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Reduced tight-binding models for elemental Si and N, and ordered binary Si-N systems
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Silicon nitride is a bulk and a coating material exhibiting excellent mechanical properties. We present a
transferable reduced tight-binding (TB) model for the silicon nitride system, developed within the framework of
coarse graining the electronic structure from density-functional theory (DFT) to tight binding (TB) to bond-order
potentials (BOPs). The TB bond integrals are obtained directly from mixed-basis DFT projections of wave
functions onto a minimal basis of atom-centered orbitals. This approach reduces the number of overall parameters
to be fitted. Furthermore, applying the reduced TB approximation automatically leads to a single σ bond order
that contributes to the bond energy. DFT binding energies of ground state and metastable crystal structures
are used as the benchmark to which the TB repulsive parameters are fitted. The quality of the TB models is
demonstrated by comparing their predictions for the binding energies, heats of formation, elastic constants, and
defect energies with DFT and experimental values.
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I. INTRODUCTION

Silicon nitride is one of the most widely used nonoxide
ceramics and is employed in the bulk and as coatings in many
applications, ranging from automotive to microelectronic
industries [1–3]. Due to their high strength, hardness, and wear
resistance, low density and friction coefficient, and excellent
chemical and thermal stability, silicon nitride ceramics are
applied in many areas at both low and high temperatures [4].
Examples include gas turbines, heat exchangers, car engine
parts, fans, unlubricated roller and ball bearings, valves, seals,
and crucibles for molten metal [5,6].

In addition to the application of silicon nitride in the bulk,
silicon nitride films play an important role in microelectronic
technology [7] and microsystem technology [8]. Due to the
material’s chemical resistance, ease of deposition with various
processes, and etching properties (especially the etching rate
compared to silicon), silicon nitride is employed in a variety of
semiconductor manufacturing processes [9]. Applications in-
clude sacrificial layers, masks, and passivation layers [10,11].
In microelectronic technology for instance, mainly amorphous
silicon nitride is applied due to its low electrical conductivity,
high dielectric constant, high resistance against radiation, high
temperature stability, and its high barrier against alkali-ion
migration and impurity diffusion. Furthermore, silicon nitride
is applied in integrated circuits as dielectrics in capacitors and
transistors. Silicon nitride coatings are also widely employed
for their mechanical properties and are used against wear and
corrosion both by itself and in composite coatings in combina-
tion with other materials like silicon carbide, titanium carbide,
titanium nitride, and aluminum oxide [12–14]. In order

to investigate deposition processes of silicon nitride on
the atomistic level and understand the complex interatomic
and interface processes, the availability of accurate and yet
computationally efficient models is crucial.

The electronic structure of silicon nitride has been inten-
sively studied with the tight-binding method by Robertson
et al. in order to help elucidate the nature of the defects
in amorphous silicon nitride [15–19]. Interatomic poten-
tials have also been developed for the atomistic simu-
lation of crystalline and amorphous silicon nitride using
either the covalent bond-order-type Tersoff potential [20]
or the two- and three-body Vashishta [21] potential that
describes both ionic pairwise and covalent bond-bending
interactions.

An empirical potential of the Tersoff form for interactions
between silicon and nitrogen has been published by de Brito
Mota et al. [22–24]. They fitted their parameters to a set of
ab initio and experimental data which included experimental
lattice parameters of the crystalline β-Si3N4 phase, ab initio
values for the average binding energy of β-Si3N4, experimental
equilibrium interatomic distance and binding energy of the
N2 molecule, and the ab initio result for the structure of the
silicon-nitrogen bonds in the Si3NH9 molecule. This potential
provides a description of amorphous silicon nitride in a wide
range of nitrogen contents, from pure silicon to stoichiometric
Si3N4, but includes only a repulsive nitrogen-nitrogen inter-
action and therefore unphysically prevents nitrogen-nitrogen
bond formation. Despite the nonattractive nitrogen-nitrogen
interaction, this parametrization has been applied to sim-
ulations of deposition [25,26] and deposition related [27]
processes.
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The Vashishta potential, which is similar to the form
proposed by Stillinger and Weber [28] but explicitly includes
an ionic term resulting from charge transfer in the two-body
part, was first introduced for silicon oxide [21] and was
later extended to silicon nitride [29,30]. Comparisons between
molecular dynamics simulation results using this potential and
experimental results showed that bond lengths for both crys-
talline and amorphous Si3N4 are in good agreement, the static
structure factor is in agreement with neutron-scattering exper-
iments, and elastic properties are within 10% of experimental
data [31]. Although the Vashishta potential for silicon nitride
has been used to study crack propagation and surfaces [29],
pores and interfaces [31], amorphous silicon nitride [32],
dynamic fracture [33], and shearing deformation [34], the
potentials transferability to structures or environments not
included in the fitting database is poor. For example, when
modeling the interface between silicon and Si3N4 [35], the
silicon atoms in silicon bulk, silicon nitride bulk, and the
interface were all treated differently. This casts doubt on its
ability to model realistically the growth of silicon nitride on
a silicon substrate. To our knowledge, the Vashishta potential
for silicon nitride was only applied once [36] to study the film
growth of silicon nitride by molecular dynamics simulations.
Unfortunately, only results of the mean cluster size but no
results of local atomic environments, microstructural features,
surface reconstructions, or bulk properties resulting from
deposition were reported.

Ideally, one would like to represent the atomic interactions
of the silicon nitride system with a quantum mechanical
approach, treating the electronic degrees of freedom explicitly.
This has been done with ab initio methods to investigate the
structural stability of silicon nitride crystal phases [37–41].
However, due to the restriction of computing power, only
simulations using empirical interatomic potentials, which
often lack transferability and accuracy, can reach the length and
time scales necessary to study phenomena such as film growth,
nanoindentation, radiation damage, and dislocation dynamics.
Nevertheless, in contrast to empirical potentials, bond-based
bond-order potentials (BOPs) could provide an accurate
description of a wide array of local atomic environments
in covalent systems [42]. Generally, analytic BOPs can be
derived either for metals [43] or semiconductors [44,45] by
coarse graining the electronic structure from density functional
theory (DFT) to tight binding (TB) to BOPs. Within this
approach, the TB parameters can be extracted directly from
DFT by projecting the wave functions onto a minimal basis
of atom-centered orbitals [46,47]. In the particular case of
bond-based BOPs, reduced TB links the quantum mechanical
with the atomistic level. The BOPs are interatomic potentials
for which the time for energy and force computations
scales linearly with system size. For a given number of
atoms, the BOPs are about 10–100× more computationally
expensive than the empirical potentials discussed above.
For very small simulations with only a handful of atoms
the reduced TB calculations are approximately a factor
of 10 slower than the BOPs, however, due to the cubic
scaling of the time for a force or energy computation
with the number of atoms the TB calculations become
computationally expensive for simulations with more than a
few thousand atoms. Standard DFT implementations show

the same scaling as TB, but are still orders of magnitude more
expensive.

Here we show that reduced TB is not just a theoretical
coarse-graining step in the development process of bond-based
BOPs, but, in addition, provides a transferable interatomic
potential for the silicon nitride system. Furthermore, it is
known that interatomic electronic charge redistribution is
present in heterovalent compounds such as silicon nitride
due to the large Pauling electronegativity difference between
the atomic species [48]. This results in a hybrid of covalent
and ionic bonding. We have included charge transfer within a
self-consistent density-functional tight-binding scheme [49].

This paper is structured as follows. In Sec. II we outline
the methodology behind the development of our transferable
reduced TB models. In particular, in Sec. II A we describe the
step from DFT to TB and in Sec. II B the step from TB to
reduced TB. In Secs. III to V we present the three reduced TB
models for silicon, nitrogen, and silicon nitride, respectively.
Finally, we conclude in Sec. VI.

