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Third-order effect in magnetic small-angle neutron scattering by a spatially inhomogeneous medium
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Magnetic small-angle neutron scattering (SANS) is a powerful tool for investigating nonuniform magnetization
structures inside magnetic materials. Here, we consider a ferromagnetic medium with weakly inhomogeneous
uniaxial magnetic anisotropy, saturation magnetization, and exchange stiffness, and derive, to second order in
the amplitudes of the inhomogeneities, the micromagnetic solutions for the equilibrium magnetization textures.
Further, we compute the corresponding magnetic SANS cross section up to the third order. For the special case
of scattering geometry where the incident neutron beam is perpendicular to the applied magnetic field, twice the
cross section along the direction orthogonal to both the field and the neutron beam cancels the cross section along
the field direction in the second order. This cancellation does not depend on the defect shape and amplitudes
of the exchange inhomogeneities. Hence, such a cross-section difference has only a third-order contribution in
the amplitudes of the inhomogeneities. It provides a separate gateway for a deeper analysis of the sample’s
magnetic structure. We derive and analyze analytical expressions for the dependence of this difference on the
scattering-vector magnitude for the case of spherical Gaussian inhomogeneities.
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I. INTRODUCTION

Magnetic small-angle neutron scattering (SANS) is an
important tool for the analysis of magnetic structures on the
nanoscale [1]. Traditional scalar magnetometry, for example,
only measures the sample’s total magnetic moment and has
no spatial resolution. Magnetic force microscopy is sensitive
to the spatial features of the magnetization only in the near
vicinity of the sample’s surface and is also prone to disturbing
the magnetic structure during the measurement. Optical
magnetometry is either also only surface sensitive (such as in
Kerr microscopy) or is applicable only to optically transparent
magnets (such as in Faraday microscopy). Magnetic SANS
complements these techniques by permitting the analysis of
the sample’s magnetic structure throughout the volume, even
in nontransparent materials, while also being sensitive to the
spatial arrangement of the magnetization.

The analysis of magnetic SANS cross sections is closely
interwoven [2] with the continuum theory of micromagnetics
[3]. This is because, unlike nonmagnetic nuclear SANS
(which is sensitive to nanoscale density and compositional
fluctuations), magnetic SANS cross-section images are formed
by the distribution of the magnetic moments within the sample.
These magnetic moments are influenced by magnetic material
inhomogeneities, but, due to their mutual interaction, do
not exactly follow the inhomogeneities. Thus, in order to
understand magnetic SANS cross sections, one must also
understand the process of magnetic-structure formation and
its dependence on the external magnetic field, which is the
subject of micromagnetic theory.

Currently, the interpretation of magnetic SANS cross
sections of heterogeneous multiphase magnets with small
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inhomogeneities of the saturation magnetization and the
magnetic anisotropy is based on a second-order (in the
inhomogeneity amplitude) theory [4], which has its origin in
the theory of the approach to magnetic saturation [5]. The latter
stems from the works of Schlomann [6], which, in turn, are a
followup on the work by Néel [7].

The motivation for the present study is to probe the limits
of the second-order magnetic SANS theory [4] by looking
for prominent third-order effects, specifically, those which are
not masked by the second-order ones. One such effect—a
central result of this work—is pinpointed at the end of
the paper (Sec. VI). An attempt was made to include all
the interactions which are common in micromagnetics. In
particular, our solution for the micromagnetic problem of
weakly inhomogeneous magnets includes an inhomogeneous
exchange interaction, which is irrelevant for the problem of
the approach to magnetic saturation and for the second-order
SANS theory. Also, the present theory explicitly includes a
weak, fluctuating random-axis uniaxial anisotropy and full
three-dimensional anisotropy-direction averaging.

The paper is organized as follows. Section II introduces the
magnetic SANS cross sections, Sec. III details the solution
of the micromagnetic problem in Fourier space, Sec. IV
provides a discussion of the defect distribution and averaging
procedures, the second- and higher-order SANS cross sections
are, respectively, discussed in Secs. V and VI, and Sec. VII
summarizes the main results of this study.

II. MAGNETIC SANS CROSS SECTIONS

The current theoretical and experimental understanding
of magnetic SANS of bulk ferromagnets has been recently

summarized [1]. The quantity of interest—the differential
SANS cross section %—is related to the Fourier transform

of the Cartesian components of the magnetization vector
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field M = {A?X,My,IVIZ}. In particular, the total unpolarized
nuclear and magnetic SANS cross section is [8]

dx+ N2~ ~
— 873V b2 Ml 4 1Mo cos?

dQ T H[ b]z_[ +| X| +| Y| Cos™ o

+ |]l7lz|2 sin® o — 2Re(1\7y]l7z) sina cosoe}, (1)
dz! 3 2|ﬁ|2 ~ 22 ~ 22
— =8n VbH|:—2+|MX| sin” 8 + |My|“ cos” 8
a2 by

+|My|* — 2Re(My M) sin B COSﬁ}, @)

where the first expression refers to the perpendicular scat-
tering geometry, for which qL = ¢{0, sinw, cosa}, and the
second equation relates to the parallel geometry, with q' =
g{cos B, sin B,0}; V is the scattering volume, N(q) is the
nuclear scattering amplitude, by =2.9 x 108 A~'m~! is a
constant relating the atomic magnetic moment to the Bohr
magneton [1], Re stands for taking the real part of a complex
number, and the overbar for its complex conjugate. The
magnetic form factor is approximated to 1 (forward scattering)
and in the cgs system of units the cross section is measured in
units of cm ™! sr~!.

Fourier transforms (distinguished by tildes above the
symbol) are defined for a representative cube of the material
with dimensions L x L x L. Most of the time we shall work
with discrete transforms (the continuous ones correspond to
the limit L — 00):

X(q) = %/// X(r)e ' d°r, 3)
14

X(r)=Y X(g)e, )
q

where 1 = +/—1, V = L3 is the representative cube volume,
and X is a quantity which is defined inside the volume.
The components of ¢ = {gx,qy,qz} take on all values which
are integer multiples of 27w /L. Note that, unlike Ref. [8],
our definition of the forward Fourier transform carries a
prefactor of 1/V, so that the Fourier transform has the same
dimension as the transformed quantity. This, however, renders
the prefactor in the expressions for the cross sections, Egs. (1)
and (2), also slightly different. .

In order to get rid of the nuclear scattering |N|?, the cross
sections are typically split into the residual and the magnetic
parts, ¥ = X5 + XM, Where the residual part corresponds to
the magnet in the fully saturated state. Assuming that a large
saturating external magnetic field is directed along the Z axis,

Az NP~
d_Qe = 87°Vh} [E + | Ms|? sin® ozi| , ®)
dzr”es 3 2 |ﬁ|2 ~ 12

= 873Vb? | — + |Ms|*|, 6

where Ms is the Fourier transform of the inhomogeneous
saturation magnetization of the magnet, which is defined in
the next section. The residual part can then be measured
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independently and subtracted from the measured total cross
section at a lower field to yield the magnetic part:

dZI\L/I_ 3vp2 0107 (2 7 12 2
—= =8m"Vby[IMx|~ + |My|” cos” o
dQ
+ (|Mz)? — |Ms|?) sin® & — 2 Re(My Myz)sin « cos ],
(N
ax! ~ ~
d—g;“ = 872 Vbi[|Mx|* sin® B + |My|* cos® B

+ (| My |? — | Ms|?) — 2Re(My My) sin B cos B].
®)

Thus, in order to compute the magnetic SANS cross
section, one needs to know the Fourier components of the
magnetization vector field inside the material. Their derivation
is the main subject of the two following sections.

III. MAGNETIZATION DISTRIBUTION IN A WEAKLY
INHOMOGENEOUS MAGNET

Consider an infinite magnet, whose saturation magnetiza-
tion depends explicitly on the position vector r,

Ms(r) = Mo[1 + In(r)], C))

where the magnitude of I,,(r) is a small quantity. We also
assume that the spatial average (I,,(r)) =0, so that My =
(Ms(r)) is the average saturation magnetization of the magnet.

If the representative volume contains a magnetic material,
the equilibrium distribution of the magnetization vector M (r)
is the solution of Brown’s equations [9] at each point r in the
volume,

[H". M] =0, (10)

where the square brackets denote the vectorial cross product.
The effective field H°T(r) is defined as the functional
derivative of the ferromagnet’s energy-density functional e
over the magnetization vector field,
a9
¢ ) .an

1§ 1 0
Heff(r)=___e=__ _e___M

Mo M Mo oM or dd_r
From the magnetic-units standpoint, following Aharoni

[10], we use the defining relation for the magnetic induction,
B = po(H + ygM), (12)

which can be made valid in all systems of magnetic units by
appropriately choosing the constants pg and yg. For example,
in the ST system, pg is the permeability of vacuum, and yg = 1,
in the cgs system, po = 1 and yg = 4.

