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Nonlinear XY and p-clock models on sparse random graphs:
Mode-locking transition of localized waves
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A statistical mechanic study of the XY model with nonlinear interaction is presented on bipartite sparse random
graphs. The model properties are compared to those of the p-clock model, in which planar continuous spins are
discretized into p values. We test the goodness of the discrete approximation to XY spins used in numerical
computations and simulations and its limits of convergence in given, p-dependent temperature regimes. The
models are applied to describe the mode-locking transition of the phases of light modes in lasers at the critical
lasing threshold. A frequency is assigned to each variable node, and function nodes implement a frequency
matching condition. A nontrivial unmagnetized phase-locking occurs at the phase transition, where the frequency
dependence of the phases turns out to be linear over a broad range of frequencies, as in a standard mode-locking
multimode laser at the optical power threshold.

DOI: 10.1103/PhysRevB.91.054201 PACS number(s): 05.70.Fh, 42.60.Fc, 42.65.Sf, 75.10.Hk

I. INTRODUCTION

The XY model with linearly interacting spins is well
known in statistical mechanics, displaying important physical
insights and applications, starting from the Kosterlitz-Thouless
transition in two dimensions [1] and moving to, e.g., the
transition of liquid helium to its superfluid state [2,3], the
roughening transition of the interface of a crystal in equilib-
rium with its vapor [4], or synchronization problems related
to the Kuramoto model [5–7]. Furthermore, the XY model
with nonlinear interaction terms has been used to investigate
the topological properties of potential energy landscapes in
configuration space [8]. Our motivations to study nonlinear
XY models are, however, to be found in optics, to describe,
e.g., the nonlinear interaction among electromagnetic modes
in a laser cavity [9–11], as well as the lasing transition in
cavityless amplifying resonating systems in random media
known as random lasers [12–15]. Stimulated by this recent
cross-fertilization of the fields of statistical mechanics and
laser optics, we analyze a diluted four-body interacting XY

model on sparse random graphs including mode frequencies
and gain profiles.

Due to the absence of the cavity, the mode profiles in
random lasers cannot be determined as solutions of the
Helmholtz equation. Moreover, light scatterers (acting as gain
material [16]) are usually randomly distributed inside the
systems and the modes are more localized with respect to
ordinary lasers, where each mode extends over the whole
cavity. In order to interact nonlinearly, the modes need to
spatially overlap. Therefore, the effects of dilution are certainly
relevant. More in general, sparse random graphs can be used in
the study of interference effects among neighborhood modes
in light guides [17]. This type of topology is also of interest
in designed experiments of interactions among modes of apart
lasers [18–20]. In order to understand the possible effects of
disorder in the degree of the connectivity of each mode, we,
furthermore, consider the cases of both constant and random
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Poisson-distributed connectivity [i.e., Bethe and Erdòs-Rényi
(ER)].

Mode- or phase-locking [21] consists in the amplification
of very short pulses produced by the synchronization of the
phases of longitudinal axial modes in the cavity. In the case
of passive mode-locking (ML), yielding the shortest pulses,
synchronization is due to nonlinear mode-coupling. The most
effective known mechanism to induce nonlinearity is saturable
absorption, that is, the selective absorption of low-intensity
light and the transmission of high-intensity light, leading, after
many cavity round-trips, to a stationary train of ultrashort
pulses. Such pulses are composed of interacting modes of
given, equispaced, frequencies ω around a central frequency
ω0. In the typical case of third-order nonlinearity, [21–23] the
modes interact as quadruplets and must satisfy the frequency
matching condition (FMC)

|ωj − ωk + ωl − ωm| � γ (1)

for each quadruplet composed of modes (j,k,l,m), γ being
the linewidth of the single mode. For such modes a constant
phase delay occurs, i.e.,

φ(ω) � φ(ω0) + φ′ × (ω − ω0), (2)

and the resulting electromagnetic signal is unchirped. Mode
phases are, then, constrained as the relative frequencies by
Eq. (1) and they are said to be locked. If, as in standard laser
cavities, resonances are narrow and evenly spaced, phases will,
thus, be evenly spaced as well. In lasers with a large-gain
bandwidth, the progressive depletion of low-intensity wings of
the light pulse traveling through the cavity in each round-trip
causes the amplification of very short pulses composed of
modes with locked phases.

When a laser operates in the multimode regime and reaches
a stationary state driven by optical pumping, the interaction
among the modes can be described by the effective four-mode
interacting Hamiltonian [9,15,24]

H = −Re

⎡
⎣∑

k

gka
∗
k ak + J

FMC∑
{ωj ,ωk,ωl ,ωm}

a∗
j aka

∗
l am

⎤
⎦ , (3)
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where aj ≡ Aje
iφj is the complex amplitude of the light

mode with eigenvector Ej (r), the coefficient of the following
expansion for the electromagnetic field:

E(r,t) =
∑

j

aj (t)Ej (r)e−iωj t + c.c. (4)

In the statistical mechanic approach, the total optical power
pumped into the system is required to be a constant of the
problem, i.e., the system is in a stationary, pumping-driven
regime effectively representable as equilibrium phases in an
adequate ensemble. The total power is E = Nε = ∑

k aka
∗
k .

The linear local coefficient gk in Eq. (3) is the net gain
profile and the nonlinear coupling coefficient J represents the
self-amplitude modulation coefficient of the saturable absorber
responsible for the ML regime [23]. It can be expressed, as
well, in terms of the spatial overlap of the eigenvectors [11],
i.e., given any four modes (j,k,l,m),

J ∝
∫

d rχ̂ (3)(r; ωj ,ωk,ωl,ωm) ....
Ej(r)Ek(r)El(r)Em(r),

(5)

where χ̂ (3) is the nonlinear susceptibility tensor of the optically
active medium.

We use the parameter β as the external driving force
of the transition. In thermodynamic systems coupled to a
thermal reservoir at temperature T , β = 1/(kBT ) is simply
the inverse temperature. In photonic systems it stands for an
effective inverse temperature related to both the real heat-bath
temperature Tbath of the optically active medium and the optical
power ε pumped into the system as

βJ ∝ ε2J

kBTbath
≡ P2, (6)

where P is the so-called pumping rate [9,11,13,14].
The paper is organized as follows: in Sec. II we introduce

the 4-XY and the 4-p-clock models; in Sec. III we recall the
methods employed in the analysis of the model and determine
belief propagation (BP) and cavity equations for the specific
models; and in Secs. IV and V we present the results on
Bethe and on ER graphs. Finally, in Sec. VI we introduce
a tree-like ML network and study the transition between the
phase-incoherent regime and the coherent mode-locked regime
typical of ultrafast multimode lasers.

