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Spin dynamics of the anisotropic spin-1 antiferromagnetic chain at finite magnetic fields
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We present results of a study of the antiferromagnetic spin-1 chain, subject to the simultaneous presence
of single-ion anisotropy and external magnetic fields. Using a quantum Monte Carlo calculation based on the
stochastic series expansion method, we first uncover a rich quantum phase diagram comprising Néel, Haldane,
Luttinger-liquid, and large-anisotropy phases. Second, we scan across this phase diagram over a wide range of
parameters, evaluating the transverse dynamic structure factor, which we show to exhibit sharp massive modes as
well as multiparticle continua. For vanishing anisotropy and fields, comparison with existing results from other
analytic and numerical approaches shows convincing consistency.
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I. INTRODUCTION

Ever since Haldane’s conjecture [1] on the difference be-
tween even and odd half-integer Heisenberg antiferromagnetic
spin chains (HAFCs), the spin-1 HAFC (S1-HAFC)

H = J

L∑
l=1

�Sl · �Sl+1 − h

L∑
l=1

Sz
l + D

L∑
l=1

(
Sz

l

)2
, (1)

has been considered to be one of the fundamental models of
low-dimensional quantum magnetism. The first term on the
right-hand side of (1) refers to the bare chain, with antifer-
romagnetic exchange interaction J and spin-1 operators �Sl at
sites l, and the remaining terms capture common perturbations
by single-ion anisotropy D and external longitudinal magnetic
fields h.

For the isotropic case at zero magnetic field, i.e., D = 0 and
h = 0, both static and dynamic properties of the S1-HAFC
have been investigated extensively using various theoretical
and numerical methods [2]. On the zone boundary at q = π ,
its lowest-lying excitation is a massive “single-magnon” mode
which displays the famous Haldane gap of � � 0.41J [3,4].
Near q = 0 the spectrum comprises primarily a two-particle
continuum of small spectral weight [4–7]. This continuum
is separated from the ground state by 2�. Finally, the
next-to-dominant excitations near q = π are contained in
a three-particle continuum starting at 3�. Theoretically,
these excitations have been obtained from several analytic
approaches, e.g., mean-field theory [6], the nonlinear σ model
(NLσM) [8], as well as numerical methods, e.g., quantum
Monte-Carlo (QMC) simulation [9–12] and the density matrix
renormalization group (DMRG) [4,13].

Experimentally, the massive magnon at q = π has been
confirmed irrevocably; however, the two- and in particular
the three-particle continua remain a matter of active research
[14–16].

Most spin-1 chain compounds, such as
Ni(C2H8N2)2NO2(ClO4) (NENP) [17,18], NiCl2.4SC(NH2)2

(DTN) [19,20], Ni(C2H8N2)2Ni(CN)4 (NENC) [21],
Ni(C5H14N2)2N3(PF6) (NDMAP) [22,23], and
Ni(C5H14N2)2N3(ClO4) (NDMAZ) [24,25] display sizable
anisotropy D and even the well-studied prototype material
CsNiCl3 [26,27] has D �= 0. Therefore, it is of great interest
to analyze the ground-state properties and the evolution

of the excitation spectrum as a function of anisotropy. In
addition, many experimental studies, including neutron
scattering [18,28], electron-spin resonance [29,30], nuclear
magnetic resonance [31–33], and thermal transport [34] are
performed at finite magnetic fields.

For vanishing magnetic field several studies have already
been performed regarding the quantum phases as a function of
the anisotropy [35–43]. Similarly the magnetic-field-driven
transition into a Luttinger-liquid (LLQ) phase [44–46] at
D = 0 is well investigated. At finite D and h, there are some
studies with planar or a combination of planar and axial mag-
netic fields and additional other components of anisotropies
[47–49], still too little is known about the region of finite D

and h for the Hamiltonian (1). Therefore, the central goal of
this paper is to shed more light onto the combined impact
and interplay between finite anisotropy and magnetic fields in
S1-HAFCs, regarding both static and dynamic properties.

The paper is organized as follows. In Sec. II we uncover and
discuss the quantum phase diagram of (1) over a substantial
range of D and h. In Sec. III we detail our results for the
transverse dynamic structure factor (TDSF) and analyze its
evolution in terms of anisotropy and magnetic fields. Where
available comparison to other methods, in particular NLσM
model calculations [6,8] and TDMRG [13] will be provided.
We conclude and summarize our findings in Sec. IV. The
Appendix contains a short summary of the quantum Monte
Carlo method we use.

II. QUANTUM PHASE DIAGRAM

In this section, and before analyzing its dynamical proper-
ties, we will evaluate the ground-state phase diagram of the
chain versus single-ion anisotropy and magnetic field. At zero
magnetic field, the phase diagram in terms of anisotropy has
already been investigated [35–38]. It consists of a Néel, a
Haldane, and a large-D phase. The transition from the Néel
to the Haldane phase is of Ising type, while that from the
Haldane to the large-D phase is of Gaussian type. The critical
values Dc for the transition between these phases have been
determined using various numerical methods, including exact
diagonalization [38], DMRG [39–41], series expansions, and
QMC simulation [43]. Although there are slight quantitative
differences between the results from different methods for
Dc, it is generally believed that the transition between the
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Néel and Haldane phases occurs around DNH � −0.31J

and that between the Haldane and large-D phases around
DHL � 1.0J [39–41,43].

All three phases, namely, Néel, Haldane, and large D,
are gapful. It is known that the spin gap of the Haldane
phase decreases upon increasing the easy-plane anisotropy
up to the critical point Dc and increases again afterwards;
however, one remains in a gapful state [41]. Application of
an external magnetic field can also suppress the spin gap of
the chain [44–46], resulting in a gap closure and a transition
into a LLQ at a critical field hc which depends on D. Both
field-driven transitions, i.e., from the Haldane [44,50] and from
the large-D [51] phase into the LLQ can be viewed as one-
dimensional (1D) analogs of 3D Bose-Einstein condensation
or the 2D Berezinsky-Kosterlitz-Thouless transition), with no
true condensate but algebraic correlation functions transverse
to the field [44]. The transition line hc(D) is not known, apart
from low-order series expansions, valid for D/J � 1 for the
large-D to LLQ case [51].

Our aim will be to extract the LLQ boundaries at interme-
diate h/J and D/J , thereby establishing how the quantum
phases evolve within the D-h plane. There are several ways
to determine the extent of the Haldane phase. One is to
evaluate the string order parameter [35,37], which is a nonlocal
probe of the topological order. This order parameter is fragile
with respect to perturbations which break rotation symmetry,
while keeping other symmetries such as time-reversal, parity,
and translation symmetries intact [47,48,52]. Since both the
Haldane and large-D phases are gapped while the LLQ formed
between them is gapless, another and rather direct way to
determine the boundary between these phases is to scan the
energy gap versus D, fixing, e.g., h. To obtain the gap,
we first evaluate the uniform spin susceptibility in terms of
temperature, χ (T ). We then extract the gap by fitting the
low-temperature values of χ (T ) to χ (T ) ≈ e−�/T P l

k (T )/T ,
where P l

k (T ) is a Padé approximant of order [k,l]. In principle,
finite-size scaling of the gap determined in this way should
be performed, in particular because of critical behavior near
the transition points [53]. In practice however and because of
the additional approximation introduced by the Padé fitting, we
simply use a sufficiently large system of 512 sites with periodic
boundary conditions (PBCs) imposed throughout this work.
The lowest temperature we have considered is T = 0.0078J .

Figure 1 summarizes all gaps �(D,h) extracted from the
preceding procedure, both versus D and for several magnetic
fields. For each gap, the Padé fitting errors are found to be
within the QMC calculation’s error bars which are of the order
of 10−4. Above the critical field hc(D), there are two points
of gap closure and reopening, which we identify with the
transition from the Haldane into the LLQ, and from the LLQ
into the large-D phase. At D = DHL the latter two points have
to merge at h = 0 where the direct transition from the Haldane
to large-D phase occurs without accessing a LLQ phase. The
gaps in Fig. 1 display some clearly visible, albeit small noise.
This is not related to QMC or Padé approximant errors. Rather,
the noise is a consequence of the arbitrariness in choosing
the upper cutoff for the temperature range, used in Padé
fitting χ (T ). This noise translates into an error for the phase
boundaries, which we find to dominate any corrections from
finite scaling. This justifies our neglect of the latter a posteriori.
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FIG. 1. (Color online) Spin gap of the spin-1 chain in terms of
single-ion anisotropy for different external magnetic fields. Inset: For
zero magnetic field, the spin gap in terms of single-ion anisotropy
obtained from the QMC and Lanczos methods is shown. Lanczos
data are extracted from Ref. [42]. The system size and the lowest
temperature considered for QMC data are L = 512 and T = 0.0078.

Previous studies [42] have analyzed the spin gap for
h = 0 using Lanczos spectra of small systems L � 20, over
a restricted range of DNH < D < DHL. As compared to
QMC calculations, finite-size effects are a relevant issue for
this approach, and careful scaling analysis is necessary, in
particular for D in the vicinity of DHL, where gap closure
occurs. The inset of Fig. 1 compares our thermodynamic
QMC gap with that obtained from extrapolating to L → ∞
in Ref. [42]. The agreement is satisfying.

In Fig. 2, we collect the gap closure points obtained from
Fig. 1 as part of a quantum phase diagram versus D and
h. The transition points are regarded as the midpoints of
the two sequential D values for one of which � is finite
(gapped phase) while for the other one � ≈ 0 (gapless phase).
Since the distance between two sequential D/J values is 0.1,
the uncertainty for the transition points is ±0.05. The lines
connecting the points are low-order polynomials fitted to the
points. This figure also shows a transition from the Néel to
the Haldane phase, to which we turn now. Since both of the
latter phases are gapful, the transition line cannot be obtained
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FIG. 2. (Color online) Quantum phase diagram of the spin-1
Heisenberg chain versus single-ion anisotropy and magnetic field.
The error bars of the transition points are equal to the distance between
two sequential values of D/J in each of the two procedures, gap
or Néel order study. In the Haldane-Néel case, these error bars are
smaller than the symbols.

054405-2



SPIN DYNAMICS OF THE ANISOTROPIC SPIN-1 . . . PHYSICAL REVIEW B 91, 054405 (2015)

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.4 -0.3 -0.2

O
z N

D/J

h/J={0,..,0.65}

h/J=0.7

h/J=0.75

h/J=0.8

 0

 0.1

 0.2

-0.31 -0.3 -0.29

FIG. 3. (Color online) Néel order parameter is shown as a func-
tion of anisotropy for different magnetic fields. The inset shows
the transition point between Haldane and Néel phases for h/J =
0, . . . ,0.65. The system size and the temperature considered here are
L = 512 and T = 0.01J .

from a study of gap closures. Instead, we use the fact that the
long-range staggered spin correlation is an order parameter
of the Néel phase, and remains finite therein, while it decays
in the Haldane phase [54]. This has been applied previously
to characterize the Haldane phase as a function of exchange
anisotropy in the XXZ spin-1 chain [55]. The staggered spin
correlation reads

O z
N(i,j ) = (−1)i−j

〈
Sz

i S
z
j

〉
, (2)

and Néel ordering implies O z
N = lim|i−j |→∞ O z

N(i,j ) �= 0.
Due to the PBCs the largest proper distance on the chain

is L/2. Figure 3 displays our results for O z
N(0,L/2) with L =

512. In view of the rather large system, we refrain from finite-
size scaling analysis and approximate O z

N � O z
N(0,L/2). We

identify the phase transition point with the average value
between the smallest D at which O z

N ≈ 0, where we are in
the Haldane phase, and the largest D point at which O z

N is
finite, where we are in the Néel phase. The error in this case is
±0.005. From this and for h = 0, we obtain a transition point
at DNH ≈ −0.305J , which is satisfyingly close to the values
obtained by DMRG in Refs. [40,41].