The energy density e represents our knowledge of the
interactions in the magnetic material. Here, we include the
effects of exchange, random uniaxial anisotropy, magneto-
static interaction, and the influence of the uniform external
magnetic field, so that the total energy density of the magnet
can be written as a sum,

e =epx +ea+temstez. (13)
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Different interactions enter both the energy density and the
effective field additively, so that

H" = Hpx + Hp + Hys + Ho, (14)

where Hy is simply the external field.

The exchange interaction is deemed inessential in the
theory of the approach to magnetic saturation [6,7], but SANS
is sensitive to small spatial variations of the magnetization
vector field, despite their negligible contribution to the total
magnetization of the sample. That is why we have included
the exchange interaction into consideration. Its energy density
in a material with varying saturation magnetization is conven-
tionally defined as

_C(r) M) T\?
CEX = —— A E (V [Ms(r)]> , (15)
i=X,Y,Z

where C(r) is the exchange stiffness; X, Y, Z are
the labels of the Cartesian coordinate-system axes; V =
{0/0X,0/0Y,30/0Z} is the gradient operator. Using vector-
calculus identities, it can be transformed into

_ monLE @) [ {

2
- VMsP+ Y [VM,»(r)} ,

i=X,Y,Z
(16)
with the exchange length

Lex(r) = /C(r)/[1oys Ms(r)]. (17

The first term in Eq. (16) vanishes under the variation of
M and gives no contribution to the effective field. This is
a manifestation of the fact that the exchange energy depends
only on relative angles of the magnetization vectors and not
on their magnitude. Thus,

Hex = ysLic(r)AM(r) + yg VLA (H)VM(r), (18)

where A is the Laplace operator and V M (r) is a matrix, whose
rows are the gradients of the components of the vector M(r).
Similarly to Eq. (9) we will now assume that the squared
exchange length is weakly inhomogeneous,

L (r) = L3[1 + L(r)], (19

where I is a small position-dependent quantity of the same
order as I, and Lo is an average position-independent
exchange length. In real materials, since the values of both
C and Mg are determined by the same quantum exchange
interaction (and both grow as exchange becomes stronger),
the value of L displays little variation across a wide range of
magnetic materials and is of the order of 5-10 nm for most
of them. Nevertheless, we shall keep track of the weak spatial
dependence of Lgx in this calculation.

The presence of uniaxial anisotropy creates the following
energy density,

[d(r) - M(r)]?
M3(r)
where ky(r) is the spatially inhomogeneous anisotropy con-

stant, and d(r) is a unit vector along the local direction of the
anisotropy axis. The corresponding effective field is

Hp = ygQ(r)ld(r) - M(r)ld(r), 2y

eA = —kU(I‘) B (20)
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where the dimensionless quality factor

0(r) = 2ku(r)/[ oy M3(r)] = L(r) (22)

is assumed to be small and of the same order as /.
The magnetostatic energy density is

ems = —351o(Hp - M), (23)

where Hp is the magnetostatic (or demagnetizing) field. The
expression for the latter in the static case with no macroscopic
currents is simplest in Fourier representation. It follows [11]
from the expression of the magnetic induction (12) with the
internal field H = Hz + Hp and Maxwell’s equations V x
Hp =0and V - B = 0 that

Hp = —WM for

q

The average demagnetizing field Hp(0) is antiparallel to the
externaLﬁeld H ;. Thus, we can add these fields as scalars H =
Hz — |Hp(0)|. In the following, all results will be computed
not as functions of the external field Hz, but rather as functions
of the internal field H, which contains information about the
shape of the sample.

Having a simple expression for the demagnetizing field,
Eq. (24), suggests trying to solve Brown’s equations, Eqgs. (10),
directly in Fourier space. There is, however, a complication,
since products of functions in real space become their convo-
lutions in Fourier space. Thus, to simplify the expressions, let
us introduce a shorthand notation for convolutions,

X®Y@) =) X¢g)Y4q-4q) (25)
"

g #0. (24)

where the argument g on the left hand side (which sometimes
will be omitted in the following text) is the argument of the
whole convolution (not just of Y) and summation is carried
out over all the values of ¢’. The algebra of convolutions is
commutative (X ® ¥ = Y ® X), distributive [ X ® (Y + Z) =
X ®Y + X ® Z], and associative with respect to multiplica-
tionby aconstant,a(X ® Y) = (aX)® Y = X ® (aY), where
a is a constant. It also has an identity element (a product of
Kronecker deltas in the discrete case or Dirac’s delta functions
in the continuous case), which we will denote as §(q), so that
6 ® X = X. We will also sometimes specify functions in line
by underlining them, so that ¢gZ ® Y is a convolution of the
function X(q) = ¢ Z(q) with the function Y (q).

