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We study an extended Kitaev-Heisenberg model including additional anisotropic couplings by using the two-
dimensional density-matrix renormalization group method. Calculating the ground-state energy, entanglement
entropy, and spin-spin correlation functions, we make a phase diagram of the extended Kitaev-Heisenberg
model around the spin-liquid phase. We find a zigzag antiferromagnetic phase, a ferromagnetic phase, a
120° antiferromagnetic phase, and two kinds of incommensurate phases around the Kitaev spin-liquid phase.
Furthermore, we study the entanglement spectrum of the model, and we find that entanglement levels in the Kitaev
spin-liquid phase are degenerate forming pairs, but those in the magnetically ordered phases are nondegenerate.
The Schmidt gap defined as the energy difference between the lowest two levels changes at the phase boundary
adjacent to the Kitaev spin-liquid phase. However, we find that phase boundaries between magnetically ordered
phases do not necessarily agree with the change of the Schmidt gap.
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I. INTRODUCTION

The Kitaev honeycomb lattice model is a spin-1/2 system
on a honeycomb lattice [1]. The interactions between nearest
neighbors are of S*S*, $YS”, or S*S*¢ type, depending on
the bonds J, J,, and J;, respectively, as shown in Fig. 1.
The ground state of the isotropic Kitaev model is known as
a gapless Kitaev spin-liquid state characterized by gapless
Majorana fermion excitations with two Dirac cones [2]. The
spin-spin correlation of the gapless Kitaev spin liquid is short-
range, showing a nonzero value only for the nearest-neighbor
sites [3]. However, perturbations such as antiferromagnetic
(AFM) Heisenberg and Dzyaloskinski-Moriya interactions
can qualitatively alter the nature of spin-spin correlation
functions exhibiting a long-ranged power-law behavior [4].

Such a Kitaev-Heisenberg (KH) model has widely been
studied as a prototype model [5] for Na,IrOs, and its phase
diagram has been established [6-13]. We note that bond-
dependent spin interactions present in the KH model have
originally been studied by Kugel and Khomskii [14] on the
compass model [15,16]. However, it has turned out that the KH
model cannot straightforwardly explain a zigzag-type AFM
order observed in NapIrOs [17,18]. This discrepancy has
inspired further studies about more suitable effective spin
models for Na,IrO;. For example, further neighbor Heisenberg
interactions [17,19,20] and anisotropic interactions due to
trigonal distortions [21-27] have been introduced to the KH
model to explain the zigzag order. In addition, a recent neutron
scattering experiment has reported that magnetic order of
another iridate Li,IrO3 is an incommensurate spiral-type order
[26,28]. It is also interesting to study such an order in the KH
models extended by such interactions.

Motivated by these previous studies, we examine an
extended KH model including such anisotropic interactions.
We make a phase diagram of the model around the Kitaev
spin-liquid phase. We find a ferromagnetic (FM) phase, a 120°
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AFM phase, two kinds of incommensurate (IC) phases, and a
zigzag-type AFM phase next to the Kitaev spin-liquid phase.
The zigzag phase exhibits spin-spin correlation similar to a
model more realistic for Na,IrO3; [22].

Furthermore, we investigate entanglement entropy and
the entanglement spectrum of the extended KH model. We
find that the lowest level of the entanglement spectrum at
magnetically ordered states is nondegenerate. This is clearly
in contrast to the Kitaev spin-liquid state, where all of the
entanglement levels form pairs. Such a degenerate structure
in the Kitaev spin liquid is due to its gauge structure coming
from its topological nature, and it depends on the boundary
conditions. As a result, the Schmidt gap defined as the energy
difference between the lowest and first excited entanglement
levels changes at the phase boundary between the Kitaev spin
liquid and other magnetically ordered phases. However, we
find that the Schmidt gap cannot be a good measure of the
phase transition between magnetically ordered phases.

