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For graphene interacting with a few-fs intense optical pulse, we predict unique and rich behavior dramatically
different from three-dimensional solids. Quantum electron dynamics is shown to be coherent but highly
nonadiabatic and effectively irreversible due to strong dephasing. Electron distribution in reciprocal space
exhibits hot spots at the Dirac points and oscillations whose period is determined by nonlocality of electron
response and whose number is proportional to the field amplitude. The optical pulse causes net charge transfer
in the plane pf graphene in the direction of the instantaneous field maximum at relatively low fields and in the
opposite direction at high fields. These phenomena promise ultrafast optoelectronic applications with petahertz
bandwidth.
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I. INTRODUCTION

Interactions of strong fields with solids have been studied
from the onset of quantum mechanics [1–17]. Interest in this
field has grown due to availability of ultrashort pulses with
fields comparable to the internal fields in solids [6,10,18].
Such fields excite reversible electron dynamics and strongly
modify properties of the solid within optical cycle, i.e., on the
attosecond time scale [15–17]. Here we show theoretically
that, in contrast, the strong-field interactions of graphene
are highly nonadiabatic and irreversible causing significant
electron transfer from the valence band resulting in high
population of the conduction band, which persists after the
pulse’s end. These interactions result in ultrafast current whose
density is orders of magnitude higher than that in dielectrics or
metals [15,19]. Though graphene in the absence of an external
field has a zero band gap (it is a semimetal), it does not
necessarily mean that the corresponding electron dynamics
is irreversible, since in an electric field electrons drift through
the entire Brillouin zone, which introduces an effective band
offset and a band gap ∼8 eV [20]. In this case, similar
to dielectrics [16,17], one should have expected reversible
dynamics. The extraordinary extreme nonlinear properties of
graphene and the irreversibility in it are related to its unique
electronic structure causing the singularity of the interband
coupling in the vicinity of the Dirac points. It is this singularity
that results in the irreversible electron dynamics in graphene.

We consider interaction of ultrashort laser pulses with
graphene monolayer [21–23]. The purely two dimensional
electron dynamics in graphene is characterized by unique dis-
persion relation, the low energy part of which is relativisticlike
with linear dependence of the electron energy on momentum.
The behavior of such low energy electrons is described by
the Dirac relativistic massless equation. The Fermi energy
of undoped graphene is at the Dirac point and, therefore,
graphene is a semimetal with zero band gap. This should result
in strong interband mixing of the valence band (VB) and the
conduction band (CB). Below we consider femtosecond laser
pulses whose duration τp is less than the electron scattering
time ∼10–100 fs [24–29]. In this case, the electron dynamics is
coherent and can be described by time-dependent Schrödinger
equation.

In contrast, dynamics of graphene in relatively slow fields,
τp � 100 fs, for which the scattering processes become impor-
tant and the electron dynamics is incoherent, was studied [30]
within the density matrix approach, where a hot-electron
Fermi distribution was reported. For circularly polarized
long optical pulses, interaction of electrons in graphene with
periodic electric field results in formation of Floquet states and
opening a gap in the energy spectrum [31–33] or graphenelike
topological surface states of a topological insulator [34].

II. MODEL AND MAIN EQUATIONS

We consider an optical pulse that is incident normally on
a graphene monolayer and parametrize it by the following
single-oscillation form, which is an idealization of the actual
1.5-oscillation pulses used in recent experiments [15,16],

F (t) = F0e
−u2

(1 − 2u2), (1)

where F0 is the amplitude, which is related to the pulse power
P = cF 2

0 /4π , c is speed of light, u = t/τ , and τ is the pulse
length, which is set τ = 1 fs corresponding to carrier frequency
ω ≈ 1.5 eV/�. Note that due to this parametrization, the pulse
has always zero area,

∫ ∞
−∞ F (t)dt = 0. We will assume that

the pulse is linearly polarized, where the plane of polarization
is characterized by angle θ measured relative to axis x. Here
the x and y coordinate system is introduced in the plane of
graphene and is determined by the crystallographic structure
of graphene—see Fig. 1. The graphene has hexagonal lattice
structure, which is shown in Fig. 1(a). The lattice has two
sublattices, say “A” and “B,” and is determined by two lattice
vectors a1 = a/2(

√
3,1) and a2 = a/2(

√
3, − 1), where a =

2.46 Å is the lattice constant. The distance between the nearest
neighbor atoms of graphene is a/

√
3. The first Brillouin zone

of the reciprocal lattice of graphene, which is a hexagon,
is shown in Fig. 1(b). The points K = (2π/a)(1/3,1/

√
3)

and K ′ = (2π/a)(−1/3,1/
√

3), which are the vertices of the
hexagon, are the Dirac points. The energy gaps at these points
are zero and the low energy spectra near these points are
described by the Dirac relativistic equation. The points K

and K ′ correspond to two valleys of low energy spectrum of
graphene.

