thermal fluctuations. The
situation is more complicated when only a few layers NL

are considered. As the properties of the surface and the inner
layers are different, Veff cannot simply be computed from the
single-layer result.

For the presentation of our results, it is useful to find
the minimal set of dimensionless parameters needed to
parametrize our results. Here it is useful to note that the
dependence on β in the effective Thiele equations can be
eliminated by parametrizing the effect of the current by the
drift velocity vd of the skyrmion in the absence of any
defect. It can be obtained from the equation G × vs + βDvs =
G × vd + αDvd . Further we also define the dimensionless
drift velocity v by

vd = 1

G2 + α2D2
[(α − β)DG × vs + (G2 + αβD2)vs],

v = vd

sD3

a2Jμ3B3
. (17)

In units where all length scales are measured in units of
D/μB and all times in units of sD4

a2Jμ4B4 the effective Thiele
equation (12) takes the form

−dṼζ (R)

dR
= −4πẑ × (Ṙ − v) + αDζ (Ṙ − v), (18)

with Dζ = D/s. Originally, the continuum theory was
parametrized by J , D, μB, α, β, vs , and the size of the defect.
For a pointlike defect, we find that the three dimensionless
variables ζ , v, and α are sufficient to describe all regimes.

IV. SKYRMION DEPINNING,
CAPTURING, AND DEFLECTION

A. Phase diagram

When studying the qualitative behavior of the skyrmions
when a current is slowly switched on, it is useful to distinguish
two initial states, an initially localized skyrmion and a
skyrmion approaching the defect from far away.

If the skyrmion is initially localized close to the defect and
if the potential has a local minimum, it will remain there for
small current densities and gets depinned for larger current
densities. Similarly, a skyrmion approaching the defect from
far away can either get captured (green trajectories in Fig. 4)
by the defect or is just deflected (blue trajectories).

An overview over these possibilities is given in the phase
diagram, Fig. 6. The solid lines mark the depinning transition.
Below these lines, in the regimes denoted by P1, P2, and
C, an initially localized skyrmion remains localized close to
the defect when the current is switched on slowly. In P1 the
effective potential has a local minimum at r = 0 while in P2
and C it has a minimum at finite skyrmion-defect distance. In
the free phase, F, pinning is not possible and all skyrmions
move freely. At low magnetic fields we find this phase even
for zero current density. Note that we consider only ζ > 0.56
as at this point [23] the circular symmetric skyrmion becomes
unstable towards the formation of a bimeron [24].
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FIG. 6. (Color online) Phase diagram as function of the magnetic
field B/B0 = ζ and current density j/ja = vζ 3 for α = 0.1. Here
we use the combination vζ 3 = vd

J 2s

a2D3 as it is independent of the
magnetic field. The colored area encodes the value for the capturing
cross section σc/σ0 with the characteristic length σ0 = D/μB, see
Sec. IV C, which is a measure for the efficiency of capturing.

An unexpected result is that in the pinning regimes P1
and P2 a skyrmion approaching the defect from far apart is not
captured. Instead of getting trapped, it moves around the defect
and is only deflected. This is a consequence of the fact that
for long distances the defect-skyrmion potential is repulsive.
Capturing of approaching skyrmions is only possible in the
region C.

B. Fixed points and separatrices

For a quantitative analysis of the qualitatively different
trajectories and for the construction of the phase diagram
shown in Fig. 6, an analysis of the stable and unstable fixed
points of the Thiele equation (18) is useful.