II. 4-XY MODEL AND 4- p-CLOCK MODEL

The dynamic time scales of magnitudes {Aj = |aj |} and
phases {φj = arg(aj )} of the complex amplitudes are well
separated. Since we are interested in studying the phase-
locking transition, we can consider observing the system
dynamics at a time scale longer than one of the phases
but sensitively shorter than one of the magnitudes, thus
regarding the amplitude magnitudes Ak as constants. Within
this quenched amplitude approximation [12,13], from Eq. (3)
we obtain

H = −
∑
jklm

Jjklm cos(φj − φk + φl − φm), (7)

where we have rescaled JAjAkAlAm → Jjklm. The sum∑
jklm goes over the quadruplets for which the quenched co-

efficients Jjklm are different from 0, i.e., all quadruplets whose
electromagnetic fields overlap in space and whose frequencies
satisfy the FMC, Eq. (1). The HamiltonianH is invariant under
the SO(2) group, i.e., rotations in two dimensions. Imposing
the further approximation that all amplitudes are quenched and
equal to each other, i.e., there is intensity equipartition in every
regime, one can define the ferromagnetic (FM) nonlinear 4-XY

model, Jjklm = J , ∀(j,k,l,m), whose behavior is presented in
this work on specific interaction networks.

As stated in Sec. 1, we consider cases in which the number
of interacting quadruplets per mode does not grow with the size
of the system. In terms of the physical relationship between the
interaction coefficient and the space localization of modes [cf.
Eq. (5)], this corresponds to modes whose localization in space
has an overall small volume but takes place in far-apart, even
disjoint, regions, yielding a dilute, distance-independent inter-
action network. These diluted model instances are represented
as bypartite graphs.

Besides the XY model, where spins are unitary vectors
on a plane, σ ≡ (cos φ, sin φ), φ ∈ [0,2π ), we consider a
discretized version, where the phases φ can only take p values,
equispaced in radiants by 2π/p:

φa = 2π

p
a; a = 0,1, . . . ,p − 1. (8)

We use p even, in order to be able to extend to the antiferro-
magnetic and spin-glass cases, where the interactions among
spins can also be negative. Indeed, if p is odd, it is not possible
to find a discretization of the [0,2π ) interval in such a way as to
allow the four interacting spins to find the most energetically
favorable configurations for both J > 0 and J < 0. To better
exemplify this, if J < 0, the minimal contribution of a single
(1,2,3,4) quadruplet to the energy is such that φ1 + φ2 =
φ3 + φ4 + π . Discretizing according to Eq. (8) this implies
a1 + a2 = p/2 + a3 + a4, which is effective only if p is even.

The p-clock model can also be seen as a generalization
of the Ising model from 2 to p possible states for the local
magnetization σi : a spin varies over the p roots of unity
e2πa/p. The Hamiltonian, Eq. (7), is invariant under the discrete
symmetry group Zp, consisting of multiplying all the σi’s by
the same pth root. We know that in the Ising case two phases
can coexist when the symmetry Z2 is broken. In the p > 2
case, there are p phases that may coexist when the symmetry
is broken. We use the p-clock model as an effectively tuned
numerical representation for the XY model. Because the latter
is a continuous model, we expect infinitesimal fluctuations
with an infinitesimal energy cost to occur. These cannot be
present in a discrete model at low temperatures: thus, it is only
in the p → ∞ limit that we expect to recover all results of
the XY model also in the β → ∞ limit. For finite β, however,
to some extent the two representations coincide. In Secs. IV
and V we quantitatively determine this extent.

Before presenting these results, in the next section we
briefly recall the main tools used, i.e., BP, the cavity method
(CM), and the population dynamics algorithm. The paper is
organized in such a way that the reader already familiar with
these algorithms can skip Sec. III and proceed to Sec. IV.
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III. BELIEF PROPAGATION OF THE 4-XY MODEL ON
FACTOR GRAPHS

We study the 4-XY model, Eq. (7), on sparse random
graphs. In order to represent the four-body interaction of phase
variables φ, we, thus, resort to the factor graph representation
in terms of functional nodes of connectivity k = 4 for
interacting quadruplets and variable nodes of connectivity
c for mode phases involved in c quadruplets. Let us label
m = 1, . . . ,M the function nodes and ∂m the variable nodes
connected to the function node m. The phase φi is the value of
the variable node i = 1, . . . ,N .

A generic factor graph will be schematically indicated by
GN (k,M), where N is the number of variable nodes, M the
number of function nodes (i.e., the number of interacting
k-uples), Mk the number of edges connecting variable nodes
to function nodes, and α = M/N = c/k the connectivity
coefficient. In general, we are interested not only in single
instances, GN (k,M), but also in an ensemble of factor graphs.
We focus on two large general groups: random regular graphs,
also known as Bethe lattices, and ER graphs. Bethe graphs are
defined as follows: for each function node m the k-tuple ∂m is
taken uniformly at random from all the (N

k
) possible ones. In

this case the fixed degree of connectivity c of a variable node is

c = M

(
N

k−1

)
(
N

k

) = Mk

N − (k − 1)
= Mk

N

[
1 + O

(
k

N

)]
(9)

in the diluted graph k � N .
In ER graphs each k-tuple is added to the factor graph

independently, with probability Nα/(N

k
). It can be proved

[25] that the total number of function nodes is a random
variable with expected value 〈M〉 = Nα, while the degrees
ci of the variable nodes are, in the large-N limit, Poissonian
independent identically distributed (i.i.d.) random variables
with average c = 〈ci〉 = αk.