II. METHODOLOGY

A. From DFT to TB

1. Orthogonal TB bond integrals

TB approaches present a chemically intuitive approx-
imation to the quantum mechanical electronic structure.
While DFT methods explicitly calculate the Hamiltonian
using a large number of basis functions, TB methods uti-
lize parametrized forms of Hamilton and overlap matrices,
typically as simple (analytical or numerical) functions of the
distance between two atoms. Orthogonal tight-binding (OTB)
schemes, whose overlap matrix is the unity matrix, then require
just a small set of parameters describing the chemical bonding:
the intersite elements

Hiαjβ = 〈iα|Ĥ |jβ〉, (1)

known as bond or hopping integrals, between valence orbitals
iα and jβ, and the on-site elements

Hiαiα = 〈iα|Ĥ |iα〉, (2)

characterizing the orbital energies. These quantities can be
obtained directly from DFT calculations using the screened
LMTO method [50] or various projection schemes [46,47]
and do not need to be fitted in an empirical way.

Another characteristic feature of TB models is employment
of only a minimal basis of atomiclike atomic orbitals. Specifi-
cally for main group elements such as Si and N, it is sufficient
to consider s and p orbitals only. In this case, the elemental
OTB models contain just four types of bond integrals termed
ssσ , spσ , ppσ , and ppπ , and two on-site terms E(0)

s and E(0)
p ,

according to the classical notation of Slater and Koster [51].
For the particular case of α = s and β = s, Eq. (1) then relates
to the Slater and Koster notation as

Hisjs = 〈is|Ĥ |js〉 = ssσij . (3)

In the present work we obtained these quantities using the
recent projection scheme of Urban et al. [46]. This approach
is based on constructing a minimal basis of optimized atomic
orbitals which give the best possible representation of the
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electronic wave functions from self-consistent DFT calcula-
tions for selected atomic structures and bonding environments.
The main advantage of this procedure, applied recently to the
binary titanium carbide and titanium nitride systems [52], is
that it provides a consistent, physically based set of parameters
whose validity and range of applicability is known.

2. Binding energy

For the development of the reduced TB models we use
DFT binding energy curves of a structure database as a
benchmark. The computational details of the DFT calculations
are described in Sec. II C.

The local charge neutrality (LCN) constraint is a reasonable
approximation for elemental silicon and nitrogen systems. In
this case, the binding energy can be expressed as [43]

U
(LCN)
B = Ubond + Uprom + Urep + �Uatom, (4)

where the bond energy can be written in the on-site represen-
tation as

Ubond =
∑
iα

∫ EF

−∞
(E − Eiα)niα(E)dE. (5)

EF is the Fermi energy, Eiα is the on-site energy level, and
niα(E) is the local density of states (LDOS) projected onto
atom i and orbital α for both up and down spins. Alternatively,
the bond energy can be written in the intersite representation
as a sum over contributions from individual bonds between
atomic sites i and j ,

Ubond =
∑

i,j :i<j

Ubond,ij , (6)

with

Ubond,ij = 2
∑
α,β

Hiαjβ�jβiα. (7)

The matrix element of the bond-order operator �̂ with
respect to the valence orbitals |iα〉 and |jβ〉 is given by

�iαjβ = 〈iα|�̂|jβ〉. (8)

The expression in Eq. (7) is multiplied by two to account
for the assumed spin degeneracy of nonmagnetic systems.

Uprom is the energy contribution resulting from promoting
electrons between different levels compared to the free atom
occupation and is therefore associated with the formation of
hybrid orbitals [43],

Uprom =
∑
iα

E
(0)
iα qiα. (9)

E
(0)
iα is the reference level, which we take as the free atom

on-site energy level, and qiα is the difference between the
number of electrons on a tightly bound and a free atom i and
orbital α [43],

qiα = Niα − N
(0)
iα . (10)

Therefore, LCN on each atom i is met by

qi =
∑

α

qiα = 0. (11)

Both the repulsive pair potential and the two-center bond
integrals are represented by generalized GSP analytic func-
tions [53,54] fGSP(R) that are cut off smoothly from R = Rtail

by the exponential-cosine cutoff function fcut(R) that vanishes
for R = Rcut. Thus,

f (R) = fGSP(R) + fcut(R), (12)

where

fGSP(R) =
(

R0

R

)na

exp

{
nb

[(
R0

Rc

)nc

−
(

R

Rc

)nc
]}

for R < Rtail, (13)

and

fcut(R) = 1

2
f0 exp{(f ′

0/f0)(R − Rtail)}

×
[

1 − cos

(
π

R − Rcut

Rcut − Rtail

)]
for Rtail � R � Rcut, (14)

with the matching boundary conditions

fcut(Rtail) = fGSP(Rtail) = f0, (15)

f ′
cut(Rtail) = f ′

GSP(Rtail) = f ′
0. (16)

The repulsive energy is then approximated by

Urep =
∑

i

⎛
⎝ ∑

j :i<j

φij (R)

⎞
⎠

nd,i

+
∑

i,j :i<j

Yij (R), (17)

with the repulsive pair potential

φ(R) = φ0f (R), (18)

and a Yukawa-type core repulsion

Y (R) = acR
−bc exp (−ccR). (19)

The latter is needed at very short interatomic distances for
the elemental silicon and the binary silicon nitride interactions
to repel strongly enough to avoid fusion of silicon silicon
and silicon nitrogen pairs. Note that nitrogen has no p core
electrons while silicon does, and, therefore, has a softer core
that allows the formation of dimeric N2 as its ground state
(see, e.g., Sec. 4.2 of Ref. [48]). The Yukawa-type term is cut
off smoothly in the same fashion as described above. nd,i in
Eq. (17) is an embedding exponent. Similar to the repulsive
potential φ(R) in Eq. (18), the bond integrals are written

β(R) = β0f (R), (20)

with na = nb in Eq. (13).
�Uatom in Eq. (4) accounts for the upward shift of the

nonmagnetic DFT free atom reference energy compared to the
magnetic free atom value due to the atom’s spin configuration,

�Uatom =
∑

i

�Uatom,i . (21)

For most elemental systems LCN is a reasonable approxi-
mation. However, for the binary silicon nitride system where
the difference in electronegativity between silicon and nitrogen
drives charge redistribution between the sites, the explicit
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inclusion of charge transfer (CT) is crucial. (The Pauling
electronegativity values for silicon and nitrogen are 1.90 and
3.04, respectively.) This leads to the following expression for
the binding energy:

U
(CT )
B = Ubond + Uprom + U intra

ion + U inter
ion + Urep + �Uatom.

(22)

The bond, repulsive, and free atom terms take the same
form as described above, but the promotion energy now takes
the form (cf. Eq. (85) Ref. [43])

Uprom =
∑
iα

E
(0)
iα (qiα − �qiα). (23)

�qiα is the charge taken from or put onto atom i and orbital
α due to total charge transfer

qi =
∑

α

�qiα (24)

between atoms, where �qiα is fixed by ensuring that the
resulting change in atomic energy is minimized. In contrast,
qiα is the charge on atom i and orbital α following the
self-consistent optimization of the energy of the system. qiα is
equivalent to the definition in Eq. (10), although, the values of
Niα may differ from those when enforcing LCN due to nonzero
values of �qiα . Similar to the condition for Eq. (9) in Eq. (11),
for each atom when allowing CT the following condition is
met: ∑

α

(qiα − �qiα) = 0. (25)

This implies that the promotion energy when allowing CT
is the result of promoting electrons between different levels
compared to the free atom occupation after �qiα has been
taken from or put onto atom i and orbital α.

U intra
ion in Eq. (22) is the energy to form ions,

U intra
ion =

∑
i

(
Eiqi + 1

2
Jiq

2
i

)
, (26)

where

Ei =
∑

α E
(0)
iα �qiα

qi

(27)

and Ji is the species dependent atomic on-site Coulomb
integral. The first term of Eq. (26) is directly related to the
electronegativity of atoms. This term lowers the energy of
the system and drives charge transfer between atoms. The
second term of Eq. (26) increases the energy of the system
and thereby counteracts charge transfer between atoms. Note
that the second term in Eq. (23) for the promotion energy and
the first term in Eq. (26) for the ion formation energy cancel
when the promotion and the ion formation energies are added
together.