In the continuum limit, the effective potential depends only
on the relative distance r of skyrmion and defect, V (r) = V (r).
If we now look for fixed points of the Thiele equation, Ṙ = 0,
we find that all fixed points are on the line in the direction ê of
G × vd + αDvd . At the fixed point one has

|Ṽ ′
ζ (rFP)| = vγ, (19)

where γ = [(4π )2 + α2D2
ζ ]

1
2 . There can be 0,2,4, or 6 fixed

points. To classify the fixed points, one linearizes the equation
of motion around them to obtain a matrix equation of the type
Ṙ = MδR. It is useful to distinguish 5 different types of fixed
points characterized by the eigenvalues, λ1,2, of the 2 × 2 ma-
trix M . The eigenvalues are either both real or are a pair of com-
plex conjugate numbers. If the real part of an eigenvalue is posi-
tive (negative) it describes repulsion (attraction). A finite imag-
inary part gives an oscillatory behavior around the fixed point
on top of the repulsion or attraction. We therefore distinguish

attractive (λ1,2 < 0), repulsive (λ1,2 > 0), semidefinite (λ1 >

0 > λ2), as well as oscillating attractive (Reλ1 = Reλ2 <

0, Imλ1 = −Imλ2 �= 0) and oscillating repulsive fixed points
(Reλ1 = Reλ2 > 0, Imλ1 = −Imλ2 �= 0).

Given that the potential exhibits a local minimum, for suf-
ficiently small drift velocities, v < vc2, always one attractive
fixed point exists. Therefore, for v < vc2, an initially pinned
skyrmion will remain pinned when the current and hence the
drift velocity are increased slowly (a fast increase is discussed
below). In Fig. 7, the trajectories of skyrmion centers are
shown. All skyrmions starting in the orange-shaded region
finally end up in the attractive fixed point.

FIG. 7. (Color online) Trajectories (black) of the single skyrmion
obtained from the effective potential approach. The coordinates r are
defined relative to the position of the vacancy in dimensionless units
r/σ0 = rμB/D. Parameters are ζ = 1, α = 0.1 and drift velocities
from left to right, top to bottom are v = 0.004, v = 0.009, v = 0.015,
v = 0.026, v = 0.039, v = 0.060, v = 0.091, and v = 0.107. The
corresponding drift velocities v are also marked in Fig. 8. The orange
curve is the separatrix; the orange area is the capturing area. Red
arrows mark outgoing flow and green arrows mark ingoing flow at
a fixed point. Circular arrows mark an oscillating fixed point. The
green (red) circle indicates the potential minimum (maximum).
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This capturing region can either be a bounded region
or extended to infinity. Only in the latter case, a skyrmion
approaching from far apart can be captured by the defect.
For small drift velocities, v < vc1, and a local minimum of
the potential, we obtain always a bounded capturing region
where all skyrmions move around the defect without being
trapped. Only in the regime vc1 < v < vc2 capturing of mobile
skyrmions is possible.

On each separatrix (orange lines in Fig. 7), we find at least
one semidefinite fixed point, where the “critical” trajectories,
which define the separatrix, end. In Fig. 7 the semidefinite
fixed points are marked by ingoing green and outgoing red
arrows. To construct the separatrix numerically, it is useful
to investigate the time-reversed version of the equation of
motion. After time reversal, the critical trajectories start
at the metastable fixed point. Using a small perturbation
in the direction of the attractive eigenvector as a starting
point, one can obtain directly the separatrix by computing
the time-reversed trajectories. This procedure is numerically
stable as after time reversal the repulsive direction of the fixed
point becomes attractive. The time-reversed trajectories either
reach infinity or end at the repulsive direction of a fixed point.
Using this method, we compute for a given drift velocity the
separatrix and identify the orange-shaded capturing region. At
v = vc1, there is one trajectory directly connecting the two
semidefinite fixed points.

For v close to vc2 the orange-shaded capturing region
shrinks in width and is displaced. This has the effect that
the way the current is switched on profoundly affects the
pinning properties of skyrmions. For an adiabatic switching
on of a current with v < vc2, a skyrmion which was pinned
at v = 0 follows the stable fixed point and hence remains
pinned. If, in contrast, the current is suddenly switched on,
then the initially pinned skyrmion may end up outside of the
capturing region and thus gets depinned. At v = 0 the position
of the trapped skyrmion is determined by the location of the
minimum of the effective potential, shown as a green dashed
line in Fig. 7. This line is only partially within the capturing
region for large current densities. Therefore a corresponding
fraction of initially localized skyrmions, Figs. 7(e) and 7(f), or
even all skyrmions, Fig. 7(g), will be released after a sudden
switching on of the current.

C. Capturing cross section σc

To quantify the efficiency for capturing a mobile skyrmion
by a defect, it is useful to define the “capturing cross section”
σc. As for other scattering experiments, the cross section is
obtained by dividing the capturing rate by the incoming flux
of particles. In the two-dimensional situation discussed here,
σc is directly given by the width of the orange-shaded capturing
region, compare Fig. 7, for x → −∞. In Fig. 8, σc is shown as a
function of the drift velocity v for a fixed value of the magnetic
field (fixed ζ ). As discussed above, mobile skyrmions are only
trapped for vc1 < v < vc2. The change of σc as a function
of both field and current density (drift velocity) is shown in
Fig. 6.

The v dependence of σc shows a sequence of kinks. The
origin of each of these kinks can be traced back to a change
of the topological structure defined by the fixed points and

FIG. 8. (Color online) Cross section for capturing a skyrmion
σc/σ0 as a function of v with the characteristic length σ0 = D/μB

shown for ζ = 1 and various values of α. Only for a finite drift velocity
range, vc1 < v < vc2, the skyrmion gets trapped by the defect. The
vertical lines denote boundaries of various regimes (a–h) for α = 0.1.
In Fig. 7 typical trajectories for these regimes are shown.

the separatrices connecting and encircling them. In Fig. 7
examples of such fixed point configurations are shown.

To trap a skyrmion, damping is needed. Indeed, Fig. 8 shows
that σc gets smaller and smaller for α → 0, while the two
critical drift velocities vc1 and vc2 remain finite in this limit.
To prove analytically that the skyrmions are not captured for
α = 0, one can, for example, rewrite Eq. (12) in the form Ṙ =
−G × dVtot

dR /|G|2 using the potential Vtot(R) = V (R) − (G ×
vs) · R. This implies that skyrmions flow along equipotential
lines of Vtot and a mobile skyrmion thus never gets trapped.

Taking into account that σc vanishes for α → 0 it is
perhaps surprising that the maximal σc in Fig. 8 appears to
be of the order of the skyrmion radius even for α = 0.01.
The capturing cross section is maximal for rather small drift
velocities slightly above vc1. A quantitative analysis shows
that for α → 0 the maximal cross section scales with both

√
α

and the typical length scale σ0 = D/(μB) of the order of the
skyrmion radius

σ max
c ≈ √

αcζ σ0, (20)

where the dimensionless constant cζ depends on ζ with c1 ≈
12. For larger currents (i.e., the regimes f and g in Fig. 8) we
find instead σc ∝ α and therefore only tiny capturing cross
sections for small α. For v → vc1 and v → vc2 the capturing
cross section σc vanishes.

To analyze the behavior of σc for v close to the lower critical
drift velocity, v � vc1, we use that the properties of this critical
point are governed by the semidefinite fixed point at the top
of Figs. 7(a)–7(c) and that the separatrix can be computed by
analyzing the time-reversed equation of motion as described
above. At v = vc1 the time-reversed trajectory coming from the
semidefinite fixed point at the bottom ends in this fixed point
at the top with eigenvalues λ1 > 0 > λ2 and eigenvectors b1

and b2. For v = vc1 + δv, this trajectory approaches the fixed
point from the b1 direction and leaves into the b2 direction.
Close to the fixed point, one obtains δR(t) = b1x1(t) + b2x2(t)
with xi(t) = xi(0)e−λi t . The linearized equation of motion is
only valid for small x1(t),x2(t) < x0, where x0 is a cutoff
scale. We choose two times t1 and t2 such that x1(t1) = x0

and x2(t2) = x0 in a way that the linearization is valid for
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FIG. 9. (Color online) �‖ (dashed) and �⊥ (solid) shown as
functions of the impact parameter b for drift velocities below (top) and
above (bottom) the capturing regime. Parameters used here are ζ = 1,
σ0 = 1/0.3a, α = 0.1, and drift velocities as given in the figures.