1098-0121/2015/91(4)/045439(8) 045439-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.045439


KELARDEH, APALKOV, AND STOCKMAN PHYSICAL REVIEW B 91, 045439 (2015)

A B
γ

x

y

a1

a2

(a) (b)
ky

kx

K

K

4π/3a

θ
F

a/  3

FIG. 1. (Color online) (a) Hexagonal lattice structure of 2D
graphene. The graphene lattice consists of two inequivalent sublat-
tices, which are labeled by “A” and “B.” The vectors a1 = a/2(

√
3,1)

and a2 = a/2(
√

3, − 1) are the direct lattice vectors of graphene. The
nearest-neighbor coupling, which is characterized by the hopping
integral γ , is also shown. (b) The first Brillouin zone of reciprocal
lattice of graphene. Points K and K ′ are two degenerate Dirac points,
corresponding to two valleys of low energy spectrum of graphene.
Blue line with arrows shows polarization of the time-dependent
electric field of the pulse. The polarization is characterized by
angle θ .

The Hamiltonian of electrons in graphene in the optical
field has the form

H = H0 + eF(t)r, (2)

where H0 is the field-free electron Hamiltonian, r = (x,y) is
a two-dimensional vector, and F(t) = [F (t) cos θ,F (t) sin θ ].
Below we consider the case of θ = 0 only, i.e., pulse is
polarized along the x axis. We consider a nearest-neighbor
tight-binding model, which describes coupling between the
two sublattices A and B of graphene with coupling constant
γ = −3.03 eV [35–38]—see Fig. 1. In the reciprocal space
the corresponding Hamiltonian H0 is a 2 × 2 matrix of the
form [35,36]

H0 =
(

0 γf (k)
γf ∗(k) 0

)
, (3)

where γ = −3.03 eV is the hopping integral and

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
. (4)

The energy spectrum of Hamiltonian H0 consists of con-
duction band (π∗ or antibonding band) and valence bands (π or
bonding band) with the energy dispersion Ec(k) = −γ |f (k)|
(conduction band) and Ev(k) = γ |f (k)| (valence band). The
corresponding wave functions are

�
(c)
k (r) = eik·r

√
2

(
1

e−iφk

)
(5)

and

�
(v)
k (r) = eik·r

√
2

( −1
e−iφk

)
, (6)

where f (k) = |f (k)|eiφk . The wave functions �
(c)
k and �

(v)
k

have two components belonging to sublattices A and B,
respectively.

When the duration of the laser pulse is less than the charac-
teristic electron scattering time, which is ∼10–100 fs [24–29],

the electron dynamics in external electric field of the optical
pulse is coherent and can be described by the time-dependent
Schrödinger equation

i�
d�

dt
= H�, (7)

where the Hamiltonian (2) has explicit time dependence.
The electric field of the optical pulse generates both

interband and intraband electron dynamics. The interband
dynamics introduces a coupling of the states of the conduction
and valence bands and results in redistribution of electrons
between two bands. For dielectrics, such dynamics results in its
metallization, which manifest itself as a finite charge transfer
through dielectrics and finite conduction band population after
the pulse ends.