U inter
ion is the electrostatic energy which is responsible for the

anions and cations attracting each other due to their opposing
charges in an ionic solid and is defined as

U inter
ion = 1

2

∑
i,j :i �=j

Jij qiqj . (28)

FIG. 1. Screened Coulomb integrals [56] J as a function of
interatomic distance R for the elemental silicon-silicon (Si-Si)
and nitrogen-nitrogen (N-N) and binary silicon-nitrogen (Si-N)
interactions (black: range of function from 0 to 10 Å, gray: range
of function from 0 to 30 Å) compared to the unscreened Coulomb
interaction.

Figure 1 shows the Coulomb integrals of the elemental
and binary interactions and the standard Coulomb interaction
as a function of interatomic distance R. The functional
forms for the screened Coulomb integrals of the homo-
and heteronuclear interactions as a function of interatomic
distance can be found in Refs. [49] and [55]. To avoid the
computationally expensive Ewald summation, the Coulomb
integrals are screened and truncated using a polynomial of
order 7 that can be found in Ref. [56], with a range of the
function defined from 0 to 10 Å. We also tested a range of the
function defined from 0 to 30 Å, given in gray in Fig. 1, which
resulted in the same charge transfer between the atoms.

B. From TB to reduced TB

By choosing the z axis along the direction of the bond from
atom i to atom j the ij bond energy in Eq. (7) separates into
individual σ and π contributions, namely

Ubond,ij = Uσ
bond,ij + Uπ

bond,ij , (29)

with

Uσ
bond,ij = 2(ssσij�jsis + spσij�jzis + psσij�jsiz

+ ppσij�jziz) (30)

and

Uπ
bond,ij = 2ppπij (�jxix + �jyiy). (31)

Thus, whereas the π bond energy can be written as a single
contribution 2βπij�

tot
πji , the σ bond energy comprises four

different contributions as in Eq. (30) so that the powerful
valence bond concept of a single σ bond order is lost.

For a binary sp-valent system the reduced TB approxima-
tion [57,58] reduces the four independent TB σ bond integrals
ssσij , spσij , psσij , and ppσij to three independent parameters,
namely βσij , pσij , and pσji by assuming that the four TB σ

bond integrals satisfy the constraint equation

spσijpsσij = ssσijppσij . (32)

For the case of homovalent bonds the constraint equation
implies that the spσij bond integral is given by the physically
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intuitive geometric mean of ssσij and ppσij , namely

spσij = √|ssσij |ppσij , (33)

noting that ssσij < 0, ppσij > 0, spσij > 0, and psσij < 0.
Expressions for the two reduced TB parameters pσij and

pσji may be obtained by making a transformation from the
atomic orbitals to bonding hybrids that point into the ij bond

|iσ 〉 = √
1 − pσij |is〉 + √

pσij |iz〉, (34)

|jσ 〉 = √
1 − pσji |js〉 − √

pσji |jz〉, (35)

and nonbonding hybrids that point away from the ij bond

|iσ ∗〉 = √
pσij |is〉 − √

1 − pσij |iz〉, (36)

|jσ ∗〉 = √
pσji |js〉 + √

1 − pσji |jz〉. (37)

The hybridization character on atom i clearly depends on
its neighboring atoms j (and vice versa) and we will later
show that for a binary system pσij �= pσji [see Eq. (46)]. We
should note that the parameter pσ , which gives the amount of
p character in the bonding hybrids, has been defined to vary
from 0 to 1 [42] in contrast to the original parameter p

orig
σ that

varied from 0 to ∞ [57,58] as p
orig
σ = pσ/(1 − pσ ).

The values of pσij and pσji are now determined [57,58] by
requiring that the ij intersite Hamiltonian with respect to the
above i and j hybrids takes the diagonal form

Hσij =
(

βσij 0
0 0

)
, (38)

where

βσij = 〈iσ |H |jσ 〉. (39)

The diagonal nonbonding matrix element 〈iσ ∗|H |jσ ∗〉
with the nonbonding hybrids given by Eqs. (36) and (37) can
then be made to vanish by choosing pσij and pσji to satisfy√

pσij /(1 − pσij ) = ppσij /spσij (40)

and√
pσji/(1 − pσji) = ppσji/spσji = ppσij /|psσij |, (41)

since ppσji = ppσij and spσji = |psσij |. Furthermore, these
values also lead to the off-diagonal matrix elements in Eq. (38)
vanishing. Substituting spσij and |psσij | from Eqs. (40)
and (41), respectively, into the constraint Eq. (32) immediately
gives the relation that

ppσij = √
pσijpσji/[(1 − pσij )(1 − pσji)]|ssσij |. (42)

The reduced TB parameter βσij may now be found by
substituting Eqs. (34) and (35) in Eq. (39) and using Eqs. (40)
and (41) and is given by

βσij = [1/
√

(1 − pσij )(1 − pσji)]ssσij . (43)

Finally, using Eqs. (40)–(43), the original four independent
TB bond integrals can be expressed in terms of the three

reduced TB parameters as

ssσij

spσij

psσij

ppσij

⎫⎪⎬
⎪⎭ =

√
(1 − pσij )(1 − pσji)
−√

(1 − pσij )pσji√
pσij (1 − pσji)
−√

pσijpσji

⎫⎪⎪⎬
⎪⎪⎭ βσij . (44)

Interestingly, we see that squaring both sides and adding
leads to the very simple expression for βσij , namely

βσij = −
√

(ssσij )2 + (spσij )2 + (psσij )2 + (ppσij )2, (45)

which, unlike Eq. (43), weights all four TB bond integrals
equally. In addition, this definition of βσij automatically
guarantees that the second moment of the density of states
is preserved in going from TB to reduced TB, even though the
constraint Eq. (32) might not be accurately satisfied.

In this paper, therefore, all three reduced TB parameters
will be defined in terms of the four TB bond integrals as for
βσij in Eq. (45) above. It follows from Eqs. (40) and (41) and
the constraint Eq. (32) that

pσij = 1
2 {1/[1 + (spσij /ppσij )2] + 1/[1 + (ssσij /psσij )2]},

(46)

and similarly for pσji .
For elemental interactions, where spσij = spσji and

psσij = psσji , pσij and pσji are identical. However, for
binary interactions, where spσij �= spσji and psσij �= psσji ,
pσij and pσji give different results. Therefore, considering a
binary sp-valent system that comprises two chemical species,
e.g., Si and N which will be indexed by μ and ν, respectively,
and taking account of Eq. (45), we can determine in total
the following reduced TB parameters that contribute to the σ

bonds in the system: βSiSi
σ ij , βSiN

σ ij , βNN
σ ij , pSiSi

σ ij , pSiN
σ ij , pNSi

σ ij , and
pNN

σ ij .
Although pσij depends on both the nature of the μ and ν

species of atoms i and j through Eq. (46), the dominance of
the μ atom i over the ν atom j can be demonstrated [58] by
making the geometric mean approximation that

〈iμα|Hσ |jνβ〉 ≈
√

〈iμα|Hσ |jμα〉〈iνβ|Hσ |jνβ〉. (47)

This results in(
spσ

μν

ij

ppσ
μν

ij

)2

≈
∣∣ssσμμ

ij

∣∣ppσνν
ij

ppσ
μμ

ij ppσνν
ij

=
∣∣ssσμμ

ij

∣∣
ppσ

μμ

ij

(48)

and (
ssσ

μν

ij

psσ
μν

ij

)2

≈
∣∣ssσμμ

ij

∣∣∣∣ssσ νν
ij

∣∣
ppσ

μμ

ij

∣∣ssσ νν
ij

∣∣ =
∣∣ssσμμ

ij

∣∣
ppσ

μμ

ij

. (49)

Therefore, using Eq. (33),

p
μν

σij ≈ ppσ
μμ

ij∣∣ssσμμ

ij

∣∣ + ppσ
μμ

ij

= p
μμ

σij . (50)

Similarly,

p
νμ

σij ≈ ppσνν
ij∣∣ssσ νν

ij

∣∣ + ppσνν
ij

= pνν
σ ij . (51)
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We will see later (compare Figs. 3, 8, and 13) that this is an
approximation that is confirmed by our data. Put differently,
for example, the hybridization character on each silicon atom
is very similar in the elemental diamond and the binary β

ground state structures.
A different simplification to Eq. (46) would be if all the

TB bond integrals displayed the same distance dependence,
so that the ratio of any two bond integrals became distance
invariant, thereby leading to constant values of pσij .