t1 < t < t2. Here t1 (t2) describes a point on the trajectory when
approaching (leaving) the fixed point. With these definitions
we obtain x1(t2) = x0( x0

x2(t1) )
λ1/λ2 . Using that the cross section

is approximately proportional to x1(t2) and that x2(t1) depends
linearly on v − vc1, we obtain

σc ∼ (v − vc1)|λ1/λ2|. (21)

We have checked numerically that this result is valid close
to vc1. For v → vc2 in contrast, we find that the decay of the
capturing cross section can be described by

σc ∼ (vc2 − v)2. (22)

V. SKYRMIONS AND WEAK DISORDER

Finally, we will discuss the case of a skyrmion moving
through a weakly disordered medium. The distance of defects
is assumed to be much larger than the skyrmion radius, nd �
(μB/D)2, where nd is the density of defects. In this limit
it is interesting to investigate how the defects influence the
skyrmion Hall effect and the skyrmion mobility.

In the absence of any defects, the skyrmions move on a
straight line in a direction set by v. This direction is set
by the direction of the external current and the dissipation
constants; see Eq. (17). When a skyrmion scatters from a
defect, it therefore cannot change its direction. The only net

FIG. 10. (Color online) Offset integrals shown as functions of the
drift velocity below (top) and above (bottom) the capturing regime,
i.e., v < vc1 = 0.0083 and v > vc2 = 0.1044. Parameters used here
are ζ = 1, σ0 = 1/0.3a, and α = 0.1. The logarithmic fits in the
upper plot are related to Eq. (27). The perturbative approximation in
the lower plot is given in Eq. (26).

effect of scattering is a displacement �‖ and �⊥, parallel
and perpendicular to v, respectively. A parallel displacement
�‖ implies that the skyrmion is delayed, �‖ > 0, or has
moved faster when passing the defect, �‖ < 0. Therefore
�‖ leads to changes of the mobility of the skyrmion. �⊥
in contrast, describes a “side jump” of the skyrmion due to
the defect. Similarly to the side-jump mechanism of electron
scattering [25], this leads to a contribution to the skyrmion
Hall effect.

�‖ and �⊥ are functions of the impact parameter b,
describing the offset of the incoming skyrmion trajectory
relative to the defect position. This dependence is shown in
Fig. 9 for v < vc1 (top figure) and v > vc2 (bottom figure).
When a skyrmion travels a long distance L, it hits several
randomly distributed defects with impact parameter bi . To
calculate the total shift of a skyrmion one can therefore average
over all defect positions

�‖/⊥
L

= 1

L

∑
i

�‖/⊥(bi) ≈ 1

L

∫
nd�‖/⊥(b(r))d2r

= nd�
I
‖/⊥

�I
‖/⊥ =

∫
db�‖/⊥(b). (23)
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The offset integrals �I
⊥ and �I

‖ parametrize how efficiently a
defect can lead to a displacement of the trajectory.

To linear order in the density of defects nd , the average
velocity and the mobility thus change by

�v

v
≈ nd�

I
‖ (24)

and the average direction of motion of the skyrmions is rotated
by the angle

ϕ ≈ nd�
I
⊥. (25)

In Fig. 10 the offset integrals are shown for v < vc1 and v >

vc2. For vc1 < v < vc2 a single skyrmion always gets trapped
for L → ∞ and therefore the discussion given above can only
be applied for finite systems (not discussed here).

For large drift velocities, v → ∞, one can calculate �I
‖/⊥

by using that in this limit the potential only induces small
corrections to straight skyrmion trajectories which can be
treated perturbatively. In this limit we obtain

�I
⊥ ≈ 2παGD

v2[G2 + (αD)2]2

∫ ∞

0
drr[V ′(r)]2 + O

(
1

v3

)
,

�I
‖ ≈ αD

G
�I

⊥ + O

(
1

v3

)
. (26)

Numerically, we find that this formula although derived for
v → ∞ works accurately for �I

⊥ for all v > vc2 whereas for
�I

‖ corrections to this formula are of order 1 for v � vc2; see
lower part of Fig. 10.

Both offset integrals are strongly enhanced for v < vc1

when the skyrmion moves around the defect instead of passing
it. For the parameters shown in Fig. 10, they are about two
orders of magnitude larger for v � vv1 compared to the case
v � vc2 and also become much larger than the area of the
skyrmion. The main reason is that in this regime the skyrmions
move around the defect in a distance ∝ ln 1/v due to the
exponential tails of the skyrmion-defect potential. This sets the
relevant length scale independent of the damping and hence
the effects are not any more suppressed by α. We therefore
obtain

�I
‖,�

I
⊥ ∝ ln2 1/v for v → 0, (27)

as shown in the upper part of Fig. 10. Note that thermal
fluctuations, not considered in this study, are expected to cut
off the divergency.

A counterintuitive result is that for v < vc1, �I
‖ is negative

implying that defects accelerate the motion of skyrmions.
This is possible because the speed of the skyrmion can
grow when the angle φ between v and Ṙ grows. A simple,
analytically solvable limit is the motion of the skyrmion
parallel to a wall. From the balance of forces parallel to the
wall (dV/dR‖ = 0), one obtains using Eq. (12) that Ṙ‖ =
vs

G cos φ−βD sin φ

αD where φ is the angle between drift velocity
and the wall normal. For small α ∼ β, obstacles can therefore
speed up skyrmion motion by a maximal factor of order
1/α 
 1. While the path of the skyrmion which moves around
a defect increases, the increased velocity typically overcom-
pensates this longer path for v < vc1 as shown in Fig. 10 for
α = 0.1.

A way to measure α − β in a weakly damped skyrmion
system experimentally is to determine (in the absence of
defects) the skyrmion Hall angle, ϕ0 ≈ D(α−β)

G
, which is the

angle between the direction of the electric current and the
skyrmion flow direction. This angle is changed by defects as
described by Eq. (25). Especially for small α and β and v < vc1

one can easily reach a regime where the impurity-induced
contribution to the skyrmion Hall angle dominates, ϕ � ϕ0.
An alternative point of view is that the defects lead to a strong
renormalization of α − β, with

(α − β)eff ≈ α − β + G

Dnd�
I
⊥. (28)

VI. CONCLUSION AND QUANTITATIVE ESTIMATES
FOR SKYRMION DEVICES

We found that the Thiele ansatz combined with an effective
potential is an efficient and reliable tool to describe the
interaction of a skyrmion with a vacancy. Using this ansatz
we determined the phase diagram which shows the three
phases appearing in this interaction: the pinning phase where
a skyrmion freely moves around vacancies and never gets
captured but stays pinned if it was pinned initially, the
capturing phase in which a moving skyrmion can get captured
within a certain capturing cross section, and the free phase
for current densities j > jmax where a skyrmion can never be
pinned.

Our results can be used to obtain estimates of necessary
current densities and the depth of the pinning potential and
can, hopefully, be used as a starting point to design simple
skyrmion devices. As an example, we try to give estimates
of the relevant parameters for MnSi, the perhaps best studied
skyrmion material, and for FeGe, the skyrmion system with the
largest transition temperature [8] up to now. Input parameters
for these estimates are shown in Table I.

In Table II, we show typical parameters characterizing a
defect with the size of one unit cell for a single layer of MnSi
or FeGe for ζ = 1. Note that the actual numbers will depend
on the microscopics of the induced defect and should therefore
be viewed only as order-of-magnitude estimates.

A main result of these estimates is that a single-site vacancy
in a monolayer of these materials will not be able to pin a
skyrmion due to the presence of thermal fluctuations, E0 �
kBT . This shows that indeed skyrmions are very insensitive
to defects. To build a device with a nanostructure which is
capable to pin a skyrmion, one therefore needs to consider
both larger defects and also films with a larger number of
layers, NL 
 1, using that E0 ∝ a2NL; see Sec. III C. The

TABLE I. Input parameters [26–29] for the quantitative estimates.
Tc ∼ J is the transition temperature [30], a the lattice constant for a
unit cell containing 4 Mn (or Fe) ions, λ ≈ 2πJ/D the pitch in the
helical phase, m ≈ sμBa2/(2�) is the magnetization per Mn (or Fe)
ion and hence μ = 4m/a2, and n the charge density.

Tc λ a m n

MnSi 29 K 180 Å 4.6 Å 0.4 μB 3.8 × 1028 m−3

FeGe 280 K 700 Å 4.7 Å 1 μB 2.4 × 1028 m−3
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TABLE II. Estimates of typical parameters for the pinning of a
skyrmion by a single-site defect in a single layer of the materials
MnSi and FeGe at ζ = 1, i.e., for B = B0 = D2

μJ
. E0 = J (aμB)2

D2 is the
strength of the pinning potential defined by the prefactor in Eq. (15).
The typical velocity v0 = a2J (μB)3

sD3 and the typical current density j0 =
nev0 are defined such that v = vd/v0 = j/j0, while jc2 = 0.11j0 is the
critical current density for ζ = 1 at T = 0. Note that the parameters
depend strongly on the size of the defect and the layer thickness; see
text.

B0 E0/kB v0 j0 jc2

MnSi 0.7 T 0.7 K 9 m
s 5 × 1010 A

m2 6 × 109 A
m2

FeGe 0.2 T 0.5 K 8 m
s 3 × 109 A

m2 3 × 108 A
m2

critical current density for depinning, jc2, is independent of
NL but also scales with the area of the defect. For example,
using a hole with a diameter of 10 nm for a FeGe film with a
thickness of 50 nm in a magnetic field of 0.2 T, we obtain as

an order-of-magnitude estimate

E0/kB ≈ 20 000 K, jc2 ≈ 1011 A/m2, (29)

clearly sufficient for thermal stability.
As we have shown, the shape of the effective impurity-

skyrmion potential depends quantitatively and qualitatively
on the strength of the magnetic field. Changing, for example,
the magnetic field from 0.2 T to 0.13 T is sufficient to avoid all
pinning; see Fig. 6. By controlling both the magnetic field and
the current density one can vary in a flexible way not only the
capability of a defect to hold a skyrmion but also its ability to
capture a skyrmion moving close by; see Fig. 8. We believe that
this flexibility will allow one to control skyrmions efficiently
in devices based on holes and similar nanostructures.
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P. G. Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602
(2009).

[29] N. A. Porter, J. C. Gartside, and C. H. Marrows, Phys. Rev. B
90, 024403 (2014).

[30] S. Buhrandt and L. Fritz, Phys. Rev. B 88, 195137 (2013).