It is convenient to describe the intraband dynamics, i.e., the
electron dynamics within a single band, in the reciprocal space.
In the reciprocal space, the electron dynamics is described by
acceleration theorem, which has the following form:

�
dk
dt

= eF(t). (8)

The acceleration theorem is universal and does not depend on
the dispersion law. Therefore, the intraband electron dynamics
is the same for both conduction and valence bands. For an
electron with initial momentum q the electron dynamics is
described by the time-dependent wave vector, kT (q,t), which
is given by the solution of Eq. (8),

kT (q,t) = q + e

�

∫ t

−∞
F(t1)dt1. (9)

The corresponding wave functions are the Houston func-
tions [39], 	(H )

αq (r,t),

	(H )
αq (r,t) = �

(α)
kT (q,t)(r)e− i

�

∫ t

−∞ dt1Eα[kT (q,t1)], (10)

where α = v (valence band) or α = c (conduction band).
Using the Houston functions as the basis, we express the

general solution of the time-dependent Schrödinger equa-
tion (7) in the following form:

�q(r,t) =
∑

α=v,c

βαq(t)	(H )
αq (r,t). (11)

The solution (11) is parametrized by initial electron wave
vector q. Due to universal electron dynamics in the reciprocal
space, the states, which belong to different bands (conduction
and valence bands) and which have the same initial wave vector
q, will have the same wave vector kT (q,t) at later moment
of time t . Since the interband dipole matrix element, which
determines the coupling of the conduction and valence band
states in external electric field, is diagonal in the reciprocal
space, then the states with different initial wave vectors are
not coupled by the pulse field. As a result in Eq. (11), for
each value of initial wave vector q, we need to find only
two time-dependent expansion coefficients βvq(t) and βcq(t).
Such decoupling of the states with different values of q is
the property of coherent dynamics. For incoherent dynamics,
the electron scattering couples the states with different wave
vectors q. In this case the dynamics is described by the density
matrix.
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The expansion coefficients satisfy the following system of
differential equations:

dβcq(t)

dt
= −i

F(t)Qq(t)

�
βvq(t), (12)

dβvq(t)

dt
= −i

F(t)Q∗
q(t)

�
βcq(t), (13)

where the vector-function Qq(t) is proportional to the inter-
band dipole matrix element

Qq(t) = D[kT (q,t)]e− i
�

∫ t

−∞ dt1{Ec[kT (q,t1)]−Ev [kT (q,t1)]}, (14)

where D(k) = [Dx(k),Dy(k)] is the dipole matrix element
between the states of the conduction and valence bands with
wave vector k, i.e.,

D(k) = 〈
�

(c)
k

∣∣er
∣∣�(v)

k

〉
. (15)

Substituting the conduction and valence band wave func-
tions (5) and (5) into Eq. (15), we obtain the following
expressions for the interband dipole matrix elements:

Dx(k) = ea

2
√

3

1 + cos
( aky

2

)[
cos

( 3akx

2
√

3

) − 2 cos
( aky

2

)]
1 + 4 cos

( aky

2

)[
cos

( 3akx

2
√

3

) + cos
( aky

2

)]
(16)

and

Dy(k) = ea

2

sin
( aky

2

)
sin

( 3akx

2
√

3

)
1 + 4 cos

( aky

2

)[
cos

( 3akx

2
√

3

) + cos
( aky

2

)] .

(17)

The system of equations (12) and (13) describes the interband
electron dynamics and determines the mixing of the conduc-
tion band and the valence band states in the electric field of
the pulse. There are two solutions of the system (12) and (13),
which correspond to two initial conditions: (βvq,βcq) = (1,0)
and (βvq,βcq) = (0,1). These solutions determine the evolution
of the states, which are initially in the valence band or in the
conduction band, respectively.

For undoped graphene all states of the valence band are
occupied and all states of the conduction band are empty. For an
electron, which is initially in the valence band the mixing of the
states of different bands is characterized by the time-dependent
component |βcq(t)|2. We can also define the time-dependent
total occupation of the conduction band for undoped graphene
from the following expression:

NCB(t) =
∑

q

|βcq(t)|2, (18)

where the sum is over the first Brillouin zone and the solution
βcq(t) in Eq. (18) satisfies the initial condition (βvq,βcq) =
(1,0).

Redistribution of electrons between the conduction and the
valence bands in time-dependent electric field also generates
electric current, which can be calculated in terms of the
operator of velocity from the following expression:

Jj (t) = e

a2

∑
q

∑
α1=v,c

∑
α2=v,c

β∗
α1q(t)Vα1α2

j βα2q(t), (19)

where j = x,y and Vα1α2
j are the matrix elements of the

velocity operator V̂j = 1
�

∂H0
∂kj

between the conduction and
valence band states. With the known wave functions (5) and (6)
of the conduction and valence bands the matrix elements of
the velocity operator are

Vcc
x = −Vvv

x = aγ√
3�

[
sin

(
akx√

3
− φk

)