The main message of Fig. 3 is contained in the remarkable
evolution of O z

N and the quantum critical point with magnetic
field. As the figure shows, the critical value of DNH (h) is
independent of the field up to a critical value h̃/J ≈ 0.65,
below which all curves for O z

N collapse onto a single one.
Adding DNH (h) into Fig. 2 shows that the point (DNH ,h̃) lies
on the extrapolated line, approximating the boundary of the
LLQ phase. From the slope of this phase boundary, and since
O z

N has to be zero in the LLQ phase, further increasing the
field, the value of DNH (h) must decrease for h > h̃. This is
consistent with O z

N in Fig. 3. In fact, as is obvious from the
green squares in Fig. 2, to within the uncertainty of the LLQ
phase boundary, the Néel-Haldane transition is replaced by a
direct transition from the Néel to the Luttinger-liquid phase
for h > h̃. This corresponds to a direct transition from a state
with broken Z2 symmetry to one with algebraically decaying
fluctuations transverse to the field. From Fig. 3 it seems that the
Néel order parameter decreased continuously for h < h̃, while
for the direct Néel to LLQ transition our data could also be

consistent with a (weakly) first-order jump of O z
N, in particular

for larger fields. Clearly this transition requires more studies.

III. DYNAMIC STRUCTURE FACTOR

In this section we discuss the following transverse dynamic
structure factor:

Sxx(q,ω) =
∫ ∞

−∞
dt eiωtSxx(q,t), (3)

where q refers to momentum, ω to frequency, t to real time, and
Sxx(q,t) = 〈Sx

q (t)Sx
−q〉, with Sx

q = ∑
l e

−iqlSx
l . Details of how

to obtained this quantity from QMC data are contained in the
Appendix. For brevity we will denote S(q,ω) ≡ Sxx(q,ω). We
will be interested in the Néel, Haldane, and Luttinger-liquid
phases. For this we analyze several values of magnetic field
and anisotropy, as shown in Fig. 2.

First, we focus on the field dependence of S(q,ω) at the
isotropic point. Results for this are shown in the contour
plots of Fig. 4. At zero magnetic field most of the spectral
weight is contained in a single, well-defined excitation, which
is clearly visible in Fig. 4(a). Most of the spectral weight
of this so-called one-magnon mode resides at large momenta
near q = π and decreases rapidly towards lower momenta,
where we find that the integrated weight is proportional to q2

as q → 0. At finite magnetic field, the two triplet branches
which can be reached by �S = +1 transitions split according
to their Zeeman energy. For small fields, this splitting is
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FIG. 4. (Color online) Contour plot of the transverse dynamic
structure factor of the isotropic spin-1 chain as a function of frequency
ω and wave vector q for three different magnetic fields h = 0, 0.2J,

and 0.41J . The system size of the chain for all cases is L = 128 and
the temperature is set to T = 0.1J .
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manifest through a broadening of the one-magnon line, while
the intensity decreases, as can been seen from Fig. 4(b) and
by comparing their intensity scales. If the Zeeman splitting
is larger than the broadening of the one-magnon excitations
due to thermal, interaction, and maximum entropy (MaxEnt)
effects, then the splitting is directly visible, as in Fig. 4(c). In
that panel, the Zeeman energy has been chosen identical to
the Haldane gap. As can be seen, at this point the maximum
intensity of the lower branch extrapolates to zero energy at
q = π , i.e., the gap closes, consistent with entering the LLQ
phase.

