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Comparison of hydrodynamic model of graphene with recent experiment on measuring
the Casimir interaction
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We obtain the reflection coefficients from a graphene sheet deposited on a material substrate under a condition
that graphene is described by the hydrodynamic model. Using these coefficients, the gradient of the Casimir force
in the configuration of a recent experiment is calculated in the framework of the Lifshitz theory. It is shown that
the hydrodynamic model is excluded by the measurement data at a 99% confidence level over a wide range of
separations. From the fact that the same data are in very good agreement with theoretical predictions of the Dirac
model of graphene, the low-energy character of the Casimir interaction is confirmed.
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I. INTRODUCTION

Graphene is a two-dimensional sheet of carbon atoms
which attracts much experimental and theoretical attention
due to its unique physical properties and great promise
for various applications [1]. The most often used approach
to describe the electric and optical properties of graphene
is the Dirac model [2]. It is applicable at low energies
of up to a few eV and assumes the linear dispersion
relation for massