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π-plasmon dispersion in free-standing graphene by momentum-resolved electron energy-loss
spectroscopy
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The π -plasmon dispersion in graphene was scrutinized by momentum-resolved electron energy-loss
spectroscopy with an improved momentum q resolution and was found to display the square root of the q

dispersion characteristic of the collective excitation of two-dimensional electron systems, in contrast to previous
experimental and theoretical studies which reported a linear q dispersion. Our theoretical elaborations on the
q-dependent spectra affirm this square root of q relation and further unveil an in-plane electronic anisotropy.
The physical property of the π plasmon is thoroughly compared to that of the two-dimensional plasmon due
to carriers of the Dirac fermions. A clear distinction between the π plasmon and the two-dimensional Dirac
plasmon is demonstrated, clarifying the common notion about correlating the linearly dispersed Dirac cones with
the linear dispersion of the π plasmon previously reported.
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I. INTRODUCTION

Graphene, a single layer of carbon atoms densely packed in
a honeycomb lattice, is the first stable two-dimensional (2D)
material found in the atmosphere [1,2]. This 2D carbon sheet
comprises a conical-band character of Dirac fermions at the
corners of Brillouin zone (BZ) showing a distinct linear q

dependence [1–3], and graphene continues to be the model
system in the search for emergent 2D phenomena, ranging
from topological states to anomalies in monolayer transition-
metal dichalcogenides [4,5].

In graphene, the 2D Dirac fermions are massless and exhibit
remarkably high, robust carrier mobility upon temperature
variations [1–3.] These features add a plethora of novel
device applications [1], in analogy with a 2D electron gas
(2DEG) in conventional semiconductor heterojunctions. Using
q-dependent electron energy-loss spectroscopy (EELS), the
collective plasmon excitation of the 2D electrons (with density
generally of the order of ∼1013 cm−2) is found to form an
otherwise dispersive feature at 0–1 eV, with the characteristic√

q dependence being distinctly different from the linearly dis-
persed Dirac cones of a single-particle characteristic [3,6–12].
This

√
q dispersion has been theoretically investigated in detail

and has been demonstrated to be the signature of collective
quasiparticle excitations with a 2D nature [3,6–9]. Such a 2D
Dirac plasmon with its low excitation energy boasts another
intriguing characteristic of graphene, plasmonics applications
in the near- and far-infrared regimes [10,11]. Indeed, the
technological merit of graphene continues to grow with the
increasing understanding of the Dirac fermions [1,2,12]. Apart
from these intriguing characteristics, the elementary structure
of graphene is nonetheless determined by the π and σ valence
electrons lying outside the Dirac cones, with the former
being unpaired in an out-of-plane orbital and the latter being
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hybridized with the three coordinated carbons in the ab plane,
like in parent graphite [1–3,13,14].

In graphene and also parent graphite, the π and σ electrons
manifest the related collective excitations of π and π + σ

plasmons above ∼4 and ∼15 eV, respectively [15–22].
Moreover, both the collective excitations of parent graphite
show a quadratic dispersion (proportional to q2) in line with
the typical dynamical response in three-dimensional (3D)
bulks [3,20–22]. By contrast, graphene is a perfectly 2D matter,
and its collective π and π + σ plasmons oscillate in the 2D
plane, intuitively giving rise to a 2D character of the plasmons,
just like the 2D Dirac plasmon at 0–1 eV [3,6–9]. Surprisingly,
three recent q-dependent EELS studies of the π plasmon of
graphene reported a quasilinear dispersion [17–19], which
is a general characteristic of the plasmon excitations of
one-dimensional electron systems [3,16], and a separate
theoretical work on the subject also pointed out the same
dispersion feature [23]. These works represent the detailed
works on the π -plasmon dispersions of graphene [17–19,23],
while the linear dispersion derived is at odds with the
established notion of the

√
q-dispersion characteristic

of 2D systems [3,6–9]. An elaborate q-dependent EELS
investigation, which has largely escaped experimental scrutiny
due to the focus on the 2D Dirac plasmon [3,6–11], is essential
for shedding light on this inconsistency.