Next we focus on a more detailed discussion of 2D cuts of
the spectra versus D and h at small and large momenta. The
main motivation for this is that apart from the one-magnon
excitation, there are also multiparticle continua present in
the spectrum. While the former are most dominant at large
momenta, the latter exhibit very small spectral weight, which
remains invisible in contour plots of the full Brillouin zone
(BZ), and can be observed best at small momenta. Therefore
we have plotted cuts through the TDSFs at various anisotropies
and magnetic fields in Fig. 5, which allows the shape and
weight of the spectra to be clearly seen, despite very large
differences in their absolute scales in different frequency and
momentum regions. We have chosen three magnetic fields
h/J = {0,0.2,0.41} and five different anisotropies D/J =
{−0.5,−0.2,0,0.2,0.5}, ranging from easy-axis to easy-plane
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FIG. 5. (Color online) Transverse dynamic structure factor of the
spin-1 chain, S(q,ω), as a function of frequency at two momenta,
q = π/64 (left panels) and q = π (right panels), for three magnetic
fields h/J = {0,0.2,0.41} and five different anisotropies D/J =
{−0.5,−0.2,0,0.2,0.5} corresponding to panels (a)–(e) and (f)–(l),
respectively. The insets in (f)–(l) show the large-frequency spectra at
q = π . The system size of the chain for all cases is L = 128 and the
temperature is set to T = 0.1J .

anisotropies. For each of these cases two wave vectors have
been considered, i.e., q = π (right panel), and q = π/64 (left
panel), which is the smallest on the system for which we have
evaluated the TDSF, i.e., L = 128.

We start with the isotropic case at small momenta, Fig. 5(c).
At zero magnetic field it is dominated by a peak at zero
frequency. This central peak intensity stems from �S = +1
transitions within thermally excited states and decreases as the
temperature is lowered. In addition, there exists a continuum
of very small weight at higher frequencies, which, however, is
not observable on the scale of this plot. We emphasize that this
observation is rather distinct from expectations [13] at zero
temperature, where the latter multimagnon spectrum should
dominate the spectrum at low momentum, displaying a gap
of twice the Haldane gap. On increasing the wave vector, the
weight of the continuum gets larger, as we will discuss later.
On increasing the magnetic field, the central peak and the
continuum shift to larger frequencies, with an energy scale set
by the Zeeman energy.

Turning to finite anisotropy either of easy-axis type in
Figs. 5(a) and 5(b) or of easy-plane type in Figs. 5(d) and 5(e),
a shifting of the dominant weight of the spectrum to larger
frequencies is clearly visible. In addition to that, an interesting
interplay between the effects of anisotropy and magnetic field
on the spectrum can be observed, which differs between the
two kinds of anisotropies. While in the case of easy-plane
anisotropy, the magnetic field only slightly shifts the weight
of the spectrum, in the case of easy-axis anisotropy, a splitting
of the dominant peak results which increases with increasing
field.

Another interesting feature is the evolution of the spectrum
versus anisotropy upon switching from the Haldane into the
Néel phase. In the former we expect a rather broad continuum
from multiparticle excitations at small momentum, while in the
latter a single dominant excitation should occur, representing
one-magnon excitations, which may however still exhibit some
broadening due to finite-temperature and interaction effects.
Exactly this can be seen in going from Figs. 5(b) to 5(a),
where also the overall amplitude scale increases by one order
of magnitude in going from (b) to (a). At q = π , however, the
spectrum gets broadened, as one goes from the Haldane into
the Néel phase by changing the anisotropy.

Moving to spectra at q = π , one can clearly see the sharp
magnon peak which dominates the spectrum at all anisotropies
and magnetic fields. At zero magnetic field, the peak position
which is a fingerprint of the spin gap shifts towards lower
frequencies as we go from strong easy-axis anisotropy D =
−0.5J in Fig. 5(f) to strong easy-plane anisotropy D = 0.5J

in Fig. 5(l). We find that, in all cases studied, there is a good
agreement between the position of the peak maxima and the
thermodynamic spin gaps which we obtained in Sec. II. As can
be seen from Figs. 5(f) through 5(l) the monotonic behavior
of the spectrum in terms of anisotropy remains intact, even
at finite magnetic field, but it is accompanied by a splitting
of the dominant peak due to the Zeeman effect, as we already
mentioned in the context of Fig. 4. The splitting increases until
the lower branch reaches its maximum at zero frequency, at
h = hc(D), where the LLQ is entered. Increasing the magnetic
field beyond hc(D) leads to an accumulation of spectral weight
at zero frequency and a depletion and smearing of the upper
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FIG. 6. (Color online) Transverse dynamic structure factor of the
isotropic chain, D = 0, at zero magnetic field, h = 0, for two wave
vectors: a) q = π/10, b) q = π , and different methods. In inset b),
the large-frequency spectra at q = π are plotted. For QMC data,
the temperature is set to T = 0.1J , while for other data which are
extracted from Refs. [6,8,13], the temperature is zero.

Zeeman peak. This behavior is clearly visible in Figs. 5(k)
and 5(l). In view of the phase diagram Fig. 2, and because the
largest field we consider in Fig. 5 is hc(0), the maximum of
the lower branch has to stay above ω = 0 for D < 0, which is
exactly what we find in Figs. 5(f) and 5(g).

In addition to the dominant single-magnon peak at q = π ,
we find a very weak multiparticle continuum at higher frequen-
cies. This is most likely due to three-magnon excitations, as
proposed in Refs. [8,13]. In view of the relative intensities,
it is remarkable that our MaxEnt calculations are able to
resolve this continuum with respect to the single-magnon peak.
Moreover, these results hint as to why experimental inelastic
structure factor determinations of such continua have failed so
far [15].

Finally we contrast our findings with those from other
approaches, namely, the NLσ model and a free-boson
method [6,8], as well as TDMRG [13]. In Fig. 6 results are
shown for two momenta, i.e., q = π/10 and q = π . For the
former, the spectrum is dominated by only the two-particle
continuum and Fig. 6(a) demonstrates good qualitative agree-
ment between all different methods. Regarding the quantitative
difference of the QMC results from the other approaches, it
is clear that the sharp onset of the continuum is smeared. The
reason for this is twofold; primarily it results from the fact that
our QMC is a finite-temperature result, at T = 0.1J , while all
other methods refer to zero temperature. Additionally MaxEnt
cannot be avoided for introducing additional smoothing of any
QMC spectrum. The spectrum at q = π is shown in Fig. 6(b).
As discussed previously, this spectrum contains two largely
separated intensity scales, one due to the single-magnon mode,
the other due to the three-particle continuum. For the former

and as for Fig. 6(a) we see convincing agreement between all
approaches for the locations of the magnon peak, including
some finite-temperature and MaxEnt broadening of the QMC
spectrum. Turning to the high-energy continuum at this wave
vector, we first note that all methods result in a comparable
spectral intensity; however, clear qualitative differences are
obvious. While both the NLσ model and TDMRG display
only a single “hump,” the QMC calculation results in two.
Moreover, while the TDMRG and QMC spectra remain
confined to 1.5 � ω/J � 5.5, the spectrum from the NLσ

model continues up to much higher energies. The origin of
these differences remains unclear at present.

IV. CONCLUSIONS

We have used QMC calculations to study the antiferro-
magnetic spin-1 chain subject to the simultaneous presence of
single-ion anisotropy and external magnetic fields. The focus
has been on two issues, namely, the quantum phase diagram
and the transverse dynamic structure factor. We have uncov-
ered a rich set of quantum phases within the parameter range
investigated, comprising Néel, Haldane, Luttinger-liquid, and
large-anisotropy regimes. The gaps and order parameters we
have studied show continuous behavior at the Néel to Haldane,
as well as the Haldane and large-anisotropy to Luttinger-liquid
transitions. The order of the Néel to Luttinger-liquid transition
remains an open issue.

Based on the phase diagram, we have determined the trans-
verse spin dynamics covering the complete Brillouin zone, and
varied the system parameters to access the excitations within
the Néel, Haldane, and Luttinger-liquid states. First, we studied
the spectral weight, splitting, and dispersion of the single-
magnon mode, known from the standard antiferromagnetic
spin-1 chain, but versus anisotropy and external fields. Second,
we have provided clear evidence for multiparticle continua
with partially very small spectral weight and investigated their
evolution with momentum and system parameters.

Finally we have shown that our finite-temperature spectra
are consistent with existing zero-temperature results from
other analytic as well as numerical approaches. We hope that
our findings may inspire additional experimental studies using
inelastic neutron scattering on spin-1 chain materials.
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APPENDIX: METHOD

All physical quantities in this paper are obtained using
the stochastic series expansion method, pioneered by Sandvik
et al. [56–58]. This method is based on importance sampling
of the high-temperature series expansion of the partition
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function

Z =
∑

α

∑
n

∑
Sn

(−β)n

n!
〈α|

n∏
k=1

Hak,bk
|α〉 , (A1)

where β is the inverse temperature 1/T , and H1,b = 1/2 −
Sz

b1S
z
b2 and H2,b = (S+

b1S
−
b2 + S−

b1S
+
b2)/2 are spin-diagonal and

off-diagonal bond operators. |α〉 = |Sz
1, . . . ,S

z
N 〉 refers to the

Sz basis and Sn = [a1,b1][a2,b2] · · · [an,bn] is an index for the
operator string

∏n
k=1 Hak,bk

. This string is Metropolis sampled,
using two types of update, diagonal updates which change
the number of diagonal operators H1,bk

in the operator string
and directed loop updates which change the type of operators
H1,bk

↔ H2,bk
. For nonfrustrated spin systems the latter update

comprises an even number of off-diagonal operators H2,bk
,

ensuring positivity of the transition probabilities.
The dynamic structure factor is obtained from the QMC

calculation in real space i,j and at imaginary time τ . Following
Ref. [56] we consider the corresponding correlators

S±∓
i,j (τ ) =

〈
n∑

p,m=0

τm(β − τ )n−mn!

βn(n + 1)(n − m)!m!

× S±
i (p)S∓

j (p + m)

〉
W

, (A2)

where 〈· · · 〉W refers to the Metropolis weight of an oper-
ator string of length n generated by the stochastic series
expansion of the partition function [57,58], p,m are positions
in this string and Si(p) refers to the intermediate state

|α(p)〉 = ∏p

k=1 Hak,bk
|α〉. The S

xx(yy)
i,j (τ ) correlators can be

derived from (A2).
The dynamic structure factor at imaginary times and in

momentum space is obtained from the Fourier transformation

Sαβ(q,τ ) =
∑

r

eiqrS
αβ

r,0(τ )/L (A3)

with L being the system size. The sought-for form of the
dynamical structure factor in frequency and momentum space
finally results from analytic continuation to real frequencies
based on the inversion of

Sαβ(q,τ ) = 1

π

∫ ∞

0
dω Sαβ(q,ω)K(ω,τ ), (A4)

with a kernel K(ω,τ ) = e−τω + e−(β−τ )ω.
The preceding inversion is an ill-posed problem, for which

maximum entropy methods (MaxEnt) have proven to be
well suited. We have applied Bryan’s algorithm for our
MaxEnt [59,60]. In a nutshell this method minimizes the
functional Q = χ2/2 − ασ , with χ being the covariance of
the QMC data with respect to the MaxEnt trial spectrum
S(q,ω). Overfitting is prevented by an entropy term σ =∑

ω S(q,ω) ln[S(q,ω)/m(ω)]. We have used a flat default
model m(ω) which is iteratively adjusted to match the zeroth
moment of the trial spectrum. The optimal spectrum follows
from the weighted average of S(q,ω) with the probability
distribution P [α|S(q,τ )] adopted from Ref. [59]. Using static
structure factors evaluated by independent QMC runs, we have
checked that all spectra obtained from our MaxEnt perfectly
fulfill sum rules.
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