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Magnetoconductance signatures of subband structure in semiconductor nanowires
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The radial confining potential in a semiconductor nanowire plays a key role in determining its quantum
transport properties. Previous reports have shown that an axial magnetic field induces flux-periodic conductance
oscillations when the electronic states are confined to a shell. This effect is due to the coupling of orbital angular
momentum to the magnetic flux. Here, we perform calculations of the energy level structure, and consequently
the conductance, for more general cases ranging from a flat potential to strong surface band bending. The
transverse states are not confined to a shell, but are distributed across the nanowire. It is found that, in general,
the subband energy spectrum is aperiodic as a function of both gate voltage and magnetic field. In principle, this
allows for precise identification of the occupied subbands from the magnetoconductance patterns of quasiballistic
devices. The aperiodicity becomes more apparent as the potential flattens. A quantitative method is introduced
for matching features in the conductance data to the subband structure resulting from a particular radial potential,
where a functional form for the potential is used that depends on two free parameters. Finally, a short-channel
InAs nanowire field-effect transistor device is measured at low temperature in search of conductance features that
reveal the subband structure. Features are identified and shown to be consistent with three specific subbands. The
experiment is analyzed in the context of the weak localization regime; however, we find that the subband effects
predicted for ballistic transport should remain visible when backscattering dominates over interband scattering,
as is expected for this device.
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I. INTRODUCTION

The study of quantum transport of electrons and holes
in semiconductor nanowires is of fundamental interest, and
underlies recent developments in nanoscale sensing [1,2] and
potential avenues for quantum information processing [3–7].
The quasi-one-dimensional (quasi-1D) geometry of nanowires
allows for a wide range of experiments on low dimensional
transport, but correct interpretation of results often requires
a detailed understanding of the transverse subband structure
due to the confining radial electrostatic potential. Precise
knowledge of the radial potential, however, is not usually
straightforward to determine experimentally. Several recent
experiments have shed light on the subband structure in
multiband nanowires. Quantized conductance steps were
observed in quasiballistic (short channel) InAs nanowire field-
effect transistors (FETs) [8,9], and attributed to the successive
occupation of the first few subbands. In the presence of a
perpendicular magnetic field, these steps split into two due
to the Zeeman interaction. The resulting conductance patterns
have been observed as a function of magnetic field and gate
voltage [10,11]. The presence of an axial field produces
qualitatively different conductance patterns due to the coupling
of orbital angular momentum to magnetic flux. Axial field
magnetoconductance studies of InN nanowires [12,13] and
InAs nanowires [14] reveal oscillations caused by the occu-
pation of orbital angular momentum subbands. With strong
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surface band bending, a cylindrical conducting shell forms
below the nanowire surface and the resulting conduction
electron energy levels are parabolic in magnetic field [13].
Levels with adjacent angular momentum quantum numbers
are shifted from each other by one flux quantum. This
gives rise to a flux-periodic, diamond-shaped energy level
structure, so that varying magnetic field at a fixed chemical
potential leads to flux-periodic conductance oscillations as the
occupation of orbital states is modulated. These flux-periodic
oscillations have been observed in InN nanowires [12,13];
however, the precise orbital states contributing to conductance
were not identified. Experiments on GaAs/InAs core-shell
nanowires [15,16], where conductance is predominantly due to
the shell, also showed flux-periodic oscillations. Importantly,
the phase of the oscillations was seen to change by π at certain
gate voltages, as would be expected from the diamond-shaped
pattern of orbital energy levels. In all of these axial field
magnetoconductance experiments, the focus has been on
conduction in a thin shell close to the nanowire surface, such
that flux-periodic oscillations are expected. This is not the
general case, as different materials and surface conditions
can give rise to varying degrees of surface band bending.
For example, nanowires with an epitaxial larger band gap
shell are expected to have reduced band bending [17,18],
giving more uniformly distributed transverse electronic wave
functions. Bare InAs nanowires have not previously shown
the expected flux-periodic oscillations [14], perhaps due to
reduced surface band bending compared to InN nanowires.
These examples reflect the need to model transverse sub-
bands for more general radial potentials to accurately model
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electronic transport. In this paper, it is found that lower surface
confinement alters the shape of the transverse subband energy
spectrum and its dependence on magnetic field to have a lower
degree of periodicity, making precise identification of orbital
subbands and estimation of the radial potential a practical
possibility.