In this work, we report q-dependent EELS studies of the
π plasmon in free-standing graphene with an improved q

resolution of ∼0.001 Å
−1

over the entire BZ and a momentum
transfer up to the zone boundary of ∼1.5 Å

−1
. The previous

q-dependent EELS studies showed a q resolution of the

order of ∼0.01 Å
−1

and/or accessed only a fraction of the
BZ [6–8,16–19]. With the fine q resolution and extensive q

range, we were able to explore the π plasmon along the two
principal in-plane directions, �̄M̄ and �̄K̄, at high precision
and consistently found the

√
q-dispersion characteristic of

2D collective excitations. A further tilting experiment with
graphene, allowing out-of-plane contributions to the EELS
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excitation, indicated that the π -plasmon dispersion is free from
any out-of-plane dispersive component, unveiling the true 2D
character of the π plasmon without ambiguity [3,4,6–9]. The
EELS results along with an in-plane electronic anisotropy
observed at large q are theoretically investigated, and the
dispersion of the π + σ plasmon is also discussed.

II. EXPERIMENTS AND THEORETICAL CALCULATIONS

The EELS experiments were performed on a transmission
electron microscope (TEM; FEI Tecnai F20), operated at
120 kV and equipped with a field-emission gun. To achieve
the superb q resolution required for resolving the π -plasmon
dispersion of graphene unambiguously, an exceptionally long
camera length of the diffraction pattern is crucial, and this
can be attained by raising the sample-object plane so as
to use the graphene as an optical grating of the incident
parallel illumination by itself (detailed methodology is given
in Ref. [24]), resulting in a camera length of ∼92 m. Using
an EELS slit size of 4 × 10−4 m and a finite diffraction spot

focused on the slit, a q resolution of ∼0.001 Å
−1

was derived.
The accompanying EELS energy resolution is ∼0.6 eV.

The graphene sheet was grown on a Cu foil by chemical
vapor deposition and was then transferred onto a TEM grid in a
free-standing form. Careful monitoring of the diffraction-spot
intensity revealed the monolayer feature in many patches
(a few tens of micrometers in the lateral dimension) of
the thus-prepared sample [25], and the EELS results were
acquired from these regions. The EELS experiments with
graphite were conducted on exfoliated natural graphite with
a thickness of ∼40 nm.

The theoretical understanding of our EELS observations
was undertaken in the framework of the density functional
theory with the local-density approximation (LDA) plus the
linear response of the random-phase approximation (RPA) and
otherwise adiabatic LDA (ALDA) [26,27]. We use the accurate
real-space projector augmented-wave function (PAW) [28],
which is implemented in the GPAW code [29]. Graphene is
simulated by a slab supercell with the in-plane lattice constant
a of 2.46 Å and an elevated interlayer spacing of 25 Å in order
to assure a good convergence. A grid spacing of 0.2 Å was used
throughout all calculations. In addition, a k sampling with 25
× 25 × 1 for the 2D BZ was exploited in the self-consistent
calculation of the band structure. A denser k-point mesh of
100 × 100 × 1 and a plane-wave energy cutoff up to 200 eV
(i.e., including 819 plane waves) were taken into account upon
the evaluation of the theoretical q-dependent EELS spectra,
which further integrate the 50 bands up to 40 eV above the
Fermi level. For comparison, we have also performed the same
calculations for graphite. The lattice constants a = 2.46 Å and
c = 6.71 Å were used. A k-sampling mesh of 20 × 20 × 7
was used in the self-consistent band structure calculation, and
a fine k-point mesh of 40 × 40 × 14 was used in the calculation
of the q-dependent dielectric function and EELS spectra.