Using this notation, we can now express Fourier represen-
tations of the effective-field terms,

Hex = —ypLi @ ¢*M — ypqli, @ ¢ x M, (26)

Hy=y:0®dx®Mx+dy® My +d;, ® M) ®d,
(27

5 - (M —sM

HMs-l-Hz:HS—J/BW, (28)
where the cross (x) denotes a direct product of two vectors
(forming a matrix, having the products of the left vector by

each element of the right vector in the rows) and convolution
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of a vector with a matrix is as their normal product but with
convolutions instead of multiplications. The final subtraction,
together with the condition that M —85M — 0 as q—0isa
mathematical trick, allowing not to pay further attention to the
fact that the expression for the demagnetizing field, Eq. (24),
is valid only for g # 0. This limiting condition is fulfilled if
(Im(r)) = I1(0) = 0, which is assumed from the start of this
computation.

In completely homogeneous infinite isotropic magnets, the
magnetization will always be uniform, saturated, and aligned
parallel to the external (and the internal) field, however small it
is. In our weakly inhomogeneous and weakly anisotropic case,
there will be a small deviation from uniformity. Let us choose
the coordinate system in such a way that the direction of the
external field coincides with the Z axis, so that H = {0,0, H}
and, using the magnitude of I, as a small parameter, represent
this weakly inhomogeneous magnetization via a Taylor-series
expansion,

= {0,0,Mo}s + M + M + . (29)

where M¥ contains the terms of the order i in Iy,.
Due to the constraint M%(r) = M. g (r), there are only two in-

dependent components of M. Considering Mx = M)(g )4 M)((2 )

and My = M$ )+ M§{2 ) independent and small, the expansion
of the constraint up to the second order allows us to express
the remaining component of M in real space as

()’ + (04"
B 2M, :

Rendering products as convolutions in Fourier space and intro-
ducing the dimensionless magnetization vector m = M /M,
we get

My = My + Myl

(30)

Mz =8+ In— Fy, 3D
where

()] (1) (1) ~(1)
x ® my ® my
Fz = (32)
2
Brown’s equations (of which only two are independent) in
Fourier space also contain convolutions. For example, the first
one of them reads

B @ My = B @ Mj, 33)

while the second independent one can be obtained by replacing
the subscript Y by X everywhere. After substituting the
expression for the effective field and the Taylor expansion
of the magnetization components in powers of I,, Brown’s
equations become Taylor series themselves. By collecting the
terms of the same order in I;,, we get a chain of coupled
equations for Taylor-expansion coefficients mg(I;Y, m%Y, etc.
For example, the equations in the first order read

(h+ Liq* + yq)mY)+ ququ = Ay — yqqum,

(1

(h + Liq? + x2)is + xgygiiy’ = Ax — X424 I,

where h = H/(ypM,) is the dimensionless field, XX =
dx ®d; @ I, Ay =dy ® dz ® I, and the dimensionless
components of the g direction vector are {x,4,y4,24} = q/q.
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Quantities Ly and ¢ are still carrying dimensions, but their
product is dimensionless. These linear equations are solved by
) _ Xx(hq + yg) - xq(Zyyq + hqqum)
X =
hy(hg +x2 4 ¥2)
HO Ay (hq + x;) — g (Axxg + hyzqln)
my’ =
hy (hg + X2+ ¥2)

N CL))

. (39

where h, = h + L3g*. When both the exchange interaction
and the anisotropy are neglected (ZX =0, Xy =0, hy = h),
these expressions coincide with the first-order solution by
Schlomann [6]. Otherwise they coincide with the first-order
solution [4], which is extensively used at present as a basis
for magnetic SANS, except that now we have an explicit
expression for Ax and Ay via the magnitude and the direction
fields of the local uniaxial anisotropy.

In the second order (as well as higher orders), the equations
are also linear and differ from the first-order ones only by their
right hand side, which now contains sums over the lower-order
solutions:

(h+ Lig” + yq)mY)—i- ququ = Fy + y42¢ Fz.