Here, we calculate the energy spectra of transverse sub-
bands for various radial potentials, ranging from flat to those
with strong surface band bending. We find a quasiparabolic
behavior of these energies with respect to magnetic field, but
with large variations in curvature depending on the radial
potential and on the radial quantum number. Indeed, the
energetic ordering of the subbands depends on the degree of
band bending, and the overall pattern of conductance versus
magnetic field and gate voltage provides a fingerprint of the
underlying radial potential. Although similar studies have been
applied to InN and GaAs/InAs core-shell nanowires, the wave
functions in those cases are assumed to be confined in a
thin conducting shell, either by the core-shell structure or
by a strong surface potential. Here, we consider the more
general case of a wave function that extends across the
nanowire cross section, enabling the description of devices
over a wide range of surface potentials. In addition, we report
the results of low temperature conductance measurements on
a short-channel InAs nanowire FET as a function of gate
voltage and magnetic field. Features are identified in the
magnetoconductance data that are quantitatively consistent
with a particular assignment of states and radial potential,
although the quality of the data falls short of an unambigu-
ous assignment. By calculating conductance in the weakly
localized regime, we find a consistent description of its
general magnitude over a gate voltage range of 6 V. We
present a method of analyzing magnetoconductance data to
find a matching radial potential, and suggest that it is best
applied to nanowire devices in the ballistic or quasiballistic
regime.

II. MODEL

Consider a nanowire of radius r0 and length L > 2r0,
as shown schematically in Fig. 1(a). Assuming cylindrical
symmetry, the single particle wave function for conduc-
tion electrons can be written as the product: ψ(r,θ,z) =
eikzeilθRn,l(r), where (r,θ,z) are cylindrical coordinates, k is
the axial wave number, and n,l denote the radial and angular
quantum numbers, respectively. To model the transverse part
of the wave function, eilθRn,l(r), we take a circular cross
section with a potential V = ∞ for r > r0 and V = V (r) for
r � r0. We choose potentials of the form studied in Ref. [19],
V (r) = A[1 − (r/r0)b/2], where A = V (0) − V (r0), V (r0) is
the surface potential, and b � 2 dictates the shape of the
potential. This potential is taken to be independent of the
number of occupied subbands and to remain constant as
the chemical potential in the nanowire is varied. In the results
of later sections, ∼10 subbands enter into the description
of device conductance. The mobile charge induced in the
nanowire when ten subbands are occupied is an order of
magnitude smaller than the total charge corresponding to a
typical surface state density of 1012 cm−2 [20], assuming
all surface states are ionized. This justifies an approximate

FIG. 1. (Color online) (a) The cylindrical nanowire geometry is
shown with an axial magnetic field Bz. (b) Schematic of the nanowire
FET used to measure magnetoconductance. The two-terminal con-
ductance is measured between the source and drain contacts as
a function of Bz and gate voltage. (c),(d) Radial wave functions
R0,0(r) and R0,4(r), normalized by

∫ ∞
0

∫ 2π

0 |eilθRn,l(r)|2rdrdθ = 1,
calculated for a cylindrically symmetric radial potential V (r) defined
in the main text with b = 2.75 and (c) A = 0.25 eV, (d) A = 0 eV.
Rn,l(r) is characterized by the radial and angular quantum numbers n

and l, respectively. The effective mass used is for InAs. Strong band
bending results in a wave function proximate to the nanowire surface
for all states. (e) Real part of the transverse electron wave function
for the two states shown in (d).

treatment of the radial potential as fixed and independent
of the carrier density. Since the surface charge density
is positive (surface states are donorlike), the conduction
band usually bends downward [20], and in this paper we
consider A � 0. The Hamiltonian for a single conduction
electron including an applied axial magnetic field can be
written [19]
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where φz = �/�0 = πBzr
2/(h/e) is the normalized magnetic

flux, Bz is the axial magnetic field, Lz is the orbital angular
momentum operator, and m∗ = 0.023me (for InAs) where me

is the electron mass. Contributions from the Zeeman effect
and spin-orbit coupling, which break spin degeneracy and
split the subband energies, are neglected (for a more general
treatment, see Ref. [19]). For a magnetic field of 8 T (the upper
field limit in the experimental section below), the Zeeman
energy is ∼4.2 meV for electrons in InAs, smaller than
a typical subband energy separation of 10–20 meV, which
justifies an approximate treatment neglecting the Zeeman
effect. Equation (1) reduces to the following partial differential
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equation (PDE) for Rn,l(r):

ER = −�
2

2m∗

[
R′

r
+ R′′ − k2R − R

r2
(l + φz)

2

]
+ RV (r),

(2)

where primes denote derivatives with respect to r , E = En,l ,
and R = Rn,l(r). A fourth-order Runge-Kutta PDE solver [21]
numerically calculates Rn,l(r) at fixed values of l and φz.
The subband energies En,l are determined by applying the
boundary condition that Rn,l(r0) = 0.