III. RESULTS AND DISCUSSION

The q-resolved EELS experiments of graphene were
performed along both �̄M̄ and �̄K̄. In Fig. 1(a) along �̄M̄,
the superb q resolution facilitates a direct observation of the

FIG. 1. (Color online) (a) The q-dependent EELS map in the
long-wavelength limit of graphene along �̄M̄. The gray line is
the light line. The curved dashed lines are guides for the eyes
for the characteristic nonlinear dispersions derived from the peak
positions revealed in (b). (b) The EELS spectra extracted from (a)
at the indicated q. The bottom gray line shows the EELS spectrum

integrated over the whole q range of 0 − 0.012 Å
−1

in (a). The inset
shows a close-up of the π + σ -plasmon portion of the gray spectrum.

dispersive π and π + σ plasmons in the long-wavelength limit,
starting from ∼4 and ∼13 eV at q → 0, respectively. The
dispersive feature of these excitations in such a small q range

(0 − 0.012 Å
−1

) has never been resolved due to a compromised

q resolution of the previous reports (0.03 − 0.06 Å
−1

) [17–19].
Although the strong elastic peak tends to saturate the intensity
of Fig. 1(a) below ∼3 eV, both plasmons point to a nonlinear
dispersion, which will be affirmed in Figs. 2 and 3. In
Fig. 1(b), we show the EELS spectra extracted from Fig. 1(a)

with q ≈ 0.002 − 0.012 Å
−1

. The integrated spectrum over
the whole q range is also exhibited [bottom gray curve in
Fig. 1(b)], and the thus-indicated π - and π + σ -plasmon peaks
at ∼4.5 and ∼15 eV (also see the inset), respectively, are
consistent with the well-known excitation energies resolved
by scanning TEM (STEM) that typically integrate over q as
a result of the convergent-beam optics [15]. This agreement
with the STEM results reaffirms the benefit and necessity of
performing EELS experiments with high q resolution under
these circumstances, and with this reinforced confidence level
of our q-resolved setup, we now proceed to the dispersion over
the whole BZ along �̄M̄ and �̄K̄ (Fig. 2).

Figures 2(a) and 2(b) show the large-q dispersion along

�̄M̄ up to the BZ boundary (∼1.5 Å
−1

) and the EELS spectra
acquired at selected q, respectively. Figure 2(c) illustrates the
corresponding large-q dispersion along �̄K̄. We note from
Fig. 2 that the π plasmon disperses from ∼4 eV (q → 0)

to ∼12 eV (q ∼ 1.5 Å
−1

) along both �̄M̄ and �̄K̄ with
an accompanying broadening of the peak, as expected. The
dispersion of the π + σ plasmon from ∼13 eV (q → 0) to

∼30 eV (q ∼ 1.5 Å
−1

) can also be resolved. Intriguingly,
the π -plasmon dispersion along �̄M̄ is accompanied by a

low-energy, dispersive shoulder for q larger than 0.5 Å
−1

,
while such a phenomenon is absent along �̄K̄. We will come
back to this feature and also the dispersion of the π + σ

plasmon later, and we now focus on the π -plasmon dispersion
outlined in Fig. 3.
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FIG. 2. (Color online) (a) The q-dependent EELS map toward the BZ boundary of graphene along �̄M̄. (b) The EELS spectra acquired at
the selected q. (c) The q-dependent EELS spectra toward the BZ boundary along �̄K̄. The spectra in (b) and (c) were all normalized to the
spectral intensity at ∼4.5 eV and then displaced vertically to improve the readability.

In Fig. 3(a), the experimental dispersions of the π plasmon
along �Q and �P of parent graphite (the counterparts of
�̄M̄ and �̄K̄, respectively) are also shown, and both exhibit
the characteristic parabolic dependence (∝ q2) [20–22]. In
addition, the dispersions along the two in-plane directions

are indistinguishable in the q range of 0 − 0.5 Å
−1

and start

FIG. 3. (Color online) (a) The π -plasmon dispersions in
graphene along �̄M̄ (black squares) and �̄K̄ (red solid circles) and
those in parent graphite along the �Q (gray open diamonds) and
�P (red open circles) counterparts. The rescaling of the (b) π - and
(c) π + σ -plasmon dispersions along �̄M̄ (black squares) and �̄K̄
(red circles) as a function of the

√
q relation. The dashed gray

line is a guide for the eyes for the linear
√

q scaling toward the
long-wavelength limit in (b) and throughout the q range in (c).

to deviate from each other at q above 0.5 Å
−1

. In graphene
[Fig. 3(a)], it is obvious that, near the long-wavelength limit

(0 − 0.5 Å
−1

), the π -plasmon dispersions along �̄M̄ and �̄K̄
are neither quadratic as bulk graphite is nor linear as previously
reported [17–19,23], although the dispersions tend to mimic

those of parent graphite for q larger than 0.5 Å
−1

. A nonlinear
feature of the π -plasmon dispersions of graphene is indeed

resolved in the q range of 0 − 0.5 Å
−1

[Fig. 3(a)], and the
associated dispersions along �̄M̄ and �̄K̄ are almost the
same. Now, we rescale the π -plasmon excitation energy as a
function of

√
q in Fig. 3(b). Notably, the nonlinear π -plasmon

dispersion with q smaller than 0.5 Å
−1

is faithfully underlined
by this

√
q dependence [Fig. 3(b)], indicative of plasmons with

a 2D character [3,6–9]. In principle, a perfectly 2D excitation
should be further supported by the absence of out-of-plane
electronic components of the state [4]. We carefully examined
this possibility by tilting the graphene specimen (Fig. 4), a
technique that has been exploited to reveal the anisotropic
in-plane and out-of-plane signatures of the π and π + σ

plasmons in 3D parent graphite [20,30].
At first glance, the π -plasmon dispersion curves acquired

for three separate tilting angles (α = 0◦, 45◦, and 60◦) in
Fig. 4(a) are visibly different, showing a decrease in excitation
energies with increasing α and therefore seemingly suggesting
the existence of an out-of-plane factor such as parent graphite.
Nevertheless, it should be noted from the inelastic scattering
kinematics [inset in Fig. 4(a)] that, upon tilting, the effective
momentum transfer is the q component projected onto the
graphene sample qs (≈qcosα), rather than the primitive q.
A rescaling of Fig. 4(a) as a function of qs , shown in
Fig. 4(b), reveals not only the profound equivalence of the
three dispersion curves but, more importantly, the absence of
any out-of-plane dispersive contribution to the π plasmon [4].
The 2D character of the π plasmon of graphene is now
established. Although the π + σ plasmon is too broad for such
a sample-tilting inspection, a detailed examination of Fig. 3(c)
indicates that the π + σ -plasmon dispersion basically scales
with the

√
q relation like the π plasmon and also reflects its

2D character.
With all these EELS elaborations in Figs. 2 –4, both the π

and π + σ plasmons of graphene clearly have a 2D essence.
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FIG. 4. (Color online) (a) The π -plasmon dispersions along �̄M̄ as a function of the tilting angle α of the graphene specimen from the
normal incidence, with α = 0 (black squares), 45° (red circles), and 60° (gray triangles). The inset shows the inelastic scattering kinematics at
a given sample tilting of α.k0, incident beam; kf , inelastically scattered beam; q (blue), the momentum transfer corresponding to the inelastic
scattering; qs (red, ≈ qcosα), the exact momentum transfer on the graphene sheet. (b) The rescaled dispersion curves as a function of qs .

Previous reports of a linearly dispersed π plasmon should be
a consequence of the limited q resolution therein [17–19]. It
is also noted that a recent theoretical report on the collective
excitations in graphene suggested a quadratic dispersion of the
π + σ plasmon [23], which is not found at all in our EELS
investigations in Fig. 3(c). Moreover, in Fig. 2 we also did not
observe the splitting of the π + σ plasmon with a magnitude

of a few eV for q larger than ∼1.0 Å
−1

only along �̄K̄ that was
reported in a recent EELS study of the plasmon dispersions
of graphene (Ref. [17]). A splitting of this magnitude should
be easily resolvable with our energy resolution of ∼0.6 eV if
it exists. This π + σ -plasmon splitting issue requires further
investigation.

Having established the 2D character of the π and π + σ

plasmons of graphene, we now tackle the dispersive low-
energy shoulder accompanying the π plasmon, which shows

up only along �̄M̄ for q larger than 0.5 Å
−1

and apparently
further broadens the π -plasmon peaks [Figs. 2(b) and 3(a)].
Indeed, the same EELS feature was also reported in Ref. [17]
and was qualitatively suggested to be a π -plasmon splitting,
although its physical origin was not addressed. In the relevant
theoretical work of Ref. [23], a similar splitting along �̄M̄
was found to disperse throughout the q range, unlike in the
experimental observations in Figs. 2(b) and 3(a) and Ref. [17].
In Ref. [23], the dispersive shoulder was understood to be the
π -plasmon splitting, but further details were not given. The
splitting of a surface plasmon, which commonly occurs due to
the electromagnetic coupling between two adjacent surfaces,
is not expected to happen in single-layer graphene [31].
Therefore, we attempted to address the electronic origin of
this low-energy shoulder along �̄M̄, and a close examination
of Figs. 3(a) and 3(b) reveals three interesting characteristics.
First, the same dispersive shoulder appears in parent graphite

along �Q for q larger than ∼0.5 Å
−1

[Fig. 3(a), open
diamonds]. Second, the π -plasmon dispersions of graphite
and graphene are basically identical in the q regime above

0.5 Å
−1

[Fig. 3(a)], with the π -plasmon dispersion along �Q
(�̄M̄) lying above that along �P (�̄K̄) in graphite (graphene).

Third, the scaling of the π -plasmon dispersions along �̄M̄ and
�̄K̄ deviates from the

√
q relation when q becomes larger than

0.5 Å
−1

[Fig. 3(b)].
In parent graphite, the low-energy dispersive shoulder

arises from a direct, nonvertical π → π∗ interband transition
present along �Q at large q and plays the role of blueshifting
the associated π plasmon accordingly [20–22]. This thus-
shifted π plasmon then sits on top of the dispersion curve
along �P, as observed in Fig. 3(a), indicating an in-plane
electronic anisotropy originating from the different charac-
teristic band structures along the two inequivalent �Q and
�P directions [20–22]. Indeed, the two in-plane counterpart
directions of graphene, �̄M̄ and �̄K̄, are also intrinsically
inequivalent. If we ignore the linearly dispersed Dirac cones
at the K̄ point, the band structures of graphene and graphite
are otherwise similar [2,13,32]. For instance, the π → π∗
interband transition of graphene also occurs at ∼4 eV at the
M̄ point [2,13,15,32], and the corresponding band dispersion
closely resembles that of graphite [32]. The low-energy
dispersive feature along �̄M̄ could then be associated with a
direct, nonvertical interband transition like the one in graphite,
as confirmed by our ab initio calculations of the q-dependent
electronic excitations in graphene and graphite within both
RPA and ALDA (Fig. 5).

Figures 5(a) and 5(b) show the calculated q-dependent
EELS spectra of graphite along �Q and �P, respectively,
and Figs. 5(c) and 5(d) exhibit the readily derived π -plasmon
dispersions and the low-energy dispersive feature. The ex-
perimental EELS results of graphite in Fig. 3(a) are also
incorporated into Figs. 5(c) and 5(d) for comparison. Indeed,
both the parabolic π -plasmon dispersion of graphite and the
direct, nonvertical π → π∗ transition along �Q at large q are
nicely captured in our calculations [Figs. 5(c) and 5(d)]. In
Figs. 5(e) and 5(f), the graphene-counterpart calculations are
also notably consistent with the corresponding EELS observa-
tions of the

√
q scaling of the π -plasmon dispersion and the

onset of the low-energy dispersive transition at q ∼ 0.5 Å
−1

.

For q < 0.5 Å
−1

, where the π -plasmon excitation is dominant,
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FIG. 5. (Color online) The calculated q-dependent EELS spectra of parent graphite along (a) �Q and (b) �P within the ab initio RPA
(black) and ALDA (red) frameworks. (c) and (d) The dispersion curves derived from (a) and (b) along �Q and �P, respectively. The experimental
EELS results in Fig. 3(a) are also shown for comparison (black squares). The calculated π -plasmon dispersions in graphene along (e) �̄M̄
and (f) �̄K̄ within the ab initio RPA (red open circles) and ALDA (blue open triangles) methods and also the associated EELS experiments in
Fig. 3(a) (black squares).

the electronic screening effect is strong due to the large
real part of the complex dielectric function (ε = ε1 + iε2),
as shown in the corresponding calculations in Fig. 6(a), and
the intensity of the low-energy interband transition features is
readily overwhelmed by the plasmon (see the associated loss

function), becoming invisible in EELS. For q > 0.5 Å
−1

, the
π -plasmon oscillation is, however, increasingly damped with
a diminishing intensity, and the lower-energy peak due to the
interband transition can then emerge as a shoulder [see the
calculated loss function, Fig. 6(b)].

Nonetheless, there exists a systematic overestimation for
the ALDA results compared with the RPA calculations of
graphene [Figs. 5(e) and 5(f)]. Indeed, the ALDA method is
optimal for 3D matters with a nearly homogeneous electron
density, and the previous ALDA calculations of such a mate-
rial, Al, have been found to satisfactorily depict the character-
istic plasmon dispersion [33]. By contrast, graphene is purely
2D, and the associated electron density changes abruptly along
the out-of-plane direction; thus, a 2D system is not an ideal
geometry for ALDA. For the ALDA method to be more
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FIG. 6. (Color online) The q-dependent complex dielectric func-
tion, ε = ε1 + iε2, and the thus-derived electron-energy loss function,

Im(−1/ε), of graphene along �̄M̄ for (a) q = 0.295 Å
−1

and (b)

q = 1.003 Å
−1

from the RPA calculations.

appropriate for 2D systems, an improved exchange-correlation
potential would be required, which is an intriguing challenge
to be resolved in the future. Otherwise, the general agreement
between the theoretical calculations and experiments in Fig. 5
points to a close electronic similarity between 2D graphene

and 3D graphite for q larger than 0.5 Å
−1

as a result of the
close resemblance of their electronic structures [32]. This
electronic similarity underlines the three features of Figs. 3(a)
and 3(b) as a whole and, more importantly, establishes the
in-plane electronic anisotropy of graphene just like in the
parent graphite.

So far, we have investigated the electronic excitations of
graphene above ∼4 eV. We intend to further compare the
π plasmon to the 2D Dirac plasmon at 0–1 eV [3,7,8].
In previous π -plasmon studies of graphene [17,18,23], the
reported linear dispersion, proven to be incorrect herein, was
correlated with transitions from the linearly dispersed Dirac
cones [18] and became a generally accepted notion [17,23].
The possibility for the Dirac fermions to entangle with the
π plasmon is vanishingly small since the spectral weight
of carriers in the Dirac cones centers below ∼1 eV due to
its small carrier density (∼ 1013 cm−2) [7,8,10–12], which is
two orders of magnitude below that of π valence electrons,
as discussed later. The correlation of the reported linear
dispersion of the π plasmon to the linear Dirac cones can
be safely discounted. Nonetheless, the π -plasmon onset at
∼4 eV as q → 0 [Fig. 3(a)] coincides with the π → π∗ vertical

interband transition of ∼4 eV at the M̄ point [15,32]. This raises
the possibility of mixed collective and single-particle essences
for the π plasmon [19], and an electromagnetic oscillation
of this type, the so-called plexciton (coupling of interband
transitions and plasmon oscillators), has been reported [8,34].