(h —|—L0q +x ) X)+quqn7Y = Fx +x424F7.
Their solutions are also similar,
HO FX(hq + y;) —xg(Fyyq — hgzq Fz) (36)
X = )
hq (hq + x; + yé)
- Fy(hy + x2) — y,(Fxxg — hyzq F7)
mg)z Y( a q) YqI'xXq a%efz) 37)

hq(hg + xXg+ Yﬁ)

The special functions are

Fx=dx @ I ® (2d, ® Tn + dx @ i+ dy @ )
—qLoxgIe ® qLoxgiy’ — qLoygle ® qLoygiiy’

—qLozgle ® qLozgiy) — dz @ dz @ I, @ iy

—Te 2y L%q mg)

-I.® L%q2m§(])+ Xq (qu + xqmg(])+ y,,%”)

"72)‘8 L(2)5121~m + 24 (Zqu + xqm§)+ yq’%g(l))

and a similar expression is obtained for Fy with the X and Y
subscripts as well as the functions x, and y, interchanged. The
function Fz = —mZ is defined by Eq. (32).

Just to give a simpler example: If the effects of inhomo-
geneous amsotropy and exchange are neglected (by putting
Ic=0and I, = 0) and the expressions for m(') and mg) are
substituted, the special functions are

1(¢"T(q — q))
Fx)v/z(q) = Zq, T
q*q—q’

Ix/y/z (q’,q - q’) ,
with
Jx = —hxgzgug g

- [Zg’ (h+ L3g?) + ug L3q"] Xg—q 2gg-
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fy = —hygzquq—g
- [Zzz (h + L%q/z) + Mq/Léqlz] yq—q’Zq—q/:
1
fz= Ezq/zq—q’(xq/xq—q/ + Yg'Yg-q'): (33)

whereu, = hy + xg + y;. Expression (38) for f is valid even
if inhomogeneous exchange and anisotropy are present. If we
further neglect the effects of exchange (by putting Ly = 0),
the solutions for 7, coincide exactly with those obtained by
Schlomann [6].

These analytical calculations complete the second-order
solution of the micromagnetic problem of a weakly inhomo-
geneous magnetic material under the influence of an externally
applied magnetic field. Let us now proceed with the evaluation
of the ensuing magnetic SANS cross sections.

IV. MODEL FOR DEFECTS AND THEIR AVERAGING

The theory of magnetic SANS relates to experiment in
a similar way to the theory of the approach to magnetic
saturation, being a microscopic theory for a macroscopic
measurement. The micromagnetic analysis of the previous
section allows us to express the magnetization Fourier image
at a specified magnetic field via those of the inhomogeneous
saturation magnetization, anisotropy, and exchange. The latter,
however, are usually unknown for a specific piece of magnetic
material. In fact, it is realistic to assume that the inhomogeneity
functions (Iy,, Ix, and I.) are random processes, having
specific realizations in each representative volume into which a
macroscopic magnet is subdivided. Then, the magnetic SANS
cross section, resulting from the scattering of the neutron beam
off the macroscopic magnet comprising many representative
volumes, can be expressed as an average (both over the
random process realization and over the orientation, since the
defect realizations in representative volumes are also randomly
oriented).

Also, the inhomogeneities of different material parameters
are usually not independent. The underlying physical reasons
behind their formation (such as nanocrystallization) imply that
the material consists of two or more phases, each having a
specific set of magnetic parameters, separated by transition
regions (such as grain boundaries). That is why later on we will
assume that the inhomogeneity functions are proportional to
a universal inhomogeneity function 7, describing the material
microstructure I, = I, Iy = 1, I. = €I, where ke < 1.

To perform the averaging procedure, it is easiest to start
with a specific model for the inhomogeneities. Here, we will
consider inhomogeneities which are randomly placed,

Ir) =) fulr = p,), (39)

where p, are uniformly distributed random vectors and the
summation is carried out over all the inhomogeneities in the
representative volume. The Fourier transform of this function
is

Iq)=) e fu(q), (40)

where fn(q) is the Fourier transform of f,(r).
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We further assume that the inhomogeneities have a Gaus-
sian profile,

fulr) = a,e 277, (41)

where a, denotes their (random) amplitude, the subscript
T indicates transposition, and the bold-italic capital symbol
denotes a square matrix. Moreover, the matrix A is assumed
to be positive definite and its elements have units of inverse
squared length (so that the argument of the exponential is
dimensionless). Assuming that the inhomogeneities are much
smaller than the representative volume, we can extend the
integration limits in the Fourier transform up to infinity to get
a simple representation for f,(q),

~ Ay 1 141
folg) = S 2 A, (42)

where v = (277)*/?/+/D is the volume of a single inhomo-
geneity, D = det A is the determinant of A, and A7l s its
inverse.

Since we are going to perform the directional averaging over
all the possible inhomogeneity orientations, it is sufficient,
without loss of generality, to specify the positive definite
matrix A in diagonal form. Specifically, to consider spheroidal
inhomogeneities, we can write the matrix A as

7/s? 0 0
A=| O /s> 0 , 43)
0 0 1/(s)?

where s is a real number with units of length specifying
the defect size, and 7 is a dimensionless quantity, specifying
their shape. The case T = 1 corresponds to spherical inhomo-
geneities, T < 1 to planar, and T — oo to needlelike elongated
defects. The above parametrization is chosen in such a way
that the volume v = (277)*2s3 of a single inhomogeneity is
independent of .

Now we can explicitly include a rotation matrix O into
the description of the inhomogeneities. For example, we can
use a matrix which is parametrized via the spherical angles
¢r € [0,27] and 6 € [0,7]:

céca + sé CwSZw(C@ 2— 1) cyse
O = | cpsplcy — 1) c, +5,C0 SpSo | » 44)
—CypSh S¢S0 Co

where ¢, = cos ¢r, 5, = singr, ¢y = cos Og, and sy = sin 6g;
it rotates the direction vector {0,0,1} towards the unit vec-
tor v = {c,50,5,50,50} and, consequently, has the property

0~ 'v=1{0,0,1}.
The quadratic-form matrix A in the rotated coordinate
system can be represented as QAOQ ™' = O AOT, since for the

rotation matrix O~! = O7. Similarly, (OAO)™!' = 0A~' 07
and ¢Tp,, in the rotated coordinate system should be replaced
by ¢"Op,. Thus, for the Fourier image of the rotated
inhomogeneity function we have

T(g) = % T(g)e 34704707 (45)

Tg) =) a0 (46)
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Besides the averaging over the full range of the rotation angles
¢r and 6g, the expressions containing [ (q) will need to be
averaged over the random defect positions p,,. The function
I depends on these positions only via the factor J. In order
to learn how to compute the configurational average of this
function, consider its mean-squared value,

(T () <ZZ“" 10w, = p,,/)> N {a2),

where N is the number of defects in the representative volume.
This is because the averaging of the exponent in the last
expression yields a Kronecker delta. The summation can
then be easily performed. Similarly, it is possible to show
that the various m products of J, such as the triple product
|J (q)I2 Re J(q) or the quadruple product | J (q)|4 average over
various defect configurations to N{aj'), which is independent
of q.

Finally, we will assume that the direction of the local
anisotropy axis is independent of the particle shape. This
means that all the expressions for the SANS cross sections
will need to be averaged over the random anisotropy direction
as well.

V. SECOND-ORDER MAGNETIC SANS CROSS SECTIONS

As we have seen in Sec. II, the magnetic SANS cross
sections depend on the squared magnetization Fourier com-
ponents. Since the magnetization components start with the
first order in I, the lowest-order terms in the cross sections
will be of second order. Let us compute these terms.

For simplicity, we assume that the magnitude of the
anisotropy inhomogeneities is related to the magnitude of the
saturation-magnetization inhomogeneities by a factor Iy = « I,
and also that the anisotropy direction is constant inside each
igclusion (but random~1y oriented in different ones), so that
dx = 8cos@a sinfa, dy = §sin@a sinfa, and dz = 6 cosO4.
Then, substituting the magnetization components, Eqs. (34)
and (35), into the expressions for the parallel [Eq. (8)] and
perpendicular [Eq. (7)] magnetic SANS cross sections, and
averaging over the anisotropy directions,

2
<F)A / FSIHGA d(pA dQA, (47)
4
we get
dz” ~ KZ
d—g = 8’ Vi M (I )W’ (48)
q
ATy 3eri2 A2 k% cos? o K>
—= =87 Vb M (1
g = 80 VhaMy (1) I5(h, +si?a)? 1512

(3 + 4h, — cos 2a) sin? 2oti| ’ 49)

8(hg + sin® a)?

where we have introduced an angle in the plane of the detector
(gx = 0) for the perpendicular cross section gz = g cosa,
gy = g sincw, and angular brackets stand for the directional
averaging over the representative volume orientations (¢g,6R ).
For Gaussian defects, Eqgs. (41)-(43), this averagmg can be
performed analytically, yielding (/ 2) N{(a®)(v/V)*Y(gs,7)
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Y(1,9)

T/(1+1)

FIG. 1. Dependence of the mean-squared inhomogeneity func-
tion (I%) = N(a)(v/V)*Y(gs,t) on the inclusion shape T for
different values of ; = gs in the range from O to 2 in equal steps
of 0.1. (I?) has an extremum at T = 1, corresponding to spherical
defects. The left side of the plot corresponds to planar defects, while
the right side to needlelike ones.

with

Tert(u =), t <

Y(p,7) = e, t=1, (50

3’4‘2/—5 [ 5— erf(,u a _1), T > 1,

where erf(z) = (2//7) f ¢ e~ dt denotes the error function,
and erfi(z) = erf(1z)/1 is its imaginary counterpart. The
dependence of Y(u,7) on particle shape at different values
of u = ¢gs is plotted in Fig. 1.

The parallel cross section in the second order, Eq. (48),
is fully isotropic in the detector plane (g7 = 0), while the

perpendicular one, Eq. (49), besides the isotropic term %,
contains two terms, which depend on «. One of these terms is
due to the effect of magnetic anisotropy, while the other is of
a purely magnetostatic origin. They are plotted in Fig. 2.

Remember that h, = h + L}g?, which means that &, takes
on values starting with the external field 2 > 0 and up to some
larger limiting value, dictated by the parameters of the SANS
detector. There are two distinct regimes, when £, is small
(small # and small ¢ with respect to the inverse exchange
length squared 1/Lg) and when A, is large (either when £ is
large, or when ¢ is large for small %). In the former regime,
the angular dependence of both anisotropic terms displays
a similar twofold angular dependence with sharp maxima
along o = 0,7. Together with the isotropic halo, described
by the second term in Eq. (49), this gives rise to the recently
observed [12] UFO-like shape of the SANS image [13], shown
in Fig. 3.

Atlarge h,, the angular dependence of the first and the third
term in Eq. (49) is different. The former is twofold, while the
latter tends asymptotically to (1 — cos 4a)/(4h,), which has
fourfold symmetry. This opens the possibility of separating the
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q
—_—
—_ W

cos (o)/(h + sin’())°

o
W

q

q

(3 + 4h - cos(2a)sin’(20)/(8(h + sin’ (@))’)

FIG. 2. Angular dependence of the anisotropic terms in the
perpendicular magnetic SANS cross section at different values of
hy. (a) displays the first and (b) the third term in Eq. (49).

9y

04 g

03 1 1 1 1 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

9z

FIG. 3. (Color online) UFO-like magnetic SANS cross-section
shape (omitting the constant prefactor of 873b% M3 (a2)v>N/V) at
small 7 = 0.01 and ¢ in a sample with spherical (r = 1) Gaussian
inclusions. The other parameters for this plotare k = 1,5 =1, Lo =
1. The outer contour corresponds to a cross-section value of 15, which
increases for inner contours in equal steps of 100. There is a very sharp
maximum at the center. The inset shows experimental data displaying
the UFO-like SANS cross-section shape from Fig. 2(b) in Ref. [12].
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anisotropy and the magnetostatic contributions by performing
a Fourier analysis of the cross sections at large h, (either at
moderately large 4 or at the outskirts of the cross section,
measured at small /).

Regarding the asymptotic ¢ dependence, it is readily
verified that both magnetic SANS cross sections vary (for
spherical inclusions with T = 1) as Ne’szqz(sq)"‘, where s
denotes the defect size. Other assumptions about the profile of
the inclusions, e.g., a sharp interface, may result in different
asymptotic dependencies.

VI. HIGH-ORDER TERMS IN MAGNETIC
SANS CROSS SECTIONS

The structure of the second-order solutions for the magne-
tization components, Egs. (36) and (37), is similar to that
of the first-order ones, but now magnetostatic effects also
contribute to Fx and Fy. These functions play the same role
in the second-order solutions as the functions Ax and Ay
do in the first-order ones, except that they have an additional
dependence on the magnitude and the direction of the g vector.

The main problem with this (and any other) high-order
contribution to physical properties is that it is usually very
small and, if lower-order effects are present at the same time,
is completely masked by them. On the other hand, analysis
of the higher-order effects allows one to extract independently
additional information about the system, which the lower-order
effects do not provide. Therefore, it is desirable to establish
the experimental conditions when the lower-order effects are
canceled out and only the higher-order terms contribute, thus
enabling their analysis.