The factor graph representation for systems described by
Eq. (7) yields the following joint probability of a configuration
of planar spins, i.e., phases φ = (φ1,φ2, . . . ,φN ):

P (φ) = 1

Z

M∏
m=1

ψm(φ∂m). (10)

In order to find the equilibrium configurations of the system
and study the thermodynamic properties, we will use the
BP method for factor graphs, GN (k,M), and the equivalent
CM for ensembles of random factor graphs. BP is an
iterative message-passing algorithm whose basic variables are
messages associated with directed edges. For each edge (i,m)
there exist two messages, ν

(t)
i→m and ν̂

(t)
m→i , that are updated

iteratively in t as

ν̂
(t)
m→i(φ) = 1

ztest

∫ 2π

0

l=1,k−1∏
jl∈∂m\i

dφjl
ν

(t−1)
jl→m(φjl

)

× ψm(φj1 , . . . ,φjk−1 ,φ), (11)

ν
(t)
i→m(φ) = 1

zcav

∏
n∈∂i\m

ν̂
(t)
n→i(φ), (12)

where ∂m = {j1,j2,j3,i}, ∂m \ i = {j1,j2,j3}, ∂i indicates the
neighbor function nodes to variable node i, and ∂i \ m are the
function nodes connected to i but not m. ztest and zcav are
normalization factors. In the present XY model, Eq. (7), in
which k = 4, the Boltzmann weight function is

ψm(φj1,φj2 ,φj3 ,φ) = eβJ cos(φj1 −φj2 +φj3 −φ). (13)

If the variable node i is at one end leaf of the graph, i.e.,
if ∂i \ m is the empty set, then the uniform distribution
holds, νi→m(φ) = 1/(2π ).1 BP equations are exact on tree-like
factor graphs. When all message marginals, {νi→m, ν̂m→i}, are
known, we can evaluate the marginal probability distributions
of the variable nodes:

μi(φi) = 1

Z

∏
m∈∂i

ν̂m→i(φi). (14)

The free energy of the system reads [25]

F =
M∑

m=1

Fm +
N∑

i=1

Fi −
∑
im∈E

Fim, (15)

where E indicates the set of all edges in the graph and

Fm = − 1

β
log

∫ 2π

0

∏
i∈∂m

dφiνi→m(φi)ψm(φ∂m), (16)

Fi = − 1

β
log

∫ 2π

0
dφi

∏
m∈∂i

ν̂m→i(φi), (17)

Fim = − 1

β
log

∫ 2π

0
dφiν̂m→i(φi)νi→m(φi). (18)

When we turn to ensembles of random factor graphs, the
messages νi→m (ν̂m→i) become random variables: the idea is
then to use BP equations to characterize their distributions
in the large-N limit. Though BP equations are exact only in
tree-graphical models and sources of errors can come from
the existence of loops, they turn out to be a powerful tool in
random graphs, as well. It is then useful to recall the results on
the probability of loop occurrence and their average length in
Bethe and ER graphs. It can be proved [25] that, if αk(k − 1) <

1, the fraction of nodes in finite-size trees goes to 1 as the total
number of nodes N goes to ∞: the probability of having
loops of any size goes to 0. In the opposite case, αk(k − 1) >

1, what is known as the “giant component” appears in the
graph: a connected part containing many loops. Unlike the
previous case, all the variable nodes almost surely belong to
this connected component. However, in the diluted case, loops
have infinite length and graphs look locally like trees.

BP being a local algorithm, one expects that, under the
assumptions that correlations among variables go to 0 as the
distance between them diverges, a property termed clustering
[26], BP can be used to predict properties of the system in the
thermodynamic limit. Then, for the case of random factor
graphs, Eqs. (11) and (12) turn into equalities among the

1The effects of some external boundary can be described through
the messages coming from the leaves. For example, if we want to
consider a small external magnetic field, the νi→m will depart from
uniformity on the external shell of nodes.
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distributions P (ν), Q(ν̂) of the messages, i.e.,

ν̂(φ)
d= 1

ztest

∫ 2π

0

k−1∏
l=1

dφlν
l(φl)ψ(φ1, . . . ,φk−1,φ), (19)

ν(φ)
d= 1

zcav

c−1∏
m=1

ν̂m(φ), (20)

where νl and are ν̂m are i.i.d. marginal functions and the
connectivities k and c can, in principle, be random variables.
The CM operates under the same assumptions we have outlined
above but it supposes as well that Eqs. (19) and (20) have
fixed-point solutions {P ∗(ν),Q∗(ν̂)} [27]. Focusing on these
solutions, it evaluates recursively the partition functions by
adding one variable at a time. In fact, the term “cavity” comes
from the idea of creating a cavity around a variable by deleting
one edge coming from that variable. For example, consider a
random graph G where all edges coming from one constraint
m have been erased; call Zj→m(φj ) the partition function of
one of the k-tree graphs starting from one of the j ∈ ∂m with
variable j fixed to φj . Zj→m(φj ) can be computed recursively:

Zj→m(φj ) =
∏

n∈∂j\m

⎡
⎣ ∏

i∈∂n\j

∫ 2π

0
dφiψn(φ∂n)

×
∏

i∈∂n\j
Zi→n(φi)

⎤
⎦ . (21)

BP equations, (11) and (12) are, then, obtained knowing the
relation between BP messages and the partition function:

νj→m = Zj→m(φj )∫ 2π

0 dφjZj→m(φj )
.

Once the distributions of ν and ν̂ are known, the expected free
energy per variable F/N can be computed taking the mean
value of Eq. (15),

f = fν + c

k
fν̂ − cfνν̂, (22)

where

fν = − 1

β
Ec,{ν̂}

[
log

∫ 2π

0
dφ

c∏
m=1

ν̂m(φ)

]
,

fν̂ = − 1

β
E{ν}

[
log

k∏
l=1

∫ 2π

0
dφlνl(φl)ψ

(
ν1, . . . ,νk

)]
,

fν,ν̂ = − 1

β
E{ν},{ν̂}

[
log

∫ 2π

0
dφν(φ)ν̂(φ)

]
,

E indicates the expectation value with respect to the variables
in the subscript, and c is the mean connectivity of variable
nodes. Carrying out a functional derivative of Eq. (22), one
can show that the stationary points of the free energy f are in
one-to-one correspondence with solutions of BP equations.

The numerical method we use to solve Eqs. (19) and (20)
is known in statistical physics as the population dynamics
algorithm. The idea is to approximate the distributions P (ν)
and Q(ν̂), through N i.i.d. copies of ν and ν̂. We call the sample

{ν1, . . . ,νN } (same for ν̂) a population. Starting from an initial
distribution, {ν0

1 , . . . ,ν0
N }, as the population evolves and its

size is large enough, the distributions will converge to the
fixed-point solution {P ∗(ν),Q∗(ν̂)}. The convergence of the
algorithm is verified by evaluating the statistical fluctuations
of intensive quantities. Fluctuations of order 1/

√
N indicate

the convergence of the population to {P ∗,Q∗} [25]. Note that,
for random regular graphs, since the connectivity is the same
for all nodes, if we take a functional identity initial distribution
P (ν) = I (ν − νF ), where νF is some initial message, the
population dynamics algorithm is not necessary: we only have
to consider the updating of νF .