The distance dependence of the reduced TB parameters
βσij and βπij are given by GSP functions with na = nb that
we cut off as described in Sec. II A 2. The first nearest-neighbor
distance dependence of the reduced TB parameters pσij will
be shown to be well fitted by the exponential function [59]

pσ (R) = 1/[1 + c exp (−γR)]. (52)

C. Computational details

The computational details that we will use in the next three
sections to derive reduced TB parameters for elemental silicon
and nitrogen and binary silicon nitride systems are as follows.

The DFT reference binding energies are calculated with
the VASP code [60,61] using the local density approximation
(LDA) [62,63] to the exchange-correlation energy functional
and the projector augmented-wave method (PAW) [64,65]. For
each calculation, a sufficiently large plane-wave cutoff energy
and a dense Monkhorst-Pack [66,67] type k-point mesh ensure
numerical convergence for formation energy differences to
within 5 meV/atom. We carry out the TB calculations using
the bond-order potential from Oxford (BOPfox [68]) package,
which solves the tight-binding secular equation in k space
and calculates the local DOS using the tetrahedron k-space
technique with Blöchl corrections [69].

The TB parameters are obtained as follows. For both, bond
integral and repulsive functions, we choose the values for
the parameters R0, Rc, Rtail, and Rcut as follows. R0 is set
to the respective ground state equilibrium nearest neighbor
distance (silicon diamond, nitrogen dimer, and silicon nitride
β). Rc is set equidistantly between respective equilibrium first
and second nearest neighbor distances. For nitrogen, Rc is
set to half the value of the first and second nearest neighbor
distances in the diamond structure. Rtail is set to where bond
integral data are available for equilibrium structures, and Rcut,
which defines the range of the model, is set to where the
projected bond integral data are small. �Uatom,i in Eq. (21)
is chosen to be the magnitude of the free atom magnetic
energy calculated with DFT. The parameters related to the
bond integrals, β0, na , and nc in Eqs. (13) and (20), are fitted
to DFT projected orthogonal TB bond integrals of equilibrium
structures. The parameters related to the repulsive function in
Eqs. (13) and (18), �0, na , nb, and nc, are pairwise fitting
parameters, and nd,i in Eq. (17) is an atomic fitting parameter.
These repulsive parameters are varied to reproduce the DFT
reference binding energies. �0, na for bond integrals, nb, and
nc are let to vary freely but are constrained to be positive to give
smoothly decaying GSP functions. β0 is treated similarly, but
constrained to be negative. na of the repulsive function and nd

are used to affect stabilization over different nearest neighbor
distances and coordination numbers, respectively. The fitting

FIG. 2. (Color online) Two-center orthogonal TB Si-Si bond
integrals obtained from DFT via projection scheme for different
structures as a function of interatomic distance R. Equilibrium data
are displayed with enlarged symbols. Dashed vertical lines are the first
and second nearest neighbor distances in the ground state equilibrium
diamond structure, R


1 and R

2 .

parameters related to the repulsive function �0, nb, and nc are
varied by minimizing the least squares error between DFT and
TB binding energies employing a downhill simplex method.

III. REDUCED TB MODEL FOR SILICON

A. Bond integrals

The two-center orthogonal TB bond integrals obtained from
DFT via the projection scheme described in Sec. II A 1 for
different structures of silicon are shown in Fig. 2. In this
figure and in the following, the data for equilibrium structures
are displayed with enlarged symbols. As one can see from
the figure, the data are distance and structure dependent. In
addition, screening of the bond integrals in the second nearest
neighbors data can be observed. This screening is especially
visible for the bcc structure, and can be attributed to the fact that
the bonding between a pair of second nearest neighbor atoms
is weakened by the first nearest neighbor atoms surrounding
the bond [70].

Figure 3 shows the reduced TB Si-Si parameters βσ , βπ ,
and pσ that are calculated from the data in Fig. 2 through
Eqs. (45) and (46). Similar to the data in Fig. 2, the data for
the reduced TB parameters βσ , βπ , and pσ are distance and
structure dependent. The data for βπ falls off to zero at shorter
values for R than the data for βσ . This can be attributed to the
relatively short range of π bonds compared to σ bonds.

The functions βσ (R), βπ (R), and pσ (R) in Fig. 3 are fitted
to equilibrium data points and cut off smoothly as described
in Sec. II C. The cutoff is typically between first and second
nearest neighbors of the ground state structure. In cases of
steep slopes such as βπ (Rtail) in Fig. 3 a polynomial cutoff
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FIG. 3. (Color online) Reduced TB Si-Si parameters calculated
from projected bond integrals in Fig. 2 for different structures as a
function of interatomic distance R. Equilibrium data are displayed
with enlarged symbols. Dashed vertical lines are the first and second
nearest neighbor distances in the ground state equilibrium diamond
structure, R


1 and R

2 . The vertical dotted line marks Rtail.

function of degree three may lead to sign changes, and hence
to a nonsmooth decay of the reduced TB parameters. However,
a smooth distance dependence of the reduced TB parameters
is essential for calculations of forces of nonequilibrium
structures, for example in molecular dynamics simulations.
The cutoff function we chose is given in Eq. (14). This function
substitutes the original function over a range where the original
function is not fitted, and, in contrast to a polynomial as in
Xu’s carbon model [71] and Kwon’s silicon model [72], never
changes sign.

Generally, we aim to approximate each data set with a single
function. In Fig. 3 the data for βσ are relatively structure
independent unlike the individual ssσ and ppσ curves in
Fig. 2 and the data are well reproduced by a single function. In
addition, the function βσ (R) reproduces the distant-dependent
gradients of all structures well. One exception is the screened

TABLE I. Reduced TB parameters for silicon-silicon (Si-Si),
nitrogen-nitrogen (N-N), and silicon-nitrogen (Si-N) interactions.

Si-Si N-N Si-N (N-Si)

β0,σ (eV) −5.643 −21.640 −10.183
β0,π (eV) −1.290 −5.015 −2.347
R0 (Å) 2.333 1.103 1.671
Rc (Å) 3.071 2.335 2.212
na,σ 1.840 1.551 0.792
na,π 4.915 2.339 1.712
nc,σ 1.080 2.937 5.005
nc,π 11.552 5.382 9.009
Rtail (Å) 2.687 2.170 2.205
Rcut (Å) 4.200 2.750 3.500
c 0.333 0.976 0.588 (1.315)
γ (1/Å) 0.000 0.000 0.000 (0.000)

data of the second nearest neighbors of the bcc structure,
which are equivalent to the screening effect inherent in the
projected data in Fig. 2. Even though the data for βπ are more
structure dependent, the gradients of the individual structures
are still fairly well reproduced by a single function. The
most pronounced structure dependence can be seen in the
pσ data where the nonequilibrium data and the gradients of
the different structures are less well reproduced by a single
function. Hence, a fit to the pσ equilibrium data, as shown
in Fig. 3, might not be the best solution as we will find in
Sec. III B. The gradients of the individual structures are given
in the first author’s Ph.D. thesis [59].

The parameters of the functions representing the reduced
TB parameters for the silicon TB model are given in Table I.
In addition to the bond integrals, on-site levels are required
for the reduced TB model. In this study we employ the on-site
levels from Harrison [73] which are given in Table II.