054410-10

http://dx.doi.org/10.1126/science.1234657
http://dx.doi.org/10.1126/science.1234657
http://dx.doi.org/10.1126/science.1234657
http://dx.doi.org/10.1126/science.1234657
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1038/nnano.2013.243
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1126/science.1166767
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevB.81.041203
http://dx.doi.org/10.1103/PhysRevB.81.041203
http://dx.doi.org/10.1103/PhysRevB.81.041203
http://dx.doi.org/10.1103/PhysRevB.81.041203
http://dx.doi.org/10.1103/PhysRevLett.107.217206
http://dx.doi.org/10.1103/PhysRevLett.107.217206
http://dx.doi.org/10.1103/PhysRevLett.107.217206
http://dx.doi.org/10.1103/PhysRevLett.107.217206
http://dx.doi.org/10.1038/nmat2916
http://dx.doi.org/10.1038/nmat2916
http://dx.doi.org/10.1038/nmat2916
http://dx.doi.org/10.1038/nmat2916
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/10.1126/science.1195709
http://dx.doi.org/10.1038/ncomms1990
http://dx.doi.org/10.1038/ncomms1990
http://dx.doi.org/10.1038/ncomms1990
http://dx.doi.org/10.1038/ncomms1990
http://dx.doi.org/10.1038/ncomms2442
http://dx.doi.org/10.1038/ncomms2442
http://dx.doi.org/10.1038/ncomms2442
http://dx.doi.org/10.1038/ncomms2442
http://dx.doi.org/10.1103/PhysRevLett.110.207202
http://dx.doi.org/10.1103/PhysRevLett.110.207202
http://dx.doi.org/10.1103/PhysRevLett.110.207202
http://dx.doi.org/10.1103/PhysRevLett.110.207202
http://dx.doi.org/10.1103/PhysRevB.87.214419
http://dx.doi.org/10.1103/PhysRevB.87.214419
http://dx.doi.org/10.1103/PhysRevB.87.214419
http://dx.doi.org/10.1103/PhysRevB.87.214419
http://dx.doi.org/10.1038/nnano.2013.210
http://dx.doi.org/10.1038/nnano.2013.210
http://dx.doi.org/10.1038/nnano.2013.210
http://dx.doi.org/10.1038/nnano.2013.210
http://dx.doi.org/10.1038/nnano.2013.176
http://dx.doi.org/10.1038/nnano.2013.176
http://dx.doi.org/10.1038/nnano.2013.176
http://dx.doi.org/10.1038/nnano.2013.176
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevB.84.064401
http://dx.doi.org/10.1103/PhysRevB.84.064401
http://dx.doi.org/10.1103/PhysRevB.84.064401
http://dx.doi.org/10.1103/PhysRevB.84.064401
http://dx.doi.org/10.1103/PhysRevB.86.054432
http://dx.doi.org/10.1103/PhysRevB.86.054432
http://dx.doi.org/10.1103/PhysRevB.86.054432
http://dx.doi.org/10.1103/PhysRevB.86.054432
http://dx.doi.org/10.1103/PhysRevB.75.214420
http://dx.doi.org/10.1103/PhysRevB.75.214420
http://dx.doi.org/10.1103/PhysRevB.75.214420
http://dx.doi.org/10.1103/PhysRevB.75.214420
http://dx.doi.org/10.1103/PhysRevB.79.224411
http://dx.doi.org/10.1103/PhysRevB.79.224411
http://dx.doi.org/10.1103/PhysRevB.79.224411
http://dx.doi.org/10.1103/PhysRevB.79.224411
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevB.90.094423
http://dx.doi.org/10.1103/PhysRevB.90.094423
http://dx.doi.org/10.1103/PhysRevB.90.094423
http://dx.doi.org/10.1103/PhysRevB.90.094423
http://dx.doi.org/10.1103/PhysRevB.83.100408
http://dx.doi.org/10.1103/PhysRevB.83.100408
http://dx.doi.org/10.1103/PhysRevB.83.100408
http://dx.doi.org/10.1103/PhysRevB.83.100408
http://dx.doi.org/10.1103/PhysRevB.2.4559
http://dx.doi.org/10.1103/PhysRevB.2.4559
http://dx.doi.org/10.1103/PhysRevB.2.4559
http://dx.doi.org/10.1103/PhysRevB.2.4559
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1063/1.1708422
http://dx.doi.org/10.1103/PhysRevB.16.4956
http://dx.doi.org/10.1103/PhysRevB.16.4956
http://dx.doi.org/10.1103/PhysRevB.16.4956
http://dx.doi.org/10.1103/PhysRevB.16.4956
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://dx.doi.org/10.1103/PhysRevB.90.024403
http://dx.doi.org/10.1103/PhysRevB.90.024403
http://dx.doi.org/10.1103/PhysRevB.90.024403
http://dx.doi.org/10.1103/PhysRevB.90.024403
http://dx.doi.org/10.1103/PhysRevB.88.195137
http://dx.doi.org/10.1103/PhysRevB.88.195137
http://dx.doi.org/10.1103/PhysRevB.88.195137
http://dx.doi.org/10.1103/PhysRevB.88.195137