+ sin

(
akx√

3
+ φk

)
cos

aky

2

]
, (20)

Vcc
y = −Vvv

y = aγ

�
cos

(
akx

2
√

3
+ φk

)
sin

aky

2
, (21)

Vcv
x = −i

2aγ√
3�

[
cos

(
akx√

3
− φk

)

− cos

(
akx√

3
+ φk

)
cos

aky

2

]
, (22)

and

Vcv
y = −i

2aγ

�
sin

(
akx√

3
+ φk

)
cos

aky

2
. (23)

The interband matrix elements of the velocity operator, Vcv
x

and Vcv
y , are related to the interband dipole matrix elements,

Vcv
x = iDx(k)[Ec(k) − Ev(k)]/� and Vcv

y = iDy(k)[Ec(k) −
Ev(k)]/� [40].

Within the nearest-neighbor tight-binding model, the
graphene has electron-hole symmetry, which results in the
relation Vcc

y = −Vvv
y . Inclusion into the model the higher

order tight-binding couplings, e.g., next-nearest-neighbor
terms, introduced electron-hole asymmetry, which results in
different magnitudes of velocity in the conduction and valence
bands [41]. This asymmetry is weak and does not change the
main results presented below.

If the direction of electric field of the pulse is along the
direction of high symmetry of graphene crystal, then the
current (19) is generated along the direction of electric field
of the pulse only, J||. For graphene, the directions of high
symmetry correspond to polarization angles θ = 0 and 30◦. If
polarization of electric field is not along the direction of high
symmetry of graphene, then the current is generated in both
the direction of the field, J||, and in the direction perpendicular
to the field, J⊥. Our results show that the perpendicular
component of the current is more than two orders of magnitude
smaller than the parallel component of the current. Therefore,
we calculate only the parallel component of the current.

The generated current results in charge transfer through the
system, which is determined by an expression

Qtr =
∫ ∞

−∞
dt J||(t). (24)

The transferred charge is nonzero only due to irreversibility
of electron dynamics in the optical pulse. For completely
reversible dynamics, when the system returns to its initial
state, the transferred charge is exactly zero. Indeed, since
the current can be expressed in terms of polarization P(t)
of the electron system as J(t) = dP(t)/dt , then the transferred
charge is determined by the residual polarization of the system,
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FIG. 2. (Color online) Interband dipole matrix element Dx is
shown as a function of the wave vector k. The red lines show the
boundary of the first Brillouin zone. The dipole matrix element is
singular near the Dirac points (K and K ′ points).

i.e., polarization of the electron system after the pulse ends,
Qtr = P (t → ∞). The residual population is nonzero only
for irreversible dynamics.

III. RESULTS AND DISCUSSION

A. Conduction band population

Electron dynamics in an optical field is determined by two
interrelated properties of graphene: (i) zero band gap, which
results in strong interband mixing even in a weak electric field,
and (ii) strong dependence of interband dipole matrix elements
on the wave vector. These matrix elements, Dx and Dy , are
singular at the Dirac points, K and K ′, as ∝ 1/
k, where

k = |k − kK | is the distance in the reciprocal space from
nearest Dirac point; see Fig. 2 (calculated in SI). Away from
the Dirac points, Dx ∼ Dy ∼ ea/2 ≈ 1.2e Å. At the center of
the Brillouin zone (the � point), Dx = Dy = 0. Thus there is
strong interband coupling at the Dirac points and no coupling
at the � point.

A strong optical electric field causes redistribution of
electrons between the CB and the VB. The total CB population,
NCB(t) [see Eq. (18)]. It is displayed as a function of time t

together with the corresponding time-dependent electric field,
F (t), in Fig. 3(a). Its qualitative features are in sharp contrast
with those of dielectrics [16,42]. First, the electron kinetics
is dramatically irreversible: when the pulse is over, the CB
population does not return to zero staying at a high residual
level N (res)

CB which is close to the maximum CB population
during the pulse, N (max)

CB . The second, related feature is that
there is a ∼ π/2 phase shift between NCB(t) and the electric
field, F (t): the maximums of the conduction band population
occur at zeros of the electric field. In contrast, for dielectrics,
the CB population adiabatically follows the field, and their
maximums coincide with a good accuracy [16,42].

Such irreversible electron dynamics takes place for all pulse
amplitudes F0 as Fig. 3(b) clearly demonstrates. The maximum
CB population is reached at t ≈ 1 fs; the residual (at the end of
the pulse) CB population, N (res)

CB , is close to N (max)
CB in all cases

[Fig. 3(c)]. We have found (not shown) that the CB population
has only a weak dependence on the polarization direction, and
the results similar to Fig. 3 are obtained for other polarizations.
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FIG. 3. (Color online) Population of the CB. (a) The CB popula-
tion, NCB (t), and the corresponding electric field, F (t), of the laser
pulse are shown as function of time t . The polarization of the pulse
is along axis x, i.e., θ = 0. (b) Series of the CB populations are
plotted as functions of time for peak fields indicated on the graph.
(c) The maximum and residual CB populations as functions of the
peak electric field.

As we interpret, the irreversible electron dynamics is due
to the gapless energy dispersion in graphene and strong
dependence of the interband dipole matrix elements, Dx and
Dy , on the wave vector. This causes a unique dependence of
the Zener tunneling rate, 
l ∝ l−1, where l is the number of
unit cells through which the electron tunnels to cross the band
gap [20]; in a sharp contrast, in 3D crystals, this dependence
on l is exponential. This weak l dependence brings about
strong resonance transitions between the VB and CB leading
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FIG. 4. (Color online) Conduction band population NCB (k,t) =
|βck(t)|2 (see SI for definition) as a function of the wave vector
at different moments of time. Only the first Brillouin zone of the
reciprocal space is shown. The peak electric field of the pulse is
F0 = 1 V/Å. Different colors correspond to different values of the
conduction band population as shown in the figure.

to dephasing (Landau damping), which effectively causes
irreversibility for our time intervals.

The singularities of the dipole matrix elements at the
Dirac points also result in a highly nonuniform distribution
of the conduction band population in the reciprocal space,
NCB(k,t) = |βck(t)|2 (see SI for definition), which is shown
in Fig. 4. This population dynamics is unusual and dramatic.
The electrons are accelerated by the field along its polarization
direction (x axis) as determined by the time-dependent wave
vector k(t) (see the acceleration theorem in SI),

k(t) = e

�

∫
F(t)dt. (25)

Initially, for t < −0.75 fs, the field is negative which ac-
celerates the electrons to the right in Fig. 4. At the Dirac
points due to the singular and large interband dipoles, the
electrons are transferred VB → CB, which shows as two “jets”

of high electron population at kx ≈ 1 Å
−1

—see panels for
t = −1.5, − 0.75 fs. Then the field changes its sign, and the
electrons start to move left and also undergo further VB → CB

transitions leading to the appearance of the jets at kx ≈ −1 Å
−1

and interference fringes at the kx ≈ 1 Å
−1

Dirac points for t �
0.75 fs. Further, additional electrons are transferred causing

the interference fringes at the kx ≈ −1 Å
−1

Dirac points for
t = 1.5 fs. The distribution becomes completely symmetric at
the end of the pulse (t = 2.25 fs), which is a consequence of
the zero pulse area.

Residual (after the pulse end) distributions N (res)
CB (k) of

the CB electrons in the reciprocal space for various field
amplitudes F0 are displayed in Fig. 5. They exhibit the
jets at the Dirac points extended in the direction of the
external field, which are modulated by the interference
fringes. The extension, 
k, of the jets increases approximately
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FIG. 5. (Color online) Residual conduction band population
N (res)

CB (k) as a function of wave vector k for different amplitudes
F0 of the optical pulse, as indicated. Only the first Brillouin zone is
shown. The polarization of electric field is along axis x.

proportionally to the field; it is defined by the acceleration
in the average field during half-period: 
k ∼ eF0/ω. For

instance, for F0 = 1.5 V/Å, 
k ∼ 1 Å
−1

, in agreement with
Fig. 5. The spacing between the interference fringes, δk, is
reciprocal to the nonlocality scale, i.e., the length electron

displaces during the optical cycle, δk ∼ ω/vF ∼ 0.2 Å
−1

,
where vF ∼ 108 cm/s is the Fermi velocity; this estimate is
also in agreement with Fig. 5.

The residual distribution of Fig. 5 shows the fringes with
very high contrast: the maximum population probability,
N (res)

CB (k) ≈ 1, and practically zero minimum population prob-
ability. Note that these fringes are created by a femtosecond
pulse but can be relatively long lived, decaying with electron
collision time τ .