Figure 4 shows the density of states of silicon diamond
for DFT, projected TB, and reduced TB. For plotting reasons,
all density of states are shifted along the energy scale such
that the Fermi energy is at 0 eV. The features of the DFT
density of states are qualitatively well reproduced by projected
TB and reduced TB. Furthermore, the individual s and p

contributions of the projected TB and reduced TB models
reproduce the distinct sp hybridization. Whereas our current
theory guarantees that the total bandwidth is conserved when
going from projected TB to reduced TB, the conservation of
the valence band width depends on how well reduced TB
approximates the individual bond integrals for each system
(see Ref. [59]).

Figure 5 displays the silicon σ and π bond orders for a first
nearest neighbor bond with respect to interatomic distance in
the graphene, diamond, simple cubic (sc), and face centered
cubic (fcc) structures, which have coordination numbers of 3,

TABLE II. On-site levels for silicon (Si) and nitrogen (N) [73].

Si N

Ep (eV) −7.59 −13.84
Es (eV) −14.79 −26.22
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FIG. 4. s and p contributions to the average total density of states
of the silicon diamond structure for DFT, projected TB, and reduced
TB. For the calculation of the projected TB DOS the same on-site
levels were used as for the calculation of the reduced TB DOS.

4, 6, and 12, respectively. We see that the graphene structure
has a saturated σ bond together with a saturated and an
unsaturated π bond corresponding to whether it lies out of
or in the plane. The cubic diamond structure has a saturated σ

bond and two degenerate unsaturated π bonds. Furthermore,
the σ bond of the simple cubic structure is less saturated than

FIG. 5. σ and π bond orders for a first nearest neighbor bond
in the silicon (a) graphene, (b) diamond, (c) simple cubic (sc), and
(d) face centered cubic (fcc) structures as a function of interatomic
distance R.

FIG. 6. (Color online) DFT and reduced TB (LCN) binding
energy curves for different silicon structures as a function of nearest
neighbor interatomic distance R. The number of nearest neighbors is
given in parentheses for each structure.

the σ bond of the diamond structure, and the σ bond of the face
centered cubic structure is the least saturated σ bond. Similar
to the two π bonds of the diamond structure, the two π bonds
of the simple cubic and the face centered cubic structures are
perfectly degenerate. In summary, the total bond order varies
inversely with the coordination number. This is in agreement
with the chemistry of the investigated structure types [74].

B. Binding energy curves

Having the information for calculating the TB electronic
structure, the bond and promotion energies can be computed.
However, to calculate total binding energies, a repulsive
function [Eq. (17)] needs to be determined. Our particular
procedure is described in Sec. II C. Figure 6 displays the re-
sulting reduced TB (LCN) binding energy curves for different
silicon structures in the right-hand panel. As a comparison, the
DFT binding energy curves are shown in the left-hand panel
of Fig. 6. The resultant parameters of the repulsive function
for the silicon reduced TB model are given in Table III. The
repulsive embedding exponent nd and the Yukawa parameters
are given in Tables IV and V, respectively. The shift in the
nonmagnetic compared to the magnetic reference energy of
the free atom �Uatom is given in Table IV.

1. DFT binding energy curves

The binding energy curves displayed in Fig. 6 are calculated
with open and close packed structures spanning a wide range
of coordination. A table of all silicon structures used as a
binding energy benchmark together with their equilibrium
binding energies is attached as Supplemental Material [75].
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TABLE III. Repulsive parameters for silicon-silicon (Si-Si),
nitrogen-nitrogen (N-N), and silicon-nitrogen (Si-N) interactions.

Si-Si N-N Si-N

�0 (eV) 5.358 18.442 7.242
R0 (Å) 2.333 1.103 1.671
Rc (Å) 3.071 2.335 2.212
na 5.000 3.328 0.010
nb 2.210 4.017 2.456
nc 4.170 5.709 2.890
Rtail (Å) 2.687 2.170 1.856
Rcut (Å) 4.200 2.750 4.200

These benchmark structures were used for each trial reduced
TB model to compare their equilibrium reduced TB binding
energies with their DFT reference binding energies.

The DFT binding energy curves in Fig. 6 show the diamond
structure having the lowest binding energy, as expected. The
lowest metastable structure is the clathrate structure. This
structure has four nearest neighbors like diamond, but the
bond lengths and angles are slightly distorted compared to
those in diamond. The clathrate structure for which the data
are given has 34 atoms in its unit cell. In addition, we tested a
clathrate structure with 46 atoms per unit cell, which is found
to have a slightly higher binding energy than clathrate 34 (DFT:
0.0073 eV/atom, reduced TB: 0.021 eV/atom). The third
lowest structure is the bc8 structure. This is a body centered
cubic structure with eight atoms in the basis, in which each
atom has four nearest neighbors which are divided into one
first and three second nearest neighbors. β-Sn is the fourth
lowest structure in Fig. 6. This structure can be viewed as
sixfold coordinated, because of a distinct gap between the two
second nearest neighbors and the four third nearest neighbors.
From the DFT binding energy data the ordering diamond →
clathrate → bc8 → β-Sn is observed.

2. Reduced TB binding energy curves

As shown in Fig. 3 the function for pσ does not reproduce
the gradients of the reduced TB data very well. This means
that choosing a distance dependent function for pσ might not
be the best choice. In fact, we found that it leads to poor
fits of the binding energy curves in practice (see Ref. [59]).
Instead we will see that setting pσ to the equilibrium ground
state value provides good fits to the binding energy curves.
Therefore, pσ will be chosen to be a constant by setting the
parameter γ in Eq. (52) to zero (see Table I). This approach
also helps us to destabilize the clathrate structure compared
to the diamond structure without changing the bond integrals

TABLE IV. Embedding exponent nd and shift in the nonmagnetic
DFT free atom reference energy �Uatom for silicon (Si) and nitrogen
(N).

Si N

nd 0.800 1.000
�Uatom (eV) 0.611 2.888

TABLE V. Yukawa parameters.

Si-Si Si-N

ac (eV) 185.000 10.444
bc 4.500 5.794
cc (1/Å) 0.000 −0.047
Rtail,c (Å) 1.560 1.200
Rcut,c (Å) 1.916 1.550

from having a smooth decaying character. As one can see from
Fig. 6, the diamond structure is predicted to be the ground
state structure by the reduced TB model. Furthermore, the
ordering diamond → clathrate → bc8 → β-Sn predicted by
the DFT binding energy data is reproduced by the reduced TB
model. The energy differences between the diamond ground
state and the bc8 and β-Sn structure are significantly larger
than in DFT, such that we expect much larger pressures are
necessary for a structural phase transformation compared to
DFT or experiment.

In addition, the low coordinated structures dimer, linear
chain (lchain), and graphene are all fairly well reproduced. Due
to the hard core Yukawa potential, the binding energy of the
linear chain shows a global minimum well above the diamond
structure at shorter interatomic distances. The close packed
structures sh, bcc, and fcc are slightly too stable compared to
the DFT data. This is not generally an issue with the reduced
TB methodology, but rather due to the difficulty of fitting the
binding energy curves with transferable TB parameters over
such a wide range of coordination.

3. Equilibrium properties of diamond ground state

Table VI gives equilibrium properties of silicon diamond
for reduced TB (LCN) and DFT. The column named reduced
TB shows the results of the reduced TB (LCN) model from
this study, and the column named DFT shows the results of
the DFT calculations performed in this study using LDA. The
reduced TB equilibrium binding energy, equilibrium volume,
and bulk modulus are in good agreement with the DFT results.
In addition, the elastic constants are fairly well reproduced.

TABLE VI. Equilibrium properties of silicon diamond for
reduced TB (LCN) and DFT. Equilibrium binding energy (U ),
equilibrium volume (V ), and bulk modulus (B) are obtained from
Birch-Murnaghan equation of state fits to binding energies. Units are
U (eV/atom), V (Å3), B and C (GPa).

Reduced TB DFT Expt. TBa

U −5.348 −5.348 −4.63b −4.620a

V 19.760 19.742 20.026c 19.999a

B 94 94 100c 100a

C ′ 63 48.5 51d,e 50.4a,e

C44 111 76 80d 75a

aReference [76].
bReference [77].
cReference [78].
dReference [79].
eCalculated from other elastic constants.
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TABLE VII. Point defect formation energies in silicon diamond (eV). The numbers in parentheses in the top line are the number of atoms
per perfect unit cell, whereas the pair of numbers in parentheses in the DFT column from Ref. [80] are LDA and GGA values, respectively.

Reduced TB (128) DFT (128) DFT [80] (64) TB [76] (144)

Unrelaxed Relaxed Unrelaxed Relaxed Relaxed Unrelaxed Relaxed

Vacancy 7.526 5.492 3.795 3.577 (a, a) 3.915 3.708
Split-(110) 7.743 5.327 4.949 3.340 (3.31, 3.84) a 3.215
Hexagonal 11.839 4.862 5.961 3.378 (3.31, 3.80) 4.733 3.814
Tetrahedral 6.951 4.862 3.772 3.339 (3.43, 4.07) 4.067 3.600

aNot available.

Experimental data and a TB model by Lenosky et al. [76]
are also included for comparison. We have chosen the model
by Lenosky et al. from all the different TB fits as the most
comprehensive fit to silicon diamond properties. The major
difference between the Lenosky et al. and our approach is that
Lenosky et al. fitted to the equilibrium properties of silicon
diamond, including elastic constants, phonon frequencies,
Grüneisen parameters, and point defect energies, whereas we
only optimized fitting the binding energy curves. The effect of
the different approaches can be seen by comparing the binding
energies of the reduced TB and DFT columns with the binding
energies of the experimental and Lenosky et al. columns.

In addition to equilibrium properties, we test the silicon
reduced TB model for point defects. Table VII gives point de-
fect formation energies in silicon. The energies are calculated
using a silicon box of 128 atoms from which the defected
structures are generated. This means the vacancy structure
contains 127 atoms and the split-(110), hexagonal, and
tetrahedral structures contain 129 atoms. The unrelaxed results
are obtained from the starting configuration with the atoms
being fixed with respect to the internal degrees of freedom.
The relaxed results are obtained from lifting this constraint
and by starting from the unrelaxed positions. The reduced
TB model gives relatively high energies for the unrelaxed
structures due to short interatomic distances generated by
the initial configuration of the interstitial atoms where the
Yukawa-type core repulsion is effective. Overall, the reduced
TB model overestimates the relaxed point defect formation
energies relative to DFT. Furthermore, the reduced TB model
predicts an unstable hexagonal defect which relaxes into a
tetrahedral defect configuration. However, despite the unstable
hexagonal defect predicted by reduced TB, the energetic defect
ordering tetrahedral → split-(110) → vacancy as predicted
by our DFT calculations is reproduced by our reduced TB
model.

IV. REDUCED TB MODEL FOR NITROGEN

A. Bond integrals

Figure 7 shows the projected two-center orthogonal TB
bond integrals obtained from DFT for different structures
of nitrogen. Again, the data for equilibrium structures are
displayed with enlarged symbols. Compared to the silicon
data in Fig. 2, the data for nitrogen are less structure
dependent.

The nitrogen reduced TB parameters are displayed in
Fig. 8. Similar to the two-center orthogonal TB bond integrals,

the reduced TB parameters for nitrogen are less structure
dependent than those displayed for silicon in Fig. 3. As
expected, the βπ data are short ranged compared to the βσ

data. The functions βσ (R), βπ (R), and pσ (R) are fitted in a
similar fashion to that described for silicon.

Since the βσ and βπ data for nitrogen in Fig. 8 are
less structure dependent than that for silicon, it can be
better approximated by single distance dependent functions.
Overall, the functions βσ (R) and βπ (R) reproduce the data
values and distant-dependent gradients well. Compared to
the βσ and βπ data, the nitrogen pσ data are more structure
dependent and the gradients of the individual structures are
only poorly reproduced. Again, for the same reasons given for
the silicon model, we set pσ (R) as a constant. For nitrogen,
we extrapolated the pσ (R) function to the dimer equilibrium
distance and chose that value. This approach seems to be
the best choice to achieve the correct relative ordering of
metastable structures.

FIG. 7. (Color online) Two-center orthogonal TB N-N bond inte-
grals obtained from DFT via projection scheme for different structures
as a function of interatomic distance R. Equilibrium data are displayed
with enlarged symbols. Dashed vertical lines are, from left to right,
the first nearest neighbor distance in the ground state equilibrium
dimer Rdimer

1 , and the first and second nearest neighbor distances in
the equilibrium diamond structure R


1 and R

2 .
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FIG. 8. (Color online) Reduced TB N-N parameters calculated
from projected bond integrals in Fig. 7 for different structures as a
function of interatomic distance R. Equilibrium data are displayed
with enlarged symbols. Dashed vertical lines are, from left to right,
the first nearest neighbor distance in the ground state equilibrium
dimer Rdimer

1 , and the first and second nearest neighbor distances in
the equilibrium diamond structure R


1 and R

2 . The vertical dotted line

marks Rtail.

The parameters of the functions representing the reduced
TB parameters for the nitrogen reduced TB model are given
in Table I and the on-site levels are given in Table II.

The density of states of the nitrogen cubic gauche (cg)
structure for DFT, projected TB, and reduced TB is shown
in Fig. 9. The features of the DFT density of states are well
reproduced by projected TB and reduced TB. Again, projected
TB and reduced TB reproduce the sp-hybridization feature of
the DFT density of states well.

The distance dependence of the nearest neighbor σ and
π bond orders of nitrogen are displayed in Fig. 10 for
the dimer, cubic gauche (cg), diamond, and simple cubic
(sc) structures with coordination numbers of 1, 3, 4, and
6, respectively. The nitrogen dimer has a saturated σ bond
and two saturated π bonds. The cubic gauche structure has a

FIG. 9. s and p contributions to the average total density of states
of the nitrogen cubic gauche (cg) structure for DFT, projected TB,
and reduced TB. For the calculation of the projected TB DOS the
same on-site levels were used as for the calculation of the reduced
TB DOS.

saturated σ and two unsaturated π bonds. This is equivalent
to three single bonds and a lone pair per atom. The diamond
structure has one half saturated σ and two unsaturated π bonds.
The character of the ij bond in the simple cubic structure
is similar to the character of the ij bond in the diamond

FIG. 10. σ and π bond orders for a first nearest neighbor bond
in the nitrogen (a) dimer, (b) cubic gauche (cg), (c) diamond, and (d)
simple cubic (sc) structures as a function of interatomic distance R.
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FIG. 11. (Color online) DFT and reduced TB (LCN) binding
energy curves for different nitrogen structures as a function of nearest
neighbor interatomic distance R. The number of nearest neighbors is
given in parentheses for each structure.

structure, although both σ and π bonds in the sc structure
are less saturated. Similar to the bond-order value of different
silicon structures in Fig. 5, the bond-order value of different
nitrogen structures varies inversely with the coordination
number.

B. Binding energy curves

To be able to calculate binding energies for the nitrogen re-
duced TB model, a repulsive function is obtained as discussed
previously for silicon. Figure 11 shows the reduced TB (LCN)
binding energy curves for different nitrogen structures in the
right-hand panel. As a comparison, the DFT binding energy
curves are given in the left-hand panel. The parameters of the
repulsive function for the nitrogen model are given in Table III.
The embedding exponent, and the shift in the nonmagnetic
DFT free atom reference energy are given in Table IV. For
the nitrogen reduced TB (LCN) model no Yukawa-type core
repulsion is used.