III. RESULTS

A. Theory

In this section we calculate magnetoconductance for a
cylindrical InAs nanowire FET, assumed to be in the ballistic
transport regime, in order to establish a qualitative picture for
how the radial potential determines the pattern of conductance
versus field and gate voltage. Generalization to the diffusive
transport regime is discussed in the experimental section. A
nanowire radius r = 38 nm, similar to experimental value, is
chosen for the calculations. Figure 1(b) shows a schematic of
the typical FET geometry; however, in the calculations which
follow we assume no breaking of cylindrical symmetry by
the backgate, which is approximately justified when the gate
oxide thickness is large compared to the nanowire diameter.
First is considered the case of strong band bending, taking
A = 0.25 eV and b = 2.75. Figure 1(c) shows that in this
case, the electron distribution is mostly independent of l, and
is concentrated near the nanowire surface, consistent with the
expected accumulation layer. In contrast, Figure 1(d) shows
that for a flat potential, the l = 0 and l �= 0 states have very
different spatial distributions. The magnetic field dependence
of the subband energies is intuitively understood by imagining
that electrons are located near the peak of the wave function.
The limiting case of strong band bending is a two-dimensional
electron gas near the surface considered in Ref. [12], where the
subband energy (in the radial ground state, n = 0) is given by

El = �
2k2

z

2m∗ + �
2

2m∗r2
eff

(l − φz)2, and reff is the electron’s average

radial position. Figure 2(a) shows that strong band bending in
our model also produces n = 0 energy bands that are nearly
parabolic with respect to the magnetic flux.

Assuming quasiballistic conditions, electrical conductance
may be calculated using the Landauer equation [22] G =
2e2/h

∑
m

∫
τm(E)(df/dE)dE, where τm(E) is the transmis-

sion probability for the mth subband, and f = f (E,T ) is
the Fermi-Dirac distribution at temperature T . For ballistic
transport, τm(E) is a step function of unit height centered at
the subband energy Em(Bz). The resulting conductance in the
presence of strong band bending is shown in Fig. 2(b). This
gives a series of conductance steps of height 2e2/h occurring
when a subband crosses the chemical potential, defined here
as ε = EF − EC , where EF and EC are the Fermi energy
and conduction band edge, respectively. The rounding of the
conductance steps is determined by the temperature in the
Fermi-Dirac distribution, which in Fig. 2 is set to T = 1 K.

The frequency components of the magnetoconductance
oscillations may be analyzed by calculating the Fourier

FIG. 2. (Color online) (a),(d) Calculated energy levels Ek(Bz) in
a nanowire with radius r0 = 38 nm, for radial potentials V (r) with
b = 2.75 and A = 0.25 eV (a) and A = 0 eV (d). The radial quantum
number is distinguished by color, where black denotes n = 0, blue
denotes n = 1, and red denotes n = 2. In (a), the curvatures of
Ek(Bz) in the n = 1 manifold, appearing above 0.19 eV, are smaller
than those of the radial ground state manifold because the radial
expectation value reff is closer to the nanowire center for n > 0. In
the lower part of (d), the successive subband minima move upwards
in energy. This is due to an effective increase in confinement as the
quantum number |l| increases, since the wave function becomes more
narrowly peaked. (b),(e) Ballistic magnetoconductance calculated
from the energies in (a) and (d) using the Landauer equation. The
conductance increases (decreases) stepwise by 2e2/h when a new
transverse mode is populated (emptied). The vertical axis is to be
identified with the chemical potential in the nanowire, modulated by
gate voltage. (c),(f) Fast-Fourier transform (FFT) of the conductance
in (b) and (e). The color scale is labeled 
G since the FFT peak
intensity reflects the amplitude of magnetoconductance oscillations
at a particular frequency. The mean of each conductance trace is
subtracted prior to the FFT in order to avoid low frequency artifacts.