At low excitation frequencies, we can estimate this time
for doped graphene with equilibrium CB electron density n as
τ = �μ

√
πn/(evF ), where μ is the electron mobility. Setting

μ ≈ 2.5 × 104 cm2V−1s−1 at n ≈ 5 × 1012 cm−2 [43,44] and
vF = 1.15 × 108 cm/s [45], we obtain τ ≈ 0.6 ps. In contrast,
at optical excitation frequencies and high intensities, time
τ is reduced and is measured to be τ ∼ 140 fs [25]; for
very high excitation densities, carrier multiplication processes
become important, further reducing τ to a few tens of
femtoseconds [27]. Electron-phonon processes are relatively
slow, with scattering time τ � 600 fs [27]. Even the fastest
electron collisions, with tens of femtosecond time, are much
slower than the subcycle dynamics of �1 fs duration predicted
in this article. The femtosecond and attosecond momentum
imaging [17,46] is potentially capable of measuring the
ultrafast transient dynamics predicted by Fig. 4.

The formation of the localized regions with high conduction
band population, which is illustrated in Figs. 4 and 5 of the
paper, is due to singularity of the intraband dipole matrix
elements at the Dirac points. The interband dipole matrix
elements are large near the Dirac points and are diverging
exactly at the Dirac points. An electron with initial wave
vector q propagates in the reciprocal space along the direction
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FIG. 6. (Color online) Time-dependent conduction band popu-
lation and corresponding dipole matrix element Dx . The data are
shown for a state with initial wave vector q of the reciprocal
space. The conduction band population is calculated as |βcq(t)|2 and
the dipole matrix element is defined as Dx(kT (q,t). Two different
initial wave vectors in panels (a) and (b) correspond to small
and large residual conduction band populations, respectively. The
inset in panel (a) illustrates schematically the electron dynamics
in the reciprocal space: the electron is transferred along the path
“1”→“2”→“3”→“2”→“1”. The polarization of the optical pulse is
along axis x.

of electric field and the electron wave vector at a moment
of time t is given by the function kT (q,t); see Eq. (9). The
trajectory of such an electron is shown schematically in the
inset in Fig. 6(a), where the electron, which is initially at point
“1”, is transferred along the path “1”→“2”→“3”→“2”→“1”
during the pulse. Since the area under the pulse is zero, the
electron returns to its initial point “1”. Along this closed path
the interband coupling, which is proportional to the interband
dipole matrix element, is the strongest near the point “2”,
closest to the Dirac points. Thus the strongest mixing of the
CB and VB states occurs when the electron passes through
point “2”. For the closed path “1”→“3”→“1” there are two
passages of point “2”. As a result there are two strong changes
in CB population. These two changes can be constructive or
destructive, resulting in final large or small CB population,
respectively. These two possibilities are shown in Fig. 6, where
the time-dependent CB population is shown for two initial
wave vectors q. The time-dependent interband dipole matrix
element, Dx , calculated at wave vector kT (q,t), is also shown
in Fig. 6. The two maxima in the time-dependent dipole matrix
element correspond to two passages of the point “2” shown
in the inset in Fig. 6(a). For both initial wave vectors [see

Figs. 6(a) and 6(b)] the maxima of the dipole matrix element
are correlated with large changes in the CB population. In
Fig. 6(b) these changes are constructive resulting in large CB
population after the pulse ends, while in Fig. 6(a) the changes
are destructive, which results in small final CB population.
Whether changes of the CB population are constructive or
destructive is determined by the phase accumulated between
two consecutive passages of point “2”. The phase is determined
by exponential factor in the expression (14) for the vector
function Qq(t).

B. Transferred charge

A strong optical pulse applied to metal or dielectric causes
transfer of charge parallel to the pulse field; the direction of
the transfer (the sign of the transferred charge) is determined
by the carrier-envelope phase (CEP) of the pulse [15,17,19].
In this article, the maximum of the carrier oscillation and
its envelope coincide, which implies zero CEP (effect of
the CEP on graphene high-field behavior will be considered
elsewhere). In such a case, the transfer in dielectric occurs in
the direction of the field maximum, and in metal in the opposite
direction [15,19]. Below we show that graphene (a semimetal)
is unique and different from both metals and insulators.

Given that the area of the pulse is zero, the transferred
charge is entirely due to optical nonlinearity. Current density
j and polarization P are exactly related, j = Ṗ. The density of
the net transferred charge per pulse, Qtr , is thus determined
by the residual polarization after the pulse end, Qtr = P (res)

x ,
where x is the direction of the field (charge transfer direction).
Hence, in a single-pulse experiment, the charge transfer is
strictly zero in the absence of relaxation (i.e., for adiabatic,
reversible processes). Consequently, in graphene, where the
strong-field processes are highly irreversible and the residual
charges dominate, the charge transfer should be uniquely
strong.

Formal expression for Qtr is given in the SI; here in Fig. 7
we illustrate the results. Panel (a) displays temporal dynamics
of the current. In the first half of the pulse, this current is
negative, while in the second half it is positive where also
significant relaxation is evident in a strong field, F0 = 2 V/Å,
case.

The total transferred charge per pulse, Qtr , shown in
Fig. 7(b), is positive (as for dielectrics [15]) for F0 � 1.5 V/Å
and negative for larger fields (i.e., the transfer occurs opposite
to the direction of the maximum field, as for metals [19]); Qtr

rather weakly depends on doping.
The charge transfer per pulse in bulk silica (quartz) [15] is

Qtr ∼ 10−5 C/m2 at F0 ≈ 2 V/Å. To compare with graphene,
it should be multiplied by the thickness of the graphene
monolayer, ∼0.1 nm, which yields for quartz an equivalent of
Qtr ∼ 10−15 C/m per atomic monolayer. Our present result
is Qtr � 10−9 C/m. Thus, in strong-field charge transfer,
graphene is six orders of magnitude more efficient than quartz.

IV. CONCLUSION

To briefly summarize, we have shown that graphene
subjected to an ultrafast (one optical oscillation) and
strong (∼1 V/Å) optical pulse exhibits fundamental behavior
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FIG. 7. (Color online) (a) Electric current density in graphene
as a function of time for two amplitudes, F0 = 1.0 V/Å and F0 =
2.0 V/Å. (b) Transferred charge density through graphene monolayer
as a function of F0 for different levels of graphene doping (defined
by electron Fermi energy EF ).

dramatically different from both insulators and metals. Field-
induced, Zener-type VB ↔ CB electron transfer is deeply
irreversible (nonadiabatic): the residual (after-pulse) CB pop-
ulation is close to the maximum one. The reciprocal space
(quasimomentum) dynamics is developing on a time scale
∼1 fs forming momentum distribution, which exhibits deep
fringes with the population probability changing in the full
interval between 1 and zero with the periodicity independent
of the field amplitude. This unique periodic k distribution can
be accessed experimentally.

In our calculations above we have described the interaction
of optical pulse with graphene within coherent electron
dynamics, assuming that the duration of the pulse is longer
than the corresponding relaxation times. The relaxation times
during ultrafast excitation of graphene have been investi-
gated experimentally [25,27]. The carrier-carrier scattering in
Ref. [25] is observed to occur during 30–140 fs. In Ref. [27],
the observed electron-electron scattering kinetics unfolds on
times 10 fs or longer. The field-induced processes that we
predicted are extremely fast: the populations of the valence and
conduction changes within subcycle intervals, on the time scale
of 500 attoseconds or shorter. In our article, the superstrong
near-single-oscillation pulse is not longer than 4 fs, which is
shorter than experimentally observed scattering times, and it
drives very significant changes in the electron distribution,
which is also highly anisotropic.

The strong optical pulse causes the net charge transfer (per
unit width of the graphene, per pulse) Qtr ∼ 10−9 C/m, which
corresponds to a fs pulse of electric current in the plane of
graphene with peak density j ∼ 1016 A/m2. The charge is
transferred in the direction of the maximum field for moderate
field amplitudes (F0 � 1.5 V/Å) and opposite to that for high
fields. This ultrafast charge transfer phenomenon is almost
independent of graphene doping. The charge transfer in fused
silica during propagation of fs optical pulse has been measured
experimentally in Ref. [15]. Similar technique can be applied
for graphene. The fs currents and charge transfer in graphene
may provide a fundamental basis for detection and calibration
of ultrashort intense laser pulses. They are promising for
petahertz-bandwidth information processing.
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