1. DFT binding energy curves

As expected, the DFT binding energy curves for nitrogen
show that the dimer structure has the lowest binding energy.
The lowest metastable structure is the threefold coordinated
cubic gauche (cg) structure. This structure is a body centered
cubic structure with four atoms per primitive cell. The second
lowest metastable structure is the armchair chain (achain)
structure with bond angles chosen to be 135 deg. The third
lowest metastable structure is the zigzag chain (zchain)
structure with bond angles of 90 deg. Even though this

TABLE VIII. Equilibrium properties of the nitrogen dimer
structure for reduced TB (LCN), DFT, and experiment. Equilibrium
binding energy (U ), equilibrium nearest neighbor distance (NND),
and frequency ν are obtained from Birch-Murnaghan equation of
state fits to binding energies. Units are U (eV/atom), NND (Å), ν

(cm−1). The pair of numbers in parentheses in the DFT column from
Ref. [81] are LDA and GGA values, respectively.

Reduced TB DFT Expt. DFT [81]

U −5.872 −5.860 −4.903a (−5.666, −5.279)
NND 1.099 1.103 1.10a, 1.112b, 1.098c (1.107, 1.113)
ν 2610 2615 2359c, 2360d, 2361e (2465, 2351)

aReference [82].
bReference [83].
cReference [84].
dReference [85].
eReference [81].

structure is a chainlike structure, it is fourfold coordinated
due to the arrangement of the atoms resulting from the 90 deg
bond angles. The fourth most stable metastable structure is
the linear chain (lchain) structure. In this structure every atom
has two nearest neighbors and it is equivalent to the zchain
structure, but with bond angles of 180 deg. Overall, the DFT
binding energy curves in Fig. 11 agree very well with Figs. 1
and 3 of Mailhiot et al. [86].

2. Reduced TB binding energy curves

As one can see from Fig. 11, the dimer structure is predicted
to be the ground state structure by the reduced TB model.
Moreover, the ordering dimer → cg → achain → zchain
predicted by the DFT binding energy data is reproduced
by the reduced TB model. In addition, the crossing of the
diamond and the sc structures is reproduced. Furthermore, the
ordering of the close packed structures sh → bcc → fcc is also
reproduced by the reduced TB model. A table of nitrogen
structures used as a binding energy benchmark with their
binding energies is attached as Supplemental Material [75].

3. Equilibrium properties of dimer ground state

Table VIII gives equilibrium properties of the nitrogen
dimer structure for reduced TB (LCN) and DFT calculated
in this study. Experimental and DFT results from other studies
are also included for comparison. Overall, the equilibrium
properties of the dimer ground state predicted by the reduced
TB model agree very well with the DFT calculations and
results from other studies.

V. REDUCED TB MODEL FOR SILICON NITRIDE

In Secs. III and IV we introduced the elemental reduced TB
(LCN) models for silicon and nitrogen within the constraint
of local charge neutrality (LCN). We will use these elemental
bond integrals and repulsive functions in the binary silicon
nitride model without further adjustments. However, for the
parametrization of the binary silicon nitride system, charge
transfer (CT) is introduced as described in Sec. II A, so that
all the silicon nitride figures correspond to the model allowing
CT.
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FIG. 12. (Color online) Two-center orthogonal TB Si-N bond
integrals obtained from DFT via projection scheme for different
structures as a function of interatomic distance R. Equilibrium data
are displayed with enlarged symbols. Dashed vertical lines are the first
and second nearest neighbor distances in the ground state equilibrium
β structure, R

β

1 and R
β

2 . Note that the psσ data are multiplied by −1
to improve the comparability to the spσ data.

A. Bond integrals

The two-center orthogonal TB Si-N bond integrals obtained
from DFT for different structures are shown in Fig. 12. The
data for equilibrium structures are displayed with enlarged
symbols. Compared to the values for silicon and nitrogen, the
values for silicon nitride are moderately structure dependent.
Screening of second nearest neighbors can be observed in all
the data.

Figure 13 displays the reduced TB parameters calculated
from the data in Fig. 12. The first nearest neighbor values for
pNSi

σ are smaller than those for pSiN
σ . This difference is obvious

when considering the definition of pSiN
σ and pNSi

σ according to
Eq. (46) and the different behavior of ssσ SiN, ppσ SiN, spσ SiN,
psσ SiN, and ppπSiN in Fig. 12.

The functions βσ (R), βπ (R), and pσ (R) in Fig. 13 are fitted
to equilibrium data points, with the same considerations as
for the elemental models. The functions βσ (R) and βπ (R)
reproduce the data as well as the gradients of the individual
structures fairly well. For the same reason as given for the
elemental models, pSiN

σ (R) and pNSi
σ (R) are chosen to be

constants.

FIG. 13. (Color online) Reduced TB Si-N parameters calculated
from projected bond integrals in Fig. 12 for different structures as a
function of interatomic distance R. Equilibrium data are displayed
with enlarged symbols. Dashed vertical lines are the first and second
nearest neighbor distances in the ground state equilibrium β structure,
R

β

1 and R
β

2 . The vertical dotted line marks Rtail.

The parameters of the functions representing the reduced
TB parameters for the silicon nitride TB model are given
in Table I. The species dependent atomic on-site Coulomb
integrals for silicon and nitrogen required for the inclusion of
charge transfer are given in Table IX.

Figure 14 shows the average total density of states of
the silicon nitride β structure for DFT, projected TB, and
reduced TB. The local s and p contributions of silicon and
nitrogen to the average total density of states are also displayed.
The features of the DFT density of states are qualitatively
reproduced by projected TB and reduced TB.

The nearest neighbor σ and π bond orders of silicon nitride
in the β structure are given by �σ = 0.84, �π+ = 0.27, and

TABLE IX. Species dependent atomic on-site Coulomb integrals
for silicon (Si) and nitrogen (N) [55].

Si N

J (eV/e2) 7.095 11.919
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FIG. 14. (Color online) Local s and p contributions of silicon and
nitrogen to the average total density of states of the silicon nitride β

structure for DFT, projected TB, and reduced TB. For the calculation
of the projected TB DOS the same on-site levels were used as for the
calculation of the reduced TB DOS.

�π− = 0.18. In the β structure each silicon atom is surrounded
by four neighboring nitrogen atoms and each nitrogen atom
is surrounded by three neighboring silicon atoms. Therefore,
each silicon atom provides one valence electron to each of the
four silicon-nitrogen bonds around silicon and each nitrogen
atom contributes five valence electrons to the three silicon-
nitrogen bonds around nitrogen.

The specific values for the difference in the charge
compared to the respective free atoms in the β equilibrium
structure are in our study −1.314 electrons per atom for
silicon, and +0.990 and +0.973 electrons per atom for the
two nitrogen sites N1 and N2, respectively. These values agree
very well with the values from the study by Zhao et al. [87]
who investigated the electronic structure and charge transfer at
the silicon-silicon nitride interface using LDA and calculated
an average of −1.24 electrons per silicon atom and +0.93
electrons per nitrogen atom for the α and β structures.

B. Heat of formation curves

Figure 15 shows the reduced TB (CT) heat of formation
curves for different silicon nitride structures in the right-hand
panel. As a comparison, the DFT heat of formation curves are
displayed in the left-hand panel of Fig. 15. The parameters
of the repulsive function for the silicon nitride reduced TB
(CT) model are given in Table III. The elemental embedding
exponents, the elemental shifts in the nonmagnetic DFT free
atom reference energy, and the binary Yukawa parameters are
given in Tables IV and V.

FIG. 15. (Color online) DFT and reduced TB (CT) heat of for-
mation curves for different silicon nitride structures as a function
of nearest neighbor interatomic distance R. The number of nearest
neighbors is given in parentheses for each structure.