transform with respect to magnetic field at each value of ε, as
shown in Fig. 2(c). The mean value of each conductance trace
was subtracted prior to performing the fast Fourier transform
(FFT) in order to suppress artifacts from the dc component of
magnetoconductance. In the region below 0.19 eV, where only
the radial ground state (n = 0) is occupied, the FFT shows
a dominant peak at a frequency ∼0.65 T−1. This peak occurs
when the flux enclosed by the average electronic radius is equal
to �0. A frequency of 0.65 T−1 implies an effective radius
reff = 29 nm, consistent with radial wave functions shown in
Fig. 1(c). The slight increase in frequency of this peak as the
chemical potential increases is due to the occupation of states
with higher angular momentum that have reff closer to the
nanowire surface. The peaks at double and triple this frequency
are harmonics that arise from taking the FFT of a squarelike
wave, and are unrelated to mesoscopic interference effects.
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For example, the Altshuler-Aronov-Spivak (AAS) effect for
cylindrical shell conduction [23,24] would produce a peak at
twice the fundamental frequency (i.e., corresponding to a flux
of �0/2), however this is not included in our model, and we
see no evidence for such oscillations in the experiments of the
next section. Above 0.19 eV, an additional peak appears at
lower frequency, due to the first radial excited state manifold.
The effective electronic radius corresponding to this state
encloses a smaller flux, resulting in a lower frequency magnetic
oscillation.

The effect of decreased band bending is shown in Fig. 2(d),
where A = 0, and larger differences are seen in the curvatures
of the energies Em(Bz) between subbands with the same n but
different l values. For A = 0, the radial wave functions at zero
magnetic field are Bessel functions of order l. The transverse
wave functions for l = 0 and l = 4 in the radial ground state
(n = 0) are shown in Fig. 1(e). For l = 0, the radial wave
function is concentrated in the center of the nanowire, giving a
nearly flat magnetic field dependence of the lowest energy level
in Fig. 2(d). As |l| is increased, the wave function peak moves
toward the surface, with successively greater curvature in Em

versus Bz. The flat potential also lowers the energies of radial
excitations, reordering the filling of states as the chemical
potential is increased in comparison to strong band bending.
Figure 2(f) shows the FFT of the magnetoconductance for
A = 0. Rather than distinct peaks, it shows a distribution of
frequencies that correspond to a wider distribution of effective
electronic radii compared to strong band bending. Generally,
the structure of the energy spectrum is not strictly periodic
in chemical potential or magnetic field. This ensures that
by probing the magnetoconductance over a sufficiently large
range of chemical potential (gate voltage), a fingerprint of
the radial electrostatic potential can be obtained, in principle.
The results in Fig. 2 make it clear that a flatter potential
produces a more aperiodic conductance pattern that would
allow the corresponding subbands to be more easily identified
by comparing theory to experiment. It also suggests that for
a flatter potential and many occupied subbands, the AAS
interference effect should be washed out by there being a range
of effective electronic radii. To check for self-consistency
between theory and experiment, the conversion between gate
voltage and chemical potential is straightforward to estimate
based on the geometrical capacitance [25] of the gate and the
density of carriers in the nanowire.

B. Experiment

A FET device based on an InAs/In0.8Al0.2As core-shell
nanowire, with a nominal Te doping density in the shell
of 5 × 1016 cm−3, was investigated experimentally. The core
radius was estimated from scanning electron microscopy to
be r0 ≈ 38 nm, and a channel length L ≈ 200 nm between
contacts was fabricated. A 300-nm-thick gate dielectric (SiO2)
separated the nanowire from the back gate. The device
geometry is shown in Fig. 1(b), and the fabrication procedure
was described previously [26]. The chemical potential is
controlled by modulating the voltage of the backgate, and an
axial magnetic field up to 8 T is applied. As mentioned above,
a gate separation much larger than the nanowire diameter is
crucial to minimize the breaking of cylindrical symmetry in