This paper is organized as follows. The extended KH
model and the density-matrix renormalization group (DMRG)
method are introduced in Sec. II. In Sec. III, we show a
phase diagram of the model around the Kitaev spin-liquid
phase, obtained by the spin-spin correlation functions and the
ground-state energy. The behavior of the ground-state energy,
entanglement entropy, and the entanglement spectrum across
phase boundaries is also shown. In addition, we discuss the
entanglement spectrum of the extended KH model and clarify
the relations between the Schmidt gap and the phase transition
in the model. Finally, a summary and outlook are given in
Sec. IV. The entanglement spectrum of the KH model is
discussed in Appendix.

II. MODEL AND METHOD

The Hamiltonian of an extended KH model is given by

7:[ = Z Z ﬂll‘)‘l’ (1)

I (Im)el
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FIG. 1. (Color online) Honeycomb lattice with 6 x 8 sites with
the periodic boundary condition. Blue dotted, red dashed-dotted, and
green solid bonds labeled by J;, J, and J, have $*§*, §”§”, and
§%8% terms in a Kitaev model, respectively. We define the x-axis
direction as an armchair-edge direction and the y-axis direction as a
zigzag-edge direction.

Fim = K] ST+ J(SES% + S/ SE) + 1, (57 SE + 5/ 5%)
+ L (SySY + 87 S% + SP Sy + S S, )

where I' represents a combination of («,8,y) = (x,y,2),
(z,x,y),and (y,z,x) on the J;, Jy, and J, bonds, respectively,
and (Im) sums over all possible bonds belonging to I". We note
that 7; and I, terms are added to a KH model consisting of the
K and J terms. The I; term mainly originates from a feature
of an edge-shared octahedron with total angular momentum
j =1/2, and the I, term originates mainly from trigonal
distortions present in Na,IrO5. This model (1) has been studied
by Rau and Kee [24] as an effective model describing Na,IrOs.
We calculate the ground state of this model by using the
DMRG method [29,30]. The DMRG calculations are carried
out under periodic boundary conditions. We take the x-axis
direction along an armchair-edge direction and the y-axis
direction along a zigzag-edge direction, as shown in Fig. 1.
Unless otherwise noted, we use a system with 6 (along the y
axis) x 8 (along the x axis) sites, i.e., a 48-site system. To per-
form DMRG, we construct a snakelike one-dimensional chain
by combining the eight zigzag lines along the y axis, leading to
a spin chain with long-range interactions. We keep 1000 states
in the DMRG block and performed more than 10 sweeps,
resulting in a typical truncation error 5 x 107 or smaller.

III. CALCULATED RESULTS AND DISCUSSIONS

Putting I} = I, = 0 into the extended KH model (1) leads
to the KH model, whose phase diagram has been established
[6-13]. In the phase diagram, a Kitaev spin-liquid phase
emerges in therange of K /J < —11, when K < Oand J > 0.
An interesting issue of the extended KH model concerning
Na,IrOs is to find a zigzag-type AFM phase around the Kitaev
spin-liquid phase [24]. Since the zigzag-type AFM phase is
next to the Kitaev spin-liquid phase in the parameter region of
K < 0and J > 0, we use these signs in the present paper. It
is also interesting to investigate the K > 0 and J < 0 region,
but this will be a future issue.

Fixing K /J = —25, we find a zigzag-type AFM phase next
to the Kitaev spin-liquid phase when /;/J > O and I,/J < O,
as shown in Fig. 2. The presence of the zigzag state is
confirmed by examining the spin-spin correlation functions
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FIG. 2. (Color online) Phase diagram of the extended KH model
(1). There are a ferromagnetic phase (FM), a 120° AFM phase (120°),
a Kitaev spin-liquid phase (SL), two incommensurate phases (IC1,
IC2), and a zigzag-type antiferromagnetic phase (zigzag). The circle
and x points are determined by the second derivative of energy with
respect to I, and connected by lines. The boundaries denoted by blue
solid lines are expected to be of first-order transition, and those by
green broken lines to be of continuous transition.

for each component between sites i and j, given by (57 S}) =
(0187 8710), (S7'S}) = (0187 $710), and (S7S%) = (057 5%|0),
where |0) is the ground-state wave function. Figure 3 shows
the calculated spin-spin correlation functions for the 48-site
cluster at I;/J = 3.8 and I,/J = —3.8 in the zigzag phase.
In the figure, the i site is indicated by a brown rhombus point.
Upward red arrows and downward blue arrows denote positive
and negative values of spin-spin correlation, respectively. The
length of the arrows shows the absolute value of spin-spin
correlation. We find the same sign within the zigzag line
along the y direction in both (S;S7) [Fig. 3(a)] and (S; S7)
[Fig. 3(b)], indicating the presence of the zigzag order. We
note that (S7S7) is very short-range.

It is interesting to examine whether the zigzag phase
was smoothly connected to that obtained by a more realistic
effective spin model for Na,IrOs. Very recently, Yamaji et al.
proposed such a model based on the electronic states obtained
by the first-principles calculation [22]. By performing DMRG
calculations, we have confirmed that the zigzag AFM phase in
the effective model [22] exhibits spin-spin correlation similar
to that shown in Fig. 3 and a similar value of the nearest
neighbor spin-spin correlations. In addition, by changing
parameters continuously, we have checked that there is no
phase transition between the zigzag phases of the effective
model and our extended KH model. Therefore, we can say that
the zigzag phase in the effective model is smoothly connected
to the zigzag phase in Fig. 2.

In addition to the zigzag phase, we find various magnetic
phases surrounding the Kitaev spin liquid in Fig. 2, which is
similar to the results obtained by classical analysis and exact
diagonalization calculations [22]. In the following, we discuss
the details of each phase and phase boundaries.

First, we examine the case in which /;/J = 0.63. With
increasing I, the zigzag-type AFM phase changes to an
incommensurate phase denoted by IC2 through the Kitaev
spin-liquid phase. Figure 4(a) shows the ground-state energy
E per site. The second derivative of E with respect to I,
is shown in Fig. 4(b). We can define phase transition points
from the second derivative. At I,/J = —2.2, the zigzag phase
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FIG. 3. (Color online) (a) (8757, (b) (S,."Sjy.), and (c) (Sij) for zigzag-type AFM phase at I,/J = 3.8 and I,/J = —3.8. The i site is
indicated by a brown rhombus point. Upward red arrows and downward blue arrows show positive and negative values of spin-spin correlation,
respectively. The length of the arrows represents the strength of spin-spin correlation.

changes to the spin-liquid phase. The transition seems to be
continuous, i.e., of second order. However, there remains a
possibility that it will be of weak first order. To confirm this,
we need to examine the energy profile in mode detail. This
remains a future problem.

With further increasing I, the spin-liquid phase changes
another phase at I,/J = 3.1. The spin-spin correlation of the
phase is shown in Figs. 5(a)-5(c). The correlations of the
x and y spin components show the same sign for all sites,
but the z component exhibits a different behavior, where the
sign depends on the distance from the i site. This implies
the presence of an incommensurate spin-spin correlation. We
cannot clarify its propagation vector, since the system size we
use is too small to determine it. We denote this phase as IC2.

Entanglement of the wave function can provide useful
information on quantum states. It is measured by entanglement
entropy and the entanglement spectrum [31]. In a system com-
posed of two subsystems A and B, a Schmidt decomposition
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FIG. 4. (Color online) (a) The ground-state energy per site, E
(red plots), (b) second derivative of E with respect to I, d*E/d 122
(green plots), and (c) entanglement entropy (blue plots). /;/J = 0.63.
The vertical dotted lines denote the phase boundary determined by
the second derivative of E.

of a many-body state |¢) reads

W)= lvillvi) = e il @

where p; is the eigenvalue of the reduced density matrix p4 =
Trg|¥) (¥| = e~M# for subsystem A (or pg = Try|y) (| for
subsystem B). The distribution of &; is called the entangle-
ment spectrum, where &; is the eigenvalue of entanglement
Hamiltonian Hg. Then, von Neumann entanglement entropy
containing nonlocal topological properties can be written as

Se=—) pilnp =) & )

We take the A subsystem be half of the whole system
throughout this paper. When we consider a system with
toroidal geometry coming from periodic boundary conditions,
we cut the whole system twice. In cylindrical geometry, we
divide a system into two subsystems.

In Fig. 4(c), Sg for I, /J = 0.63 is shown. Sg shows a peak
structure near the phase boundary, but the peak position is not
exactly at the boundary. This is clearly seen at I/J >~ —2,
where there is a boundary between the zigzag and spin-liquid
phases. There have been many studies about the relationship
between entanglement entropy and the phase transition in one-
dimensional systems [32,33], showing a diverging behavior in
Sg at phase transition points. However, such a relationship
has not yet been established in two-dimensional systems.
Therefore, we need to make clear whether the relationship
is applicable for our system or not. For this purpose, the
entanglement spectrum may be helpful for understanding the
behavior of entanglement entropy at the phase boundary.

Before discussing the entanglement spectrum near the
phase boundary, we show the spectrum for a zigzag-type
ordered state (/;/J = 3.8 and I,/J = —3.8) in Fig. 6, where
entanglement levels are plotted from the smallest value starting
from i = 1. The lowest level of the entanglement spectrum
&) is nondegenerate and separated from &,. In the following,
we call the level separation &,-£; the Schmidt gap. We note
that the nondegenerate &; is clearly in contrast to the Kitaev
spin-liquid state, where all of the entanglement levels form
pairs (see Appendix).

The spectral distribution of the entanglement spectrum
changes with changing parameters. Figure 7 shows the en-
tanglement spectrum for the I; = 0.63 case corresponding to
Fig. 4. We find that the Schmidt gap changes from zero to finite
at I,/J = —2.2 (I;/J = 3.2) with decreasing (increasing) I,
from the spin-liquid phase. These I, values are consistent with
the transition points obtained by the second derivative of E.
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FIG. 5. (Color online) (a) (S} S;f), (b) (S;VS}'), and (c) (S} S;) for the IC2 phase at 1, /J = 2.5 and I,/J = 5.0. The i site is indicated by a
brown rhombus point. Upward red arrows and downward blue arrows show positive and negative values of spin-spin correlation, respectively.

The length of the arrows represents the strength of spin-spin correlation.

Comparing I,/J = —2.2 with the peak position of Sg (I,/J =
—2.0), we may judge that the Schmidt gap is more appropriate
than the entanglement entropy for the determination of the
phase boundary in two-dimensional systems. Of course, more
studies on different systems are necessary to confirm this
statement. We also note that there is a different case in which
the Schmidt gap itself cannot be a measure of the phase
transition, as will be discussed below.

Here, we comment on the degeneracy of &; in the Kitaev
spin-liquid phase, which is located at the middle region of
Fig. 7. [n] in this figure shows the number of degeneracy
of the lowest entanglement level, and [4] in the Kitaev
spin-liquid phase denotes fourfold degeneracy. As discussed
in Appendix, this is due to the gauge structure of the Kitaev
spin liquid. We consider that the degeneracy is one of the
“fingerprints” of the Kitaev spin liquid. Such a gauge structure
also appears in topological entanglement entropy [34], and
thus the degeneracy of the entanglement spectrum is useful for
characterizing the nature of the spin-liquid phase. We discuss
the entanglement spectrum of the Kitaev spin liquid in more
detail in Appendix.

Returning to the phase diagram in Fig. 2, we next examine
the case in which I;/J = 3.8. Figures 8(a) and 8(b) show E
and d’E /d I?, respectively. With increasing />, the zigzag-type
AFM phase changes to the IC2 phase through a new phase
denoted by IC1. The second derivative of E indicates that the
phase transition between the zigzag and IC1 phases at I, /J =
—1.5 is of continuous order, and that between the IC1 and IC2
phases at I,/J = 3.2 is of first order. Spin-spin correlation
functions in the IC1 phase are shown in Figs. 9(a), 9(b),
and 9(c) for (S7S7), (S;'S7), and (S7S%), respectively. (S7S7)
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FIG. 6. (Color online) Entanglement spectrum for a zigzag-type
AFM ordered ground state at /,/J = 3.8 and I,/J = —3.8.

and (Sin]}f) indicate a noncommensurate spin arrangement,
though (S;S7) shows a FM correlation. This pattern of the
spin-spin correlation is different from that in IC2 shown in
Fig. 5. Therefore, we denote this phase as IC1.

The sudden change of Sg at I,/J = 3.2 in Fig. 8(c) is
consistent with the first-order transition. The entanglement
spectrum and the Schmidt gap also show a change at the
same value, as shown in Fig. 10. On the other hand, the phase
boundary at I,/J = —1.5 disagrees with the peak position of
Sg and also disagrees with the change of the Schmidt gap.
Such a disagreement is different from the case of the boundary
between the zigzag and spin-liquid phases discussed above.

Thirdly, let us examine the case of I,/J = —1.3. Fig-
ures 11(a), 11(b), and 11(c) show E, dZE/dIZ, and Sg,
respectively. With increasing I, phase changes from a FM
phase to a 120° phase at I;/J = —1.8 with continuous
transition. This 120° phase has the same spin configuration
as presented by Rau and Kee [23,24]. Entanglement entropy
smoothly changes at the phase boundary, in contrast to other
cases in which a peak structure appears.

Figure 12 shows the entanglement spectrum as a function
of I,. We find that the Schmidt gap changes from zero to
finite at I,/ J = —2.8, but there is no qualitative change at the
phase boundary I,/J = —1.8. This means that the Schmidt

1y/J

FIG. 7. (Color online) Entanglement spectrum for the extended
KH model (1). I;/J = 0.63. Blue crosses represent entanglement
levels and gray lines connect the spectrum belonging to the same
entanglement levels. [n] denotes n-fold degeneracy of the lowest
entanglement level in each phase.
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FIG. 8. (Color online) Same as Fig. 4, but /;/J = 3.8.

gap is not a good measure of the phase transition in this
case, where the FM phase changes to the 120° AFM phase.
Recently, it has been shown that the low-energy entanglement
spectrum can exhibit singular changes, even when the physical
system remains in the same phase [35], suggesting less
universal information about quantum phases in the low-energy
entanglement spectrum.

Therefore, we can say that our case would be such an
example in two-dimensional systems, where the Schmidt gap
cannot characterize the phase transition points.

IV. SUMMARY AND OUTLOOK

We have studied the extended KH model (1) by using
DMRG and constructed a phase diagram around the Kitaev
spin-liquid phase. We have found a FM phase, a 120° phase,
two kinds of incommensurate phases (IC1 and IC2), and a
zigzag-type AFM phase next to the Kitaev spin-liquid phase.
The zigzag phase exhibits spin-spin correlation similar to
a more realistic model for Na,[rO; [22]. We define phase
boundaries by using the second derivative of energy. At the
boundaries, entanglement entropy does not necessarily show
an anomalous behavior. This means that the entanglement
entropy is not a good measure for determining the phase
boundary in the extended KH model.

PHYSICAL REVIEW B 91, 054401 (2015)

1y/J

FIG. 10. (Color online) Same as Fig. 7, but ,/J = 3.8.

Examining the entanglement spectrum, we have found that
the lowest entanglement level in magnetically ordered states
is nondegenerate. This is in contrast to that of the Kitaev
spin-liquid phase, where all of entanglement levels form pairs.
We note that the degeneracy in Kitaev spin liquid is due to
the gauge structure, and the number of its degeneracy depends
on the boundary condition reflecting the topological nature of
the Kitaev spin liquid, as discussed in Appendix. Therefore,
the phase boundaries between the Kitaev spin liquid and the
magnetically ordered phases are determined by examining
the entanglement spectrum. In this case, the Schmidt gap,
defined as the difference between the lowest and first-excited
entanglement levels, is a useful quantity to determine the
boundary.

However, as far as phase transitions between magnetically
ordered phases are concerned, we have found that the Schmidt
gap is not necessarily a measure of phase transition. For
example, the Schmidt gap cannot characterize the phase
transition between the FM and the 120° AFM phases, between
zigzag-type AFM and IC1 phases, and between the IC1 and
IC2 phases.

In one-dimensional quantum many-body systems, the
Schmidt gap is known to be a novel quantity for identifying and
characterizing various phases and phase transitions. In two-
dimensional systems, however, the meaning of the Schmidt
gap has not yet been clarified as far as we know. Therefore,
we consider that the present work will provide a starting
point for the study of the relation between the entanglement
spectrum and the quantum state in two dimensions. In fact,
our present study of the entanglement spectrum is closely

(a) (b) (c)

FIG. 9. (Color online) Same as Fig. 5, but for the IC1 phase at /;/J = 2.5and I,/J = 2.5.
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FIG. 11. (Color online) Same as Fig. 4, but I,/J = —1.3.

related to other studies attempting unbiasedly to detect order
parameters and/or dominant correlations using reduced density
matrices [36,37]. We believe that we are able to extract much
more information from the structure of entanglement and
to identify and characterize various orders more efficiently,
once we understand the nature of entanglement in many-body
interacting systems.
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APPENDIX: ENTANGLEMENT SPECTRUM

Li and Haldane proposed an entanglement spectrum that
contains the full set of eigenvalues of the density matrix
[31]. Writing the eigenvalues of the density matrix as e™%,
where £ is an entanglement level, they showed that the
low-level entanglement spectrum for Laughlin, Moore-Read,
and Read-Rezayi states exhibits a universal structure related to
the associated conformal field theory. The universal structure
is separated from a nonuniversal high-level spectrum by an
entanglement gap that is finite in the thermodynamic limit.
This gap is proposed to be a “fingerprint” of the topological
order. Since the proposal, the entanglement spectrum has
been studied in various systems, including fractional quantum
Hall systems [31,38—40], topological insulators [41,42], spin
chains [43], and the Kitaev honeycomb lattice model [34].
Furthermore, it has been realized that the scaling of the
Schmidt gap defined by the difference between the two
largest eigenvalues of the reduced density matrix is useful for
detecting critical points through studies of the one-dimensional
Kugel-Khomskii model [44], spin chains [45,46], and the
two-dimensional quantum Ising model [47]. The entanglement
spectrum is thus now accepted to be a quantity characterizing
not only various phases but also phase transitions. However,
it was recently pointed out that the low-energy entanglement
spectrum does not necessarily provide universal information
about quantum phases [35]. Therefore, it is interesting to
examine the entanglement spectrum of the KH model, whose
ground state is well known [6].

1. Kitaev-Heisenberg model

In this section, we defined the KH model as

H=> [-2aS/S" +(1—)S; - S;]. (A1)
(i,J)

where « is related to K and J in Eq. (1) as / =1 — « and
K =1 —3«. The ground state at « = 0 and 1 is the Néel and
Kitaev spin-liquid state, respectively. In between, there is a
stripy-type AFM state.

Figure 13 shows the entanglement spectrum of the 6 x
8-site KH model with periodic boundary conditions as a
function of «. Hereafter, we call the periodic boundary
condition the toroidal boundary condition. We find that the
level structure changes at « ~ 0.4 and o ~ 0.86. These values
are consistent with phase transition points determined by the
second derivative of energy with respect to «.

We find that the Kitaev spin-liquid phase exhibits fourfold
degeneracy in the ground state, while the Néel and stripy
phases show the nondegenerate lowest energy level. The
degeneracy of the spin-liquid phase comes from its gauge
structure, as will be discussed in Appendix 2.
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FIG. 13. (Color online) The entanglement spectrum for the KH
model (A1). Blue crosses represent entanglement levels and gray lines
connect the spectrum belonging to the same entanglement levels. [n]
denotes n-fold degeneracy of the lowest entanglement level in each
phase.