The continuous π -plasmon dispersion from ∼4 eV (q → 0)

to ∼12 eV (q ∼ 1.5 Å
−1

) and its
√

q scaling in Fig. 3(b) follow
the equation ωp(q) = β + √

γ q, derived for a 2D collective
excitation due to an interband transition, with ωp being
the dispersive plasmon energy, β being the single-particle
oscillator strength, and γ =

√
2πn2De2/mε [6,9]. It should be

noted that the derivation of γ has been based on the long-range
Coulomb response of a noninteracting 2DEG to an external
longitudinal electric field [6,9], analogous to the longitudinal
excitations in our EELS [31], where n2D is the 2D electron
density (in cm−2), e is the elementary charge, m is the effective
mass of electron (0.06m0 − 0.07m0, with m0 being the rest
mass of an electron) [13,14], and ε is the dielectric constant (set
to unity, for convenience). The square root of γ was determined
to be ∼5.18 from Fig. 3(b), and the dispersion relation of
the π plasmon can now be written as ωP ≈ 4 + 5.18

√
q

for q smaller than 0.5 Å
−1

. We were then able to obtain
the corresponding 2D π -electron density as ∼2 × 1015 cm−2,
which is notably on the same order as the total π electrons
integrated in the first BZ of graphene, ∼3.8 × 1015 cm−2

(≈ 4/
√

3a2) [14]. A difference in the π -electron densities
by a factor of 2 can be noted, implying that, in the case of
the noninteracting 2DEG model [6,9], only about half of the
total π electrons participate in the corresponding 2D plasmon
excitation, with the rest of the oscillator strength being taken
up by the single-particle interband transition at nearly the
same energy as the π plasmon. Hence, the agreement between
the two evaluated electron densities can be a reasonable one,
and the consistency between the thus-deduced single-particle
oscillator strength β of ∼4 eV and the associated interband
transition (∼4 eV) is satisfactory, suggesting a single-particle
mixture for the collective 2D π plasmon. Indeed, such a
suggestion was also raised recently on the basis of the proposal
that the linear dispersion of the π plasmon observed could
be entangled with a linearly dispersed π → π∗ interband

transition at lower energy along �̄M̄ at q � 0.5 Å
−1

[19].
Although we have firmly established the

√
q dispersion of

the π plasmon at q � 0.5 Å
−1

and the onset of the π → π∗

transition only above 0.5 Å
−1

for q along �̄M̄, this coincidence
in the suggestion is still intriguing. Nevertheless, we are
conservative about further terming the π plasmon of graphene
as a plexciton, which features a coherent coupling between
the single-particle and collective oscillator strengths [34]. The
broad π plasmon observed herein [Figs. 2(b) and 2(c)] does
not seem to support this element of coherent coupling.

IV. CONCLUSION

Using q-dependent EELS, we have revealed the 2D essence
of the π and π + σ plasmons of graphene with the convincing
observation of a characteristic

√
q dispersion of 2D collective

excitations near the long-wavelength limit. For the π plasmon,
evidence for the absence of any dispersive component along
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the out-of-plane direction, which is a further signature of a
2D excitation, was also presented. In addition, a low-energy,
dispersive shoulder accompanied by the π -plasmon dispersion
along �̄M̄, but not along the other principal vector of �̄K̄
in the ab plane, was theoretically tackled and was found
to arise from a direct, nonvertical interband transition along
only �̄M̄, revealing an in-plane electronic anisotropy. The
quantitative evaluation of the

√
q scaling of the π plasmon

microscopically reveals that this 2D collective oscillation
is also electronically intermingled with the single-particle

π → π∗ interband transition, which is totally different from
the well-known 2D Dirac plasmon of graphene with a purely
Dirac fermion contribution.
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