1. DFT heat of formation curves

The DFT heat of formation curves in Fig. 15 show the
Si3N4 β phase as the ground state structure. The second lowest
structure is α with a 0.0025 eV/atom higher equilibrium heat
of formation value. This value is consistent with the marginal
difference in experimental heat of formation values between
these two polytypes [88], and is responsible for the ability to
experimentally achieve these two hexagonal crystal structures,
which differ only by their stacking sequence, with different
processing routes [89]. For both structures the basic building
block is a silicon-nitrogen tetrahedron with a silicon atom at
its center and four nitrogen atoms at each vertex. All these
SiN4 tetrahedra are linked by nitrogen atoms which are each
common to three tetrahedra. As a result each silicon atom has
four nitrogen atoms as nearest neighbors and each nitrogen
atom has three silicon atoms as nearest neighbors. Therefore,
the notation β (4,3) was chosen, where 4 is the number of
nearest neighbors of each silicon atom and 3 is the number
of nearest neighbors of each nitrogen atom. The third lowest
structure predicted by DFT is the cubic γ structure [90] and the
fourth lowest structure is the willemite-II (wII) structure [91].
Both structures have the same chemical composition as the
β and α structures. In the γ structure, two of the six silicon
atoms have four nearest neighbors, and the other four silicon
atoms have six nearest neighbors. All eight nitrogen atoms
have four nearest neighbors. Therefore, we chose the notation
γ (4(2)/6(4),4(8)). The SiN phases B1, B2, B3, and B4 are the
structures NaCl, CsCl, ZnS, and wurtzite, respectively. From
the DFT heat of formation curves the ordering β → α → γ

→ wII → B3 → B4 → B1 → B2 can be observed.

054109-14



REDUCED TIGHT-BINDING MODELS FOR ELEMENTAL Si . . . PHYSICAL REVIEW B 91, 054109 (2015)

FIG. 16. (Color online) Heat of formation for different silicon
nitride structures for DFT, reduced TB (LCN), and reduced TB (CT),
versus nitrogen concentration.

2. Reduced TB heat of formation curves

As one can see from Fig. 15, the β structure is predicted to
be the ground state structure by the reduced TB (CT) model.
Furthermore, the ordering of the different SiN phases is in
good agreement with the DFT results. Especially, the ordering
over similar nearest neighbor distances and composition of
β → α → wII predicted by the DFT heat of formation data is
reproduced by the reduced TB model. In addition, the ordering
of the high heat of formation structures, namely B3 → B4
→ B1 → B2 is being reproduced. The reduced TB model
predicts heat of formation values for B1 and B2 that are out
of the scale of the right-hand panel of Fig. 15. See Table III in
the Supplemental Material [75] for a comparison of the heat
of formation values of the silicon nitride structures used as a
benchmark.

The heat of formation values of these silicon nitride
benchmark structures for DFT, reduced TB (LCN), and
reduced TB (CT), versus nitrogen concentration are shown
in Fig. 16. All three methods reproduce the fact that
Si3N4 is the only well-established stoichiometric com-
pound found experimentally in the silicon nitride binary
system [92].

Figure 17 shows the binding energy contributions according
to Eq. (22) for different silicon nitride structures for the
reduced TB (CT) model. By considering the individual
contributions to the binding energy for the structures β,
α, and wII, the driving factors for the relative stability
can be examined. For example, the ordering β → α can
be mainly attributed to the bond energy. At β equilibrium
nearest neighbor distance, the bond energy contributes to the
stabilization of the β structure compared to the α structure
with 0.420 eV/atom. Furthermore, a marginal stabilization of
the β structure compared to the α structure can be observed in
the U intra

ion and U inter
ion energy contributions, which both have a

stabilization effect of 0.004 eV/atom. The fact that the reduced
TB model is able to destabilize the wII structure compared to
the β and α structures can be mainly attributed to the repulsive
energy, with 0.318 eV/atom being the difference in repulsive

FIG. 17. (Color online) Binding energy contributions for differ-
ent silicon nitride structures for reduced TB (CT) as a function of
interatomic distance R.

energy between the wII and the β structure. In addition, U inter
ion

has a tiny effect with 0.022 eV/atom, too. Even though our
model reproduces the fact that charge transfer is present in
silicon nitride, the contributions U intra

ion and U inter
ion to the binding

energy seem to have only a minor effect on the relative ordering
β → α → wII.

3. Equilibrium properties of β phase ground state

Table X gives equilibrium properties of the silicon nitride
β structure for reduced TB (CT) and DFT. The reduced TB
heat of formation, equilibrium volume, and bulk modulus are
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TABLE X. Equilibrium properties of the silicon nitride β structure for reduced TB (CT) and DFT. Equilibrium heat of formation (�H ),
equilibrium volume (V ), and bulk modulus (B) are obtained from Birch-Murnaghan equation of state fits to binding energies. Units are �H

(eV/atom), V (Å3), B and C (GPa). The FF column displays values of the force field at 0 K and B is calculated from other elastic constants.

Reduced TB DFT Expt. DFT FF [93]

�H −1.487 −1.483 −1.261a b b
V 10.331 10.290 (10.423, 10.410, 10.423, 10.400)c (10.647, 10.303)d, 10.302e, 10.619f 9.978, 10.429, 10.454
B 303 254 273g 270e, 234f 285
C11 410 423 343h 409e, 413f 448
C12 191i 200i 136h 271e, 198f 215
C13 91i 117i 120h 201e, 116f 165
C33 591 553 600h 604e, 544f 580
C44 93 99 124h 108e, 99f 115

aReference [88].
bNot available.
cReference [94].
dReference [95] (GGA, LDA).
eReference [96] method: Orthogonalized linear combination of atomic orbitals (OLCAO) approach based on DFT/LDA.
fReference [41] (GGA).
gReference [97].
hReference [98].
iCalculated from results of C11 − C12 and C11 + C33 − 2C13 deformations.

in good agreement with the DFT results. In addition, the
elastic constants are fairly well reproduced. Experimental data,
DFT results from other studies, and results from force field
calculations are also included for comparison.

To our knowledge, studies of simple point defects in pure
crystalline silicon nitride have not been discussed in the liter-
ature, which may be due to the fact that defects like elemental
bond formation are not found experimentally in stoichiometric
silicon nitride [99]. More frequently found defects include
oxygen [94] and hydrogen [99] contaminations. Therefore,
we test our silicon nitride reduced TB (CT) model for point
defects only to compare with DFT results and not to reproduce
experimental values.

Table XI gives relaxed point defect formation energies in
silicon nitride β (eV) with 112 atoms per perfect unit cell. N1
and N2 correspond to the two different nitrogen atomic sites in
the β structure. Overall, the formation energies calculated with
the reduced TB model are comparable to the values obtained
with DFT.

TABLE XI. Relaxed point defect formation energies in silicon
nitride β (eV) with 112 atoms per perfect unit cell.

Reduced TB (112) DFT (112)

Si vacancy 9.612 10.843
N1 vacancy 6.205 5.692
N2 vacancy 5.991 6.126
Si(N1) antisite 13.892 11.972
Si(N2) antisite 12.000 10.823

VI. CONCLUSIONS

We show that by coarse graining the electronic structure
from density functional theory (DFT) to tight binding (TB) and
with the help of the reduced TB approximation a transferable
model for the silicon nitride system can be developed. Within
this approach the TB bond integrals are obtained directly from
DFT projections which thereby reduces the number of overall
parameters to be fitted. Furthermore, we show that the reduced
TB approximation is not only the theoretical link between the
quantum mechanical DFT and the bond-based BOPs, but, in
addition, provides a decent description of the silicon nitride
system. The binding energies, heats of formation, elastic
constants, and defect energies calculated with our reduced TB
models are in reasonable agreement with DFT calculations
and experimental values. In addition, applying bond-order
potential (BOP) theory, an analytic interatomic potential may
be derived directly from this reduced TB description of the
electronic structure. The parameters from the reduced TB
model are suitable as input for the individual BOP energy
contributions. Preliminary results for silicon are given in the
first author’s Ph.D. thesis [59].
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Elsässer, B. Meyer, R. Drautz, and D. G. Pettifor, Phys. Rev. B
84, 155120 (2011).

[53] L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys. Lett.
9, 701 (1989).

[54] M. Aoki, D. Nguyen-Manh, D. G. Pettifor, and V. Vitek,
Prog. Mater. Sci. 52, 154 (2007).
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