The Schmidt gap increases drastically at o ~ 0.4 with
increasing «. This indicates that a phase transition occurs
there. At the exactly solvable point ¢ = 0.5, the gap diverges,
since the ground state can be written by a single product state.
With further increasing «, the Schmidt gap closes between
o = 0.85 and 9.0. This is again consistent with the position of
the phase boundary. Of course, in order to determine the phase
boundary precisely, it is important to study finite-size scaling
of the Schmidt gap.

2. Kitaev spin-liquid state

In this section, we discuss the dependence of the entangle-
ment spectrum in the Kitaev spin-liquid state on the system
size and the boundary condition. First of all, we consider the
degeneracy of the entanglement spectrum fora6 x L, (L, —
00) system by counting the Wilson loops that are cut when the
whole system is divided into two subsystems [1,48,49]. In our
cluster configuration, it is inevitable to have two Wilson loops,
for example W, and W, defined on two neighboring hexagons,
as shown in Fig. 14. The two loops induce twofold degeneracy.
The number of degeneracy increases as the number of Wilson
loops defined on the honeycomb lattice increases. We can
define more Wilson loops in the toroidal boundary condition
than in the cylindrical boundary condition.

Let us briefly confirm this. Figure 14 shows a 6 x 8-site
system, where the number labels sites on the honeycomb
lattice and vertical lines denote the cutting position when we
divide the whole system into two subsystems to calculate the
entanglement spectrum. Note that a system with the toroidal
boundary condition is cut twice at a middle vertical line and a
right or left line, while a system with the cylindrical boundary
condition is cut only once at the middle vertical line. First, we
consider the case of the cylindrical boundary condition. Then,
the system is divided into A and B parts. We define the Wilson
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FIG. 14. (Color online) Cluster configuration of 6 x 8 sites. The
numbers label sites on a honeycomb lattice. Vertical dashed lines
denote the cutting position when we divide the whole system into
two subsystems, A and B. For the cylindrical boundary condition
the system is divided only once at the middle vertical line, while for
the toroidal boundary condition the system is cut twice at the middle
vertical line and the right or left vertical line. W, and W, show the
Wilson loops defined on a hexagon on a honeycomb lattice, which
crosses the middle vertical line. W53 and W, show the loops that cross
the right or left vertical line.

loops as
N AV Az ax AV az ax _ ~AAB
Wi = 653465365,65,655655 = Wy Wy,
VoAV Az ax AY Az ax _ ~AAB
W2 = 65,05,05(059053057 = Wy W ,

where o7, aiy, and o} are Pauli matrices at the i site, and

ANA AV AZ AX AB _ AV AZ aX
Wy = 034023075, Wy = 037074035,
ANA AV AZ AX AB _ AV Az Ax
Wy = 09071030, W, = 039078037

Note that the commutation relation
[Wy,W1] =0 (A2)
and the anticommutation relations
(of.08) =0, {af.0f}=o0.

The ground state is a vortex-free state, so that the ground state
should be an eigenstate of W, with eigenvalue +1:

Wily) = +1y).
The ground state can be written as
1Y) = Wi = +1) (A3)
= c+|wf =+lwf = +1>+c,|wf =—1lwf = —l),
(A4)
with

P lwf? = £1) = £|w? = £1).
The eigenstates obey
W wi =+1) = |w = —1),
uﬁﬂwf‘ =—1)= ’wf‘ = +1).

Furthermore, from Eq. (A2), the ground state |y) is a
simultaneous eigenstate of W; and W,, so that [i) is also
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FIG. 15. (Color online) The dependence of the entanglement spectrum &; of the Kitaev spin liquid on system size and boundary condition.
(a) 6 x 8-site system (blue rhombuses) and 6 x 20-site system (red circles) with the cylindrical boundary condition, (b) 6 x 8-site system (blue
rhombuses) and 6 x 30-site system (red circles) with the toroidal boundary condition, (c) 10 x 8-site system (blue rhombuses) and 10 x 20-site
system (red circles) with the cylindrical boundary condition, and (d)10 x 8-site system (blue thombuses) and 10 x 20-site system (red circles)

with the toroidal boundary condition.

an eigenstate of W:

Walyr) = @7 @7 | Wi = +1)
= ;03 0F |wi = +Lwf = +1)
+e i) |w = —1Lwf = 1)
= c+|w1A =—-lwf = —1)

+o|w! =+1Lw! = +1)
=+[V¥).
Therefore, comparing Eq. (A4) and Eq. (AS), we obtain

(A5)

cr=c_=c

and

1Y) =c(jw = +Lwf = +1)+ |w! = —1,wf = —1)).

The reduced density matrix of subsystem A reads
pa =Trzp = Tegly) (V]

= {wf = 1]ofuf = 1)+

= c(fuf = +1)fuf = 1]+ | = 1) = 1]

() %)

Therefore, we find that the eigenvalues of p4, i.e., entangle-
ment spectra, are twofold-degenerate.

¢ = —tlofut =1

It is possible to define the third Wilson loop above W,
which shares the 24-25 (20-29) edge with the W; (W>) loop.
However, the same procedure as (AS5) with respect to the third
loop will give a result similar to the case of W,. This means
no additional state for p,4, and thus the third loop does not
contribute to increasing the number of degeneracy.

Next, we consider a system with the toroidal boundary
condition in a similar way. In this case, we define additional
Wilson loops W3 and W, that are located on the pink line at the
edge of Fig. 14. These Wilson loops contribute to additional
degeneracy of the entanglement spectrum, resulting in 22-fold
degeneracy of the entanglement spectrum. A similar result to
this discussion was obtained by Yao and Qi [34], where the
number of degeneracy of the entanglement spectrum is 257!,
with L being the length of the boundary between the A and B
subsystems.

Based on the discussion above, we expect that the number
of degeneracy in a 10 x L,-site system is larger than that in a
6 x L,-site system, since the length of the boundary between
A and B is longer, i.e., the number of Wilson loops defined on a
honeycomb lattice is larger in the former than in the latter. We
confirm this by our DMRG calculations as shown in Fig. 15,
where we kept 700 states in the DMRG block and performed
more than 20 sweeps, resulting in a truncation error 10~'°
smaller.

Blue rhombuses and red circles in Fig. 15(a) show low
entanglement levels for cylindrical 6 x 8-site and 6 x 20-site
systems, respectively. We find that the levels are at least
fourfold-degenerate. The results for the same system but with
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the toroidal boundary condition are shown in Fig. 15(b), where,
in contrast with the cylindrical boundary condition, the number
of degeneracy strongly depends on the system size along the
x-axis direction: at least fourfold degeneracy for the 6 x 8-site
system and at least eightfold degeneracy for the 6 x 30-site
system. We also examined 6 x 12-site and 6 x 20-site systems
and obtained the same result (not shown). Therefore, we can
conclude that there is fourfold degeneracy for 6 x L, with the
cylindrical boundary condition and eightfold with the toroidal
boundary condition, as discussed above.

Next, we enlarge the system along the y-axis direction. Blue
rhombuses and red circles in Fig. 15(c) show low entanglement
levels for the cylindrical 10 x 8-site and 10 x 20-site systems,
respectively. We find that the levels are at least eightfold de-
generate and thus the degeneracy is doubled as compared with
the 6 x L,-site system. The results for the same system but

PHYSICAL REVIEW B 91, 054401 (2015)

with the toroidal boundary condition are shown in Fig. 15(d),
where, in contrast with the cylindrical boundary condition,
the number of degeneracy strongly depends on the system
size along the y-axis direction: at least eightfold degeneracy
for the 10 x 8-site system and at least 16-fold degeneracy
for the 10 x 20-site system. Therefore, we can conclude that
there is eightfold degeneracy for 10 x L, with the cylindrical
boundary condition and 16-fold with the toroidal boundary
condition. All of these numerical results are consistent with
the analytical ones mentioned above.

The ground state of the Kitaev spin-liquid state can
be regarded as Majorana fermions coupled with the Z,
gauge field. The gauge field is, thus, the origin of the
degeneracy of the entanglement spectrum. We note that such
a gauge fluctuation also affects topological entanglement
entropy [34].
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