In the next sections we show the results obtained in
Bethe and ER graphs for different p and c values. The
results presented were obtained with population sizes up to
N = 6 × 105.

IV. XY AND p-CLOCK MODELS ON RANDOM
REGULAR GRAPHS

In this section we show the results obtained for the FM
(J = 1) 4-XY model on Bethe lattices: the degree of variable
nodes is fixed to c, while that of function nodes is k = 4. In
order to numerically find the equilibrium distributions solving
Eqs. (19) and (20) for the XY model, we resort to the discrete
p-clock model [cf. Eq. (8)]. Writing νa ≡ ν(φa), at fixed c

Eqs. (19) and (20) become

ν̂a
d= 1

ztest

3∏
l=1

⎛
⎝p−1∑

al=0

(νl)al

⎞
⎠ e

βJ cos 2π
p

(a1−a2+a3−a)
, (23)

νa
d= 1

zcav

c−1∏
m=1

(ν̂m)a. (24)

In order to study possible fixed-point solutions of Eqs. (23)
and (24), it is useful to introduce the discrete Fourier transform
(DFT) of the message ν,

ck =
p−1∑
a=0

νae
−2πika

p , (25)

whose inverse transform is

νa = 1

p

p−1∑
k=0

cke
2πika

p . (26)

From Eq. (25) we note that νa is real; that is,

p−1∑
k=0

cke
2πika

p =
(

p−1∑
k=0

cke
2πika

p

)∗

=
p−1∑
k=0

c∗
ke

2πi(p−k)a
p

and ck = c∗
p−k . In particular, cp/2 is real. Furthermore, c0 =

p/(2π ) and Eq. (26) can be rewritten as

νa = 1

2π

(
1 +

p−1∑
k=1

2π

p
cke

2πika
p

)
. (27)

Expressing the discrete Fourier transform of the cavity
function in terms of the magnitude and phase, ck ≡ |ck|eiθk ,
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Eqs. (23) and (24) become

ν̂a
d= 1

2π
+ 1

2πp3I
p

0 (βJ )

×
[
I

p

p/2(βJ )
3∏

l=1

(
c

(l)
p/2

)
(2π )3(−1)a

+
p/2−1∑
k=1

I
p

k (βJ )

(
k−1∏
l=1

|c(l)
k |

)
(2π )3

× 2 cos

(
θ

(1)
k − θ

(2)
k + θ

(3)
k + 2πak

p

)]
, (28)

where I
p

k indicates the discrete approximation of the modified
Bessel function of the first kind,

I
p

k (w) = 1

p

p−1∑
a=0

e
w cos( 2πa

p
) cos

(
k

2πa

p

)
, (29)

that, for p → ∞, tends to the well-known

Ik(w) = 1

2π

∫ 2π

0
ew cos φ cos (kφ) .

Equation (28) is a distributional equality where c(1), c(2), and
c(3) indicate the discrete Fourier transform of three i.i.d. ν’s.
It can be observed that the trivial population distribution is
P (ν) = I (ν − νPM), where (νPM)a = 1/(2π ) ∀ a, i.e.; when
all c

(l)
k = 0, this is a fixed-point solution of Eqs. (23) and (24)

for all values of βJ . It is referred to as the paramagnetic
(PM) solution, invariant under Zp symmetry, which is a
discretization of the SO(2) symmetry: there are no preferred
directions in the system and the spins are uniformly randomly
oriented. We can note that, as p → ∞, we obtain the correct,
SO(2)-invariant limit for the XY PM solution [cf. Eqs. (23)
and (24)].

The fact that the uniform distribution is always a solution
does not necessarily mean that the thermodynamic phase is
always the PM one. In given regions of the phase diagram,
Eqs. (23) and (24) admit more than one fixed-point solution
and the behavior of the model can be correctly described by a
non-PM solution. It is important to note that any other solution
for which at least one of the ck is different from 0 is not invariant
under Zp. Therefore, if the system admits solutions other than
the PM one, there will be spontaneous symmetry breaking.

In the case of an FM solution, the system can align itself
among p possible degenerate solutions, whose phases are
linked by the transformations of Zp. Once the populations
P (ν) and Q(ν̂) are computed, we can evaluate the distribution
of the marginal probabilities of variable nodes,

μ(φ)
d= 1

zs

c∏
l=1

[ν̂l(φ)], zs =
∫ 2π

0
dφ

c∏
m=1

[ν̂m(φ)], (30)

and, consequently, the magnetization, mx and my , and the free
energy, f (β). In the continuous p → ∞ limit we have, for the

magnetization,

〈mx〉 = E{μ}

( ∫ 2π

0
dφμ(φ) cos φ

)
,

〈my〉 = E{μ}

( ∫ 2π

0
dφμ(φ) sin φ

)
(31)

and, for the free energy,

−βf (β) = E{ν̂} log zs + c

K
E{ν} log zc − cE{ν,ν̂} log zl, (32)

where

zc =
∫ 2π

0

⎡
⎣ 4∏

j=1

dφjν
j (φj )

⎤
⎦ eβJ cos(φ1−φ2+φ3−φ4),

zl =
∫ 2π

0
dφν(φ)ν̂(φ),

zs =
∫ 2π

0
dφ

[
c∏

m=1

ν̂m(φ)

]
.

For the p-clock free energy Eq. (32) becomes

− βf (β) = log
2π

p
+ E{ν̂} log

p−1∑
a=0

c∏
m=1

(
ν̂m

a

)

− cE{ν,ν̂} log
p−1∑
a=0

νaν̂a + c

k
E{ν} log

k∏
j=1

p−1∑
aj =0

νaj

× e
βJ cos 2π

p
(a1−a2+a3−a4)

. (33)

In the PM solution (mx = my = 0) the free energy of the p-
clock model is

f p(β) = − 1

β

(
log 2π + c

k
log I

p

0 (βJ )

)
, (34)

where I
p

0 (w) is defined in Eq. (29). When a solution other
than the PM one appears, we may have mx or my or both
different from 0: the total magnetization displays a preferred
direction and we have an FM solution. The symmetry Zp is
restored if we note that all the p states can appear with the same
probability 1/p and we take the average over pure states:

mx,y =
p−1∑
a=0

1

p
ma

x,y,

where ma
x,y are the magnetization values in state a.

Eventually, the system at low temperatures can also be
found in a phase-locked (PL) phase, where mx,y = 0 but phases
are nevertheless locked into a nontrivial relation among them.
Since Eq. (31) is 0, because∫

dφμ(φ) cos φ =
∫

dφμ(φ) sin φ = 0, ∀μ(φ) ,

the order parameter to spot such a PL phase is

r = 2E{μ}
∫

dφμ(φ) cos2 φ − 1. (35)

This is trivially equally to 0 in the PM phase but it acquires a
different value, r ∈ [−1,1], when the system is in the PL phase.
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FIG. 1. (Color online) Left: Rp

01 as a function of βJ for c = 6. We
can see that as p increases the convergence to the XY model holds up
to larger and larger β values. For p = 20(p + 2 = 22), the difference
between the two is smaller than double precision up to values of
βJ � 3. Right: Convergence of the p-clock paramagnetic free energy
to the XY paramagnetic free energy for c = 6. The denominator is
f̄pm(β) ≡ (f p

pm + f XY
pm )/2. The relative difference between the two

decreases with βJ .

A. p-clock convergence to XY

Considering Eq. (28) we derive the main features of the
solutions as a function of the number of clock states p. We
can, thus, check what is the minimum number of values of
the XY angles to obtain an effective description of the model
with continuous XY spins. The 4-XY PM/FM phase transition,
unlike the case with only two-body interaction terms (k = 2)
[28], turns out to be first-order, discontinuous in internal energy
and in order parameters. In general, the number p guaranteeing
convergence between p-clock and XY models will depend on
the temperature range. In particular, we compare (i) spinodal
points, (ii) PM free energies, and (iii) FM free energies to
establish convergence of the two models. (i) Indicating as βs

the inverse temperature of the FM spinodal, as p increases,
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FIG. 2. (Color online) Relative free energy difference of the FM
phase for different p, 2p couples of p-clock models. The denominator
is f̄fm(β) ≡ (f (p)

fm + f
(2p)

fm )/2. Already for p = 16 and p = 32 the
relative difference saturates at 10−2 for βJ > 10. Inset: Practically
no difference can be appreciated in double precision between p = 64
and p = 128 up to βJ � 30.
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FIG. 3. (Color online) Spinodal temperature, Ts , as a function of
p, with its best fits for vanishing Ts in the p → ∞ limit for fixed
connectivity c = 4. For continuous XY spins, when T > 0, the only
fixed-point solution of BP equations is the paramagnetic solution.
The fact that we obtain a ferromagnetic solution is an artifact induced
by p < ∞.

β
p+2
s � β

p
s holds. This derives from the fact that [cf. Eq. (29)]

R
p

01(x) ≡ I
p

1 (x)

I
p

0 (x)
− I

p+2
1 (x)

I
p+2
0 (x)

� 0. (36)

The behavior of Eq. (36) is plotted in the left panel in Fig. 1.
(ii) The PM free energy can be computed analytically, for both
the p-clock and the continuous XY model. We can, therefore,
evaluate the number of spin states, p, needed to converge to
the XY model in the desired temperature interval also from
the PM free energy difference (cf. the right panel in Fig. 1).
(iii) In Fig. 2 a numerical comparison of the FM free energy is
shown between p-clock models with, respectively, p and 2p

states. As becomes clear in the inset, already for p = 64 no
difference can be further appreciated for very high β values,
much larger than the critical βc, as will soon be shown. We also
stress that at very low temperatures a direct comparison with
the XY -model free energy cannot be performed, because the
latter continuous model has an ill-defined entropy at T = 0
and its free energy is, thus, defined except for a constant.
Comparison with the XY model, thus, implies the necessity of
introducing a (p-dependent) constant.

In Figs. 3 and 4 we report the results obtained for the
spinodal and critical point as a function of the number of
states p for different values of the connectivity, c = 4,5,6.
At the critical inverse temperature βc = 1/Tc the PM solution
becomes metastable. As we can see in Fig. 3, the lower critical
connectivity for the XY model is clow = 5: FM solutions for
c = 4 are an artifact of taking φ as a discrete variable. In Fig. 4
we show the convergence to the XY limit in p for c = 5,6.
The convergence is faster for the spinodal point but not much
slower for the critical point. This result is expected from the
properties of the Bessel functions we outlined in Fig. 1: seeing
that Tc < Ts , the number of p needed to achieve convergence to
the XY limit is larger. From these results we can conclude that
the p � 20-clock spin is already a rather good approximation
of the planar continuous spin for what is concerned in the
analysis of the critical behavior.
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FIG. 4. (Color online) Spinodal and critical temperatures Ts and
Tc vs p in the Bethe lattice, for c = 5 (left) and c = 6 (right): the
values of p for which convergence to the XY limit is attained are
indicated by arrows.

B. Critical behavior of the 4-XY model

We thus study the properties of the XY model across the
critical point using a p = 64-clock model. In Fig. 5 we display
the free energy for c = 6 as a function of βJ for the three
fixed-point solutions of BP equations, (27) and (28): the PM,
FM, and PL phases. The FM solution is selected by tuning
the initial conditions, assigning a higher probability to a given
φ value. The PL solution is obtained at high enough β when
initial ν(φ) are given with two peaks at opposite angles. In
Fig. 6 we report the resulting marginal cavity distributions for
the phase values, ν(φ) and ν̂(φ).

In the PL phase, though at each local instance mxy = 0, the
parameter r defined in Eq. (35) is not. Its free energy behavior
is shown in Fig. 5 as the dashed line. It can be observed that the
PL phase is always metastable with respect to the FM phase,
though, for higher β its free energy becomes lower than the
PM free energy. Because of the observed numerical fragility
of this solution with respect to the PM and the FM phases, it is
hard to discriminate its spinodal point. With the computation
performed so far the PL phase appears to occur at βJ � 4.5.
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FIG. 5. (Color online) Free energy, f (β), vs βJ for c = 6 and
p = 64. The solid line refers to the ferromagnetic fixed-point solution
found considering as initial conditions the effect of a strong external
magnetic field. The dotted line refers to the paramagnetic solution.
Unlike in the k = 2 case, the paramagnetic solution is stable at every
temperature. The dashed line represents the metastable phase-locked
solution.
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FIG. 6. (Color online) νa and ν̂a for p = 64 and three phases at
three values of βJ : PM at βJ = 1.4 < βcJ , FM at βJ = 3.8 > βcJ ,
and PL at βJ = 16.5.

V. XY AND p-CLOCK MODELS ON ERDÒS-RÉNYI
FACTOR GRAPHS

If the degrees of variable nodes are i.i.d. random variables,
the local environment is not the same everywhere in the graph.
In the ER case BP equations are distributional equations as in
Eqs. (23) and (24), where the number of neighbors to a variable
node is extracted by means of a Poissonian distribution of
average c.

In this section we show the results obtained by applying the
population dynamics algorithm to the ordered p-clock model
on ER graphs and look for asymptotic solutions as p → ∞.
The results presented were obtained with a population size up
to N = 6 × 105. The code used to numerically determine ν,ν̂

stationary populations for large p is a parallel code running
on GPUs. This sensitively speeds up the population update of
ν̂ (requiring Npk operations) with respect to a serial, CPU-
running code.

In Fig. 7 we show the values obtained for Ts/J when the
mean connectivity of variable nodes is 〈c〉 = 5. We can see that
in this case the only solution in the p → ∞ limit is the PM
solution, whereas other solutions with 〈m2〉 �= 0 are artifacts
of p < ∞.

In Fig. 8 we report the results obtained when 〈c〉 = 6 and
8: as for regular random graphs the convergence to the XY
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T
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FIG. 7. (Color online) Spinodal point values Ts/J vs p on Erdòs-
Rényi factor graphs with mean connectivity 〈c〉 = 5. Interpolations
displayed are both consistent with the absence of a magnetized phase
in the XY , for T > 0.
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and 〈c〉 = 8 (right). Insets: Absolute values of the magnetization as a
function of p.

model is rather fast (see also the inset for the absolute value of
the magnetization). We observe that clow = 6 for the ER graph
is larger than the corresponding value, clow = 5, in the Bethe
lattice. When 〈c〉 = 5, with an ER distribution, the probability
of having a connectivity of less than 5 is P (c < 5) ∼ 0.44:
the presence of many nodes with connectivity 4 or lower
apparently leads to a zero transition temperature in the ER
graph. We note, however, that in the linear case (k = 2)
the trend is the opposite: for Bethe lattices the minimal
connectivity for a nontrivial critical behavior is clow = 3, and
for ER graphs it is clow = 2, as reported in the Appendix, where
we derive the analytic linear expression for Tc vs 1/c.

VI. MODE-LOCKING ON RANDOM GRAPHS

As mentioned in Sec. I, the nonlinear XY model can be used
to describe the phase dynamics of interacting electromagnetic
modes in lasers. Previous mean-field studies on fully connected
models assume a narrow band for the spectrum [8,12–14];
that is, all modes have practically the same frequency, and in
this way, the frequencies do not play any role in the system
behavior. This is the case for the systems analyzed in Secs. IV
and V. In this section, exploiting the diluted nature of the
graphs, we deepen this description and allow for the existence
of finite-band spectra and gain frequency profiles.

Tree-like factor graphs can be built where each variable
node, representing a light mode, has a quenched frequency
associated with its dynamic phase. The frequencies are
distributed among modes according to, e.g., a Gaussian or a
parabolic distribution proportional to the optical gain g(ω) for
the system resonances. The graph is, then, constructed starting
from the root in such a way that the FMC, Eq. (1), is satisfied
for each interacting quadruplet. In other words, a function
node m is an FMC for the {∂m} modes connected to it. As an
example, in Fig. 9, we show a possible frequency distribution
for a tree-like factor graph in which the connectivity of the
variable nodes is fixed at c = 6. The open (large) triangles refer
to the gain profile, gin(ω), according to which the frequencies
are assigned to free variable nodes (two-thirds of the total).
The remaining one-third of the node frequencies are assigned
according to the FMC. Note that, applying the FMC, one can
obtain three possible independent combinations for the fourth
frequency. In Fig. 9 we see that the frequency distribution of all
frequencies, g(ω), evaluated once the FMC has been imposed

 0.0001
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ω
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ω

Mode-Locked Bethe c=6

σgin
=200, ω- =400
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FIG. 9. (Color online) Open triangles refer to the distribution of
frequencies assigned to two-thirds of the variable nodes, according
to a Gaussian gain profile, gin(ω), of mean ω̄ = 400 and variance
σgin = 200. Filled triangles represent to the distribution gout(ω) we
obtain once the FMC is imposed: gout(ω) coincides with gin(ω) on the
whole domain.

for all quadruplets, is compatible with the starting one, gin(ω).
This result shows that, considering a generic Gaussian gain
profile, sparse factor graphs, in which 〈c〉 = O(1), can yield
a meaningful realistic description of nonlinearly interacting
modes whose frequencies satisfy the FMC.

A. Phases and phase-locking

Once graphs with fixed connectivity and frequency match-
ing function nodes are introduced we can study the critical
behavior considering βJ as the pumping rate squared P2 [cf.
Eq. (6)] in the context of lasing systems. We term these graphs
“mode-locking Bethe” (ML-Bethe) lattices. As a result of BP,
above a certain threshold of P mode phases turn out to show
a peculiar behavior of the frequencies: φ(ω) coincides with
the linear law of Eq. (2), as shown in Fig. 10 for different
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FIG. 10. (Color online) Phases vs frequencies in phase-locked
phases on an ML-Bethe lattice with c = 6, Nshell = 5, and the total
number of inner nodes (excluding leaves) Nbulk = 4339. The number
of clock tics is p = 120. The number of frequencies is Nω = 88 or
120. The pumping rate squared is P2 = βJ = 7.
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linear coefficients φ′. Though, generically, the magnetizations
are mxy = 0, the phases are, nevertheless, found to be locked.
This is the typical behavior established at the lasing threshold
by nonlinearity in multimode lasers. In the above-mentioned
construction of the ML-Bethe lattice, frequencies are as-
signed to modes with a probability proportional to the gain
profile.

We take into account two qualitatively different cases. First,
we consider the case where only equispaced frequencies are
eligible: this is a proxy for the so-called comb distribution
[29,30], in which many resonances occurs with a linewidth
much smaller than the fixed resonance interspacing. Further-
more, we investigate the opposite extreme, the continuous case,
in which each mode frequency is extracted continuously from
the whole gain band with no further constraint on their values,
other than FMC.

In Fig. 10 we show different realizations of such
phase-locking, all of them with different phase delay φ′.
They are frequency independent and do not depend on the
frequencies being equispaced or continuously distributed.
This amounts to saying that the phase delay dispersion is
0. Each locking is obtained by means of different boundary
conditions at the external shell. The case φ′ = 0 is also
achieved, which is the FM phase: all modes are locked at the
same phase. In term of thermodynamics all realizations of
phase-locking, including the FM one, display comparable free
energies, all of them definitely different from the free energy
of the coexisting PM phase.

Altough phase-locking [cf. Eq. (2)] occurs in both the comb
and the continuous frequency distributions, as shown in Fig. 11
there is a difference in the range of values that frequencies
can take at each (discrete) value of the phases. We anticipate
that only in the case of comb-like distributions of gain reso-
nances will mode-locking allow the realization of ultrashort
pulses.

We, eventually, come to the analysis of the electromagnetic
signal for a wave system with N = Nbulk modes and Nω

9/10π

π

11/10π

 360  380  400  420  440

φ(
ω

)

ω [a.u.]

COMB
CONT

FIG. 11. (Color online) Detail of the behavior of the phases vs
frequencies extracted by means of the distribution in Fig. 9, both
as continuous and as comb-like, equispaced at βJ = 7, for c = 6,
Nshell = 4339, Nbulk = 65 089, and p = 120, for 120 continuous
[light-gray (green) points] and comb [dark-gray (red) squares]
frequencies.

frequencies,

E(t) =
N∑

k=1

Ake
ı(ωkt+φk )

= eı(ω0t+φ0)
N∑

k=1

Ake
ı(�ωkt+�φk ), (37)

where the sinusoidal carrier wave frequency ω0 is the central
frequency of the spectrum (of the order of 1015 rad · s−1),�ωk’s
are of the order of radio frequencies (ca. 109 rad · s−1), and
φ0 = φ(ω0) is the phase of the mode at the central frequency.
In the ML regime, where [cf. Eq. (2)] �φk = φ′�ωk , the
time-dependent overall amplitude can be written as

A(t) ≡
N∑

k=1

Ake
ı(�ωkt+�φk)

=
N∑

k=1

Ake
ı�ωk(t+φ′) = A(t + φ′). (38)

The term phase (or group) delay for φ′ comes from the
fact that it corresponds to a shift in time in the E(t) carrier
peak with respect to the |E(t + φ′)| = |A(t + φ′)| envelope
maximum. If, furthermore, Nω comb-distributed resonances
are considered with interspacing �ω, we can write

eı�ωkt = nle
ıl�ωt ,

k = 1, . . . ,N, l = −Nω/2, . . . ,Nω/2 − 1, (39)

where nl is the number of modes at frequency l�ω. This is
the case for ultrashort ML lasers for which very short and
very intense periodic pulses occur, as shown for Nbulk = 4339
modes in the first and third left-hand panels in Fig. 12 for φ′ =
0.0314 (Nω = 120) and φ′ = 0.0075 (Nω = 88), respectively.

Since we are working in the quenched amplitude approxi-
mation with intensity equipartition, each mode has magnitude
Ak = 1. However, we are using diluted interaction networks,
and consequently, the same frequency can be taken by modes
localized in different spatial regions, whose number we denote
nl in Eq. (39). Therefore,

E(t) = eı(ω0t+φ0)
Nω/2−1∑
l=−Nω/2

nle
ıl�ω(φ′+t), (40)

and from the point of view of the Fourier decomposition of
the electromagnetic signal, nl plays the role of the amplitude
of the modes at frequency l.

A detail of the pulses is shown in the first and third right-
hand panels in Fig. 12. The linear behaviors shown in Fig. 10,
like Eq. (2), imply that the signal is unchirped. In other words,
the phase delay displays no dispersion and the frequency of
oscillation of the carrier remains the same for all pulses, as
shown in the right-hand panels in Fig. 12. The period of the
pulses is τp = 2π/�ω, where �ω = 5 for phase delay φ′ =
0.0314 and �ω = 7 for φ′ = 0.0075. The pulse duration is
expressed in terms of its full width at half-maximum �τp,
also compatible with the time it takes for the electromagnetic
field amplitude, A(t), to decrease below the noise level from
its maximum.
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FIG. 12. (Color online) The laser pulse E(t) generated in the
lasing phase in an ML-Bethe lattice with a comb-like frequency
distribution. Two realizations of the phase-locking are reported, with
delay φ′ = 0.0314 (top four panels) and φ′ = 0.0075 (bottom four
panels). In the left panels several periodic pulses are shown, with
period τp = 2π/�ω and with �ω = 5 in the top case and �ω = 7 in
the bottom case. In the right panels details of the single pulse are given,
where both carrier and envelope are plotted. In the ML pulsed phase
(first and third right-hand panels) the pulse full width half maximum
is �τp = 2π/(N�ω), where N = 120 for φ′ = 0.0314 and N = 88
for φ′ = 0.0075. We also plot the behavior of the amplitude ±|E(t)|
expected for Gaussian gain profiles, i.e., the square root of (41), which
displays a rather good coincidence.

In ML ultrafast lasers, if the gain has a Gaussian profile at
equidistant frequencies, and consequently, nl is so distributed
[cf. Eq. (40)], the signal amplitude squared is expected to
behave like

|E(t)|2 = |E(tmax)|2 exp

{
−

(
2
t − tmax

�τp

)2

ln 2

}
(41)
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FIG. 13. (Color online) The amplitude of the e.m. field, |E(t)|
[cf. Eq. (38)], is plotted for an ML-Bethe lattice with a continuous
frequency distribution. We display the φ′ = 0.0075 case in the high-
pumping mode-locked regime (left) and in the low-pumping random
phase regime (right). This scenario is independent of the value of φ′.

in the limit of very many frequencies (�ω → 0) [31]. In
Fig. 12, first and third right-hand panels, this behavior is
labeled “Gauss.” Above the noise level it appears to coincide
very well with the envelope obtained by Fourier transform of
the output of BP equations on ML-Bethe lattices.

In the second (φ′ = 0.0314) and fourth (φ′ = 0.0075) rows
in Fig. 12 we show E(t) in the low-pumping PM phases, where
modes display random phases (RP). The periodicity induced
by the comb-like distribution appears also here, though the
electromagnetic field is purely noisy, without any pulse.

When frequencies are taken in a continuous way the
coherent PL phase turns out to display a much less intense
coherent signal, with no pulses, as shown in Fig. 13, where
|E(t)| is shown both in the ML and in the random phase
(PM) regimes, with no apparent difference in the time domain
between coherent and incoherent light.

VII. CONCLUSIONS

In the present work we have investigated the XY model with
nonlinear, four-body interaction and its discrete approximant,
the so-called p-clock model, on random graphs. Cavity
equations have been derived and solved for the Bethe lattice
and the ER graph, carrying out a thorough analysis of the
critical behavior of temperature at varying connectivity values.
Three phases are found for these models. At high T the systems
are in a PM phase. At low T the dominat thermodynamic
phase is FM; that is, an SU(2) continuous symmetry breaking
occurs in the XY model and a Zp discrete symmetry breaking
occurs in the p-clock model. Otherwise, a low-temperature
metastable phase-locking phase can be reached, in which the
magnetization is 0 but the phases, though all different, are
nevertheless correlated with each other. An accurate study of
the convergence of the p-clock model to the continous model
is performed and presented.

The models introduced can be applied to laser optics, where
XY or p-clock spins play the role of light mode phases. In this
photonic framework the inverse temperature β is proportional
to the square of the rate of population inversion, the so-called
pumping rate, driving the lasing transition from the incoherent
light regime. The first result is that a mode-locking Bethe
lattice can be consistently built in, where, besides the phase,
also a frequency is associated with each variable node and

054201-10



NONLINEAR XY AND p-CLOCK MODELS ON SPARSE . . . PHYSICAL REVIEW B 91, 054201 (2015)

each function node acts as an FMC among four frequencies
[cf. Eq. (1)]. The latter is a common kind of nonlinear
interaction occurring in standard ultrafast multimode lasers.
As β increases the system is found to undergo a mode-locking
transition: phases at nearby frequencies are locked to take
a fixed amount, and a linear φ(ω) relationship like Eq. (2) is
established at the critical point. In the case of evenly distributed
mode frequencies this leads to a pulsed laser, i.e., a laser
whose electromagnetic field oscillations are characterized
by a train of very short and very intense pulses. We have
compared the results obtained in this case to the laser signal
for multimode frequencies randomly taken in a continuous
dominion, as well as to the incoherent signal below the lasing
threshold. The model presented, thus, provides an analytical
and phenomenologically accurate description of multimode
lasers at the level of the single pulse, which can be chosen
arbitrarily shorter than the period between two pulses when the
frequencies are evenly spaced as, e.g., in standard Fabry-Perot
cavities. Such a limit is not achievable experimentally because
the typical response time of conventional photodetectors is of
the order of 1 ns, whereas the duration of pulses in ultrafast
mode-locking solid-state or semiconductor lasers ranges from
the order of a picosecond to the order of a femtosecond.

Eventually, laser emission is also investigated in the oppo-
site extreme, where frequencies can take any value according
to a given gain profile, not just evenly spaced values. These
systems undergo phase-locking, because of the FMC, but
prove a far less intense signal, more akin to the signal of
early continuous-wave pumped solid-state lasers [32]. Such
a frequency limit distribution is, in principle, compatible
with the random topology of light localizations on sparsely
connected interaction networks, which can represent a salient
feature of more complex laser systems called random lasers
[16,33–36]. In these systems, indeed, where also the magnitude
and even the sign of the mode-coupling can be disordered, the
pumping rate threshold values are known to be higher and
the signal intensity is found to be sensitively smaller than in
standard ordered multimode lasers.
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APPENDIX: XY MODE WITH LINEAR INTERACTION ON
SPARSE GRAPHS

Let us consider the two-point correlation function for the
XY model with pairwise interaction, k = 2:

H = −
∑
(i,j )

Jij cos (φi − φj ). (A1)

Taking two variable nodes, i and j , we indicate by Uij the
shortest path that goes from i to j ; by FR , the subset of function
nodes (now simple links) in Uij ; and by VR , the subset of
variable nodes in Uij including i and j . Then let ∂R be the
subset of function nodes that are not in Uij but are adjacent to
the variable nodes in VR: ∀m ∈ ∂R, ∃′ l ∈ ∂m

⋂
VR , which is

called l(m). Then we have that the joint probability distribution
of all variables in R is

μ(φR) = 1

ZR

∏
m∈FR

ψm(φ∂m)
∏

m∈∂R

ν̂m→l(m)(φl(m)). (A2)

We then denote by r the distance between the two initial spins,
i and j . The distance r is, in fact, the number of links in FR ,
each one with its marginal ν̂. Recalling Eq. (11) we obtain
that, in the PM phase [where ν̂(φ) = 1

2π
, ∀φ ∈ [0,2π )], the

two-spin joint probability distribution function is

μ(φi,φj ) = 1

(2π )2
+ 1

(πI0(βJ ))r

×
∞∑

n=1

(In(βJ ))r cos(n(φi − φj )). (A3)

Consequently,

〈cos(φi) cos(φj )〉 = 〈sin(φi) sin(φj )〉 = 1

2

(
I1(βJ )

I0βJ

)r

and

C(r) ≡ 〈cos(φi − φi+r )〉 =
(

I1(βJ )

I0(βJ )

)r

. (A4)

The susceptibility can be written as

χ = 1

N

∞∑
r=0

∑
(i,j=i+r)∈G

〈σiσj 〉 =
∞∑

r=0

N (r)

(
I1(βJ )

I0(βJ )

)r

, (A5)

where (i,i + r) indicates all the links in the graph between two
variable nodes at distance r and N (r) is the expected number
of variables nodes j at a distance r from a uniformly random
node i. For large r on a Bethe graph with fixed connectivity c,
N (r) = (c − 1)r and χ < ∞ for(

I1(βJ )

I0(βJ )

)
(c − 1) < 1. (A6)

As (
I1(βcJ )

I0(βcJ )

)
(c − 1) = 1, (A7)

χ = ∞, the PM solution becomes unstable and the value of
the critical temperature Tc = 1

βc
is determined.

For the case of ER graphs, we obtain, for large r , N (r) =
〈c〉r = cr , where we have used the result of the Poissonian
distribution Pc(k), where k indicates the random connectivity
of a uniform variable node:

∞∑
k=2

(k − 1)Pc(k − 1) =
∞∑

k=2

e−c ck−1

(k − 1)!
(k − 1)

= ce−c

∞∑
k=2

ck−2

(k − 2)!
= c. (A8)
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Then in this case Eq. (A7) becomes(
I1(βcJ )

I0(βcJ )

)
(c) = 1. (A9)

We stress that both critical conditions, Eqs. (A7) and (A9), can
be obtained by expanding Eq. (11) around the PM solution
[28,37]. In the ER case we see that the presence of nodes with
a connectivity larger than c has the effect of lowering βc, i.e.,
increasing Tc.
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