In the present problem this can be achieved by considering
the following combination of SANS cross-section values:

ATy
dQ

s ATy

ATy = o

619

a=m/2

As can be readily checked from Eq. (49), this combination is
exactly zero in second order. This is true both in the presence
of anisotropy inhomogeneities k > 0 and exchange-constant
inhomogeneities with an arbitrary (not only Gaussian) spatial
profile, since (/ 2) always depends only on the magnitude of ¢
due to the directional averaging. It is also independent of the
assumption that the anisotropy inhomogeneities are related
to the saturation-magnetization inhomogeneities by a factor
of Ik — k1. In other words, the cancellation of the second-
order terms in A £ is a universal property of the SANS cross
sections, which is independent of the specific model.

In next significant order (which is the third one), the

contributions of Fx and Fy are also canceled and AEDJ;[ takes
on an especially simple form,
ASH = 3203 VEEME (2 1), -0, (52)

where g = gy, Fz is defined by Eq. (32), and the angular
brackets denote a triple (configurational, directional, and
anisotropy direction) average.

To make the following expressions simpler, let us assume a
spherical particle shape (t = 1), which obviates the directional
averaging, and, again, assume that I = «I. Then, averaging
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FIG. 4. The functions ga(u,h,A) (solid lines) and their approxi-
mation by decaying exponentials (dotted lines) for different values of
h at fixed A (upper plot) and for different values of A at fixed & (lower
plot).

is easy to perform,
AXy = 321 Mg pv* (a)) [P ga(gs) + gus(gs)],  (53)

where p = N/V is the defect density. The dimensionless
functions ga(u) and gms(u), which also depend on & and
A= Lgy/s, are described in the Appendix and plotted in
Figs. 4 and 5. The remaining integrals in these functions
are due to the convolution embedded in the definition of the
function F7.

The dependence of the third-order perpendicular magnetic
difference SANS cross section, Eq. (53), on p for the consid-
ered spherical Gaussian defect model is mostly a featureless
decaying exponential. Only for small values of the externally
applied magnetic field 4 does this dependence become sharper
at small values of . In the case of a very small amplitude of
the anisotropy inhomogeneities «, such that the cross section is
dominated by the function gys, it is possible to have negative
values of AZ{; for u = 1.5. This does not, of course, imply
that the total cross section is negative.

VII. SUMMARY AND CONCLUSIONS

We have presented an analytical solution of the micromag-
netic problem of a weakly inhomogeneous magnetic material
in an applied magnetic field up to the second order in the
amplitude of inhomogeneities. On the basis of this solution,
we have computed the second-order magnetic SANS cross
sections, which, at sufficiently small values of the applied

PHYSICAL REVIEW B 91, 054404 (2015)
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FIG. 5. The functions gus(i,h,1). The curves correspond to the
same values of parameters as those in Fig. 4.

magnetic field %, inevitably display a prominent UFO-like
shape. It is shown that under very general assumptions in a
magnet with arbitrary small inhomogeneities of exchange,
anisotropy, and saturation magnetization, a specific com-
bination of the perpendicular SANS cross-section values,
Eq. (51), is exactly zero in the second order. The next
significant third-order contribution to this combination is also
computed here and is nonzero. Detection and analysis of its g
dependence should provide a deeper insight into the magnet’s
microstructure. An experimental confirmation of this predicted
effect is needed.
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APPENDIX: THE FUNCTIONS g AND gus

The functions ga and gms appear as the result of computing
the average (FzI) over random defect positions, anisotropy
direction, and the orientation of the representative volume (if
the inclusions are not of spherical shape) with F7 defined by
Eq. (32) and I by Eq. (40). Fz, however, contains convolutions
of the first-order solutions for the magnetization vector field,
Egs. (34) and (35), which, in turn, are proportional to /. For
computing these convolutions, it is easiest to approximate the
triple summation by a triple integration, according to

S [

(A)
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and integrate over the whole ¢ space in a spherical coordinate
system. Nevertheless, even in the simplest case of spherical
defects (which obviates the directional averages) the full
expressions are too complex to be presented here; they are
given in the attached Mathematica file [14] and plotted in
Figs. 4 and 5 (solid lines).

A relatively simple formula can be written for the values of
ga and gyvis at u = 0, which reads

ol B /oo e—(pz—l—h)/)\zu(p) /pz —1—nh
n=0 —

JIFh 2+/2m A3

dp, (A2)

PHYSICAL REVIEW B 91, 054404 (2015)

where the functions u(p) are given by

3p>—1 -

p((pzp_])z) + Coth lp

UA = s
15p2

(A3)

ums = —3p + (3p2 — coth™! p. (A4)

Also, a simple closed-form asymptotic expression for ga at
large h can be obtained,

—3u?/4

h>»>H)=———
8a 3042 h?

(A5)
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