FIG. 3. (Color online) (a) Derivative with respect to gate voltage
of the experimental conductance of the InAs nanowire FET, where
values below 0.43 2e2

hV
have been removed for clarity. White curves

are least squares fits to parabolas consistent with transverse subbands.
Red lines are linear fits to the parabolas from 0 to 2 T, used for
extracting the zero-field slope of each curve. s1–s3 indicate the slopes
and d12,d23 indicate the vertex separations in gate voltage. (b) Raw
experimental magnetoconductance for this device, the source of the
data shown in (a). (c) Ratios di,i+1/sj calculated across the parameter
ranges 0 � A � 0.2 eV and 2 � b � 9. Colors indicate different
sets of l values: purple, l = (−1, −2, −3); blue, l = (−2, −3, −4);
green, l = (−3, −4, −5); red, l = (−4, −5, −6). These are plotted
for three different radial excitation manifolds, n = 0,1,2. Experi-
mental values (black diamonds) from the fits to the data in (a)
show best overall agreement with the n = 1, l = (−1, −2, −3) states.
The ↑ A symbol indicates the direction of increasing A values,
i.e., stronger band bending. (d) Simulated magnetoconductance for
A = 0.11 eV and b = 2.75, over a range of chemical potential
consistent with the experimental data, as described in the text. The
subband transmissions are of order L0/L (see text), where L0 =
20 nm is a characteristic length on the order of the mean free path,
and is a free parameter for matching the simulated conductance to the
experimental values. Note that the conductance scales in (b) and (d)
are the same.

the nanowire radial potential when a gate voltage is applied.
Conductance data shown in Figs. 3(a) and 3(b) was measured
at a lattice temperature of 30 mK, with an estimated electron
temperature ≈100 mK. Similarly, a temperature of 100 mK
was used for the simulations shown in Figs. 3(c) and 3(d).
At this temperature, the device conductance typically shows
additional modulations with field and gate voltage due to elec-
tron interaction effects (Coulomb repulsion) and interference
effects (e.g., universal conductance fluctuations), the latter
being due to a phase coherence length comparable to the
channel length. The details of these effects are not amenable to
simulation because they depend on device specific, mesoscopic
potential fluctuations, i.e., they are essentially random in

045422-4



MAGNETOCONDUCTANCE SIGNATURES OF SUBBAND . . . PHYSICAL REVIEW B 91, 045422 (2015)

nature. Experiments carried out at higher temperatures, such
that the phase coherence length is suppressed but the subband
level spacing is still large compared to thermal energy,
could suppress some of the conductance modulations seen
in Fig. 3(b) that are unrelated to the subband effects. On the
other hand, we expect a phase coherence length comparable
to the nanowire circumference is necessary in order for the
theory of the previous section to be applicable. We first note
two caveats in comparing the experimental data to the model
described previously. One, the experimental magnitude of
conductance indicates this device to be in the diffusive, weakly
localized regime, rather than the quasiballistic regime. This is
accounted for in the model by calculating conductance using
G = (2e2/h)N2L2

0/(NL0L + L2), where N is the number of
occupied channels, and L0 is a characteristic length of the
order of the mean free path [27]. Note that this expression is
derived from the Landauer equation to approximately include
the effects of elastic scattering and quantum interference, and
is only valid in the weakly localized regime where transport
is phase coherent and NL0 � L. For the case of NL0 	 L,
this equation simplifies to G = (2e2/h)NL0/L, which is the
Landauer result with all transmission probabilities given by
τm(E) = L0/L. We were not able to measure the field effect
mobility directly, as the backgate was not sufficient to pinch
off the conductance. From measurements of longer channel
devices using nanowires of the same growth batch, we find an
average elastic mean free path of λ ∼ 35 ± 13 nm. Secondly,
the back-gated geometry breaks the cylindrical symmetry
of the nanowire and produces, at a finite gate voltage, an
asymmetric radial potential. We have not included this effect
in the modeling, however, a numerical estimate suggests it will
not be a dominant effect. Using a finite element model [28] of
our device geometry, a difference in surface potential between
the top and bottom surfaces of the nanowire is found to
be ≈−6.7 mV per volt of applied gate voltage. At the largest
gate voltage, ±3 V, this yields only ∼20% of the typical surface
band bending ≈100 meV. Note the gate sweep is also centered
around Vg = 0 in order to minimize this effect.

As described in the previous theory section, positive steps
in conductance occur as the chemical potential is increased at
a fixed magnetic field. Hence, the derivative of conductance
with respect to gate voltage should give a positive value when
the chemical potential is equal to the energy of a transverse
subband, and be zero elsewhere. In Fig. 3(a) we plot the
derivative of the raw conductance data shown in Fig. 3(b).
The data shows three plausible parabolic trajectories where
the derivative has an average value above the noise floor. We
find analytic expressions for these curves by averaging the
points in the vicinity of these features and fitting to quadratic
functions with least squares fitting. The resulting curves are
plotted as the three white lines in Fig. 3(a). The parabolic fit
describing one subband does not contain enough information
to identify the subband, since it can be reproduced by a variety
of radial potentials and n,l values. However, several curves
can provide sufficient information to assign the subbands.
We construct a simple quantitative measure by defining di,i+1

as the energy separation between adjacent subbands at zero
magnetic field, and si as the linear slope near zero field
(calculated from 0 to 2 T). The ratio di,i+1/sj is limited to a
certain range of values that depend on the A and b parameters

describing the radial potential. Examples calculated from the
model are shown in Fig. 3(c) for l values from −1 to −6
and in three radial manifolds, n = 0,1,2. Here A is varied
from 0 to 0.2 eV, and b from 2 to 9 (however, the ratios
depend much more strongly on A than b). The magnitude
of |di,i+1/sj | decreases as A is increased, i.e., as the surface
potential becomes larger. The dependence on b is opposite
to this, but much weaker. This provides an unambiguous
way to correlate the parabolic features in the experimental
data to a model of the radial potential, and in principle to
identify the corresponding transverse subbands. Note that
the ratio |di,i+1/sj | is independent of the energy scale, so
that an a priori correspondence between experimental gate
voltage and chemical potential is not needed for matching
theory to experiment; rather, finding a match using these
ratios automatically determines the correspondence. Clearly,
a stronger assignment can be made when there are more
subbands visible in the data. From the data in Fig. 3(a) we
extract the ratios indicated by black diamonds in Fig. 3(c).
For three out of the four possible ratios, the subbands with
n = 1, l = −1 to −3 match the data. The average band
bending parameter for these three points is A = 0.11 eV. We
conclude that these states are likely candidates to assign to the
three parabolic features, however, the conductance data from
this device is too complicated by other effects in the weak
localization regime to make an unambiguous assignment.

In Fig. 3(d) we simulate the conductance for a radial
potential with A = 0.11 eV and b = 2.75, which gives a
reasonable match to the experimental conductance in Fig. 3(b).
This matching suggests that Vg = 0 V corresponds to a
chemical potential of about 140 meV, and the gate range
of ±3 V corresponds to an energy shift of about 70 meV.
This is crudely checked by estimating the gate modulation
of carrier density via the expression 
n = Cg

AeL

Vg , where

n is carrier density and A is the nanowire cross-sectional
area. Cg is the geometric gate capacitance which we es-
timate as 8.6 aF. The gate range of 6 V corresponds to

n = 3.55 × 10−17 cm−3. Alternatively, the dependence of
n on chemical potential ε can be calculated in the diffusive
regime. Here we use an expression for carrier concentration
appropriate to a nanowire with transverse subbands: n(ε) =√

2m∗kBT

�πA
∑

i F−1/2( ε−Ei

kBT
) [26], where kB is the Boltzmann

constant, F−1/2 is the Fermi-Dirac integral of order −1/2, and
Ei are the subband energies below ε. The range of ε in Fig. 3(d)
corresponds to 
n = 1.28 × 10−17 cm−3, which gives 0.36
times the value estimated from gate capacitance. However,
these quantities are of the same order, and we have not taken
into account gate screening in the short channel device that
would lower Cg and reduce 
n/
Vg . The experimentally
observed change in conductance 
G ≈ 1.6 × 2e2/h over the
6 V gate range is consistent with reasonable values for the
chemical potential and the average mean free path in a diffusive
transport picture. Using 6 V = 
Vg = L2

Cgμ

G, we obtain an

effective mobility μ = 960 cm2V−1s−1, corresponding to a
mean free path λ = 18 nm when setting ε = 0.14 eV. Taking
into account gate screening by the contacts and/or mobile
charges associated with the oxide or interfaces would decrease
Cg , implying slightly larger values for mobility and mean free
path.
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For transport through many modes in a phase coherent
conductor, quantum interference effects can lead to a non-
negligible contribution to conductance. If a system is in the
weakly localized regime such that NL0 � L, the total conduc-
tance can be approximated as G = (2e2/h)N2L2

0/(NL0L +
L2) [27]. This approximation applies to a 1D system with
elastic backscattering, where all subband transmission prob-
abilities are equal. The nanowire studied here satisfies the
first assumption since it is a quasi-1D system with large
enough separations in subband energies to strongly sup-
press interband scattering. This is confirmed numerically by
calculating the transition rates between different subbands
caused by a perturbing potential. From previous studies of
nanowire conduction we have found that Coulomb scattering
due to surface charge defects dominates electron mobility
at low temperature [26]. Therefore the interband transition
rate is calculated using the Coulomb potential of a random
assembly of surface charges at a density of 1012 cm−2.
Under these conditions, we find that interband transitions are
indeed suppressed by several orders of magnitude compared to
backscattering. Additionally, the same calculations show that
comparing the backscattering rates of all subbands included
in Fig. 3(d) at k = 0 for each subband yields at most a 2%
difference. This validates the assumption that all subbands
have nearly the same transmission probability. Simulation
of planar potential jumps to mimic the effects of stacking
faults yields similar results. Thus, although an electron scatters
elastically several times while transiting the FET, it is very
likely to remain in the same subband, and the subband effects
predicted in the ballistic model should remain visible, despite
a lower overall magnitude of conductance. Finally, this device
satisfies the weak localization criterion that NL0 � L for most
of the conductance range, since the simulation shows between
9 and 24 transverse states are occupied and we expect a mean
free path of ∼18 nm. Using the weak localization equation
for conductance, a very good match to the experimental
conductance range is found for L0 = 20 nm. This agrees with
the 18 nm mean free path estimated above, and is close to the
lower end of range λ ≈ 35 ± 13 nm obtained from mobility
measurements on other nanowires from the same growth batch.

The present model does not include mesoscopic inter-
ference effects such as Aharanov-Bohm (AB) and AAS
oscillations [23,24] that apply to the case of cylindrical
shell conduction. Indeed, a phase coherence length Lφ ≈
275 nm > L is estimated for this device based on an analysis
of the two-point correlation function of magnetoconductance
fluctuations [13]. With that technique, we obtained similar
values of Lφ for several other FETs fabricated with nanowires
from the same batch. While the AB effect is suppressed
by disorder, the AAS effect should survive and exhibit
conductance oscillations with a period of �0/2. However,
these effects are most clear and strong in the limiting case of
shell conduction at a fixed radius, where all electronic states
enclose the same flux. Our results suggest intermediate band
bending in this device and therefore a distribution of effective
radii, which is expected to strongly attenuate AAS oscillations.
Also, the AAS effect should produce oscillations whose phase
is independent of the chemical potential (gate voltage), and no
such gate-independent oscillation is visible in the conductance
data.

IV. CONCLUSION

This paper has described a model of magnetoconductance
based on the energy spectra of transverse electronic states in
a semiconductor nanowire. It extends previous work in this
area to examine the contrasting effects of weak and strong
surface band bending on the patterns of conductance versus
magnetic field and gate voltage. Conductance features from
experiments on an InAs nanowire were shown to be consistent
with the model, and provide a plausible match to specific
subbands, although the assignment for this particular device is
not definitive. Although the device is in the weakly localized
regime, characterized by several elastic scattering events per
transit, backscattering is found to dominate over interband
scattering so that the subband effects on magnetoconductance
predicted for ballistic transport should still be visible here.
We suggest that in a quasiballistic nanowire FET, quantitative
analysis of magnetoconductance patterns using the method of
determining the di,i+1/sj ratios described previously will allow
unambiguous identification of the subbands participating in
transport. It can also determine, to a degree consistent with the
quality of the data, the radial potential V (r). Cleaner transport
can be achieved either by using materials with higher mobility,
such as InSb [29], using core-shell nanowires with lower defect
densities than the one examined here, or by fabricating shorter
channels. There are two caveats to further shortening the
channel: it will produce quantization of the axial states, which
complicates the conductance calculation, and it will increase
gate screening by the nanowire contacts, which reduces the
effectiveness of the gate in modulating the chemical potential.
Including Zeeman and spin-orbit effects in the model is
straightforward [19], and is expected to improve agreement
with experiment at high magnetic fields. It will also provide
a method for measuring the subband-specific magnitudes
of the g factor and the spin-orbit coupling, assuming the
subband splittings due to these effects are visible. Inclusion
of the potential asymmetry due to a backgate geometry in
numerical simulations is also straightforward, although we
estimate this asymmetry to make only a small correction
to the surface potential when the gate oxide is sufficiently
thick. Accurate understanding of the radial potential and
subband structure has implications for controlling surface
scattering and tuning the number of modes participating
in transport, leading to improved engineering of nanowire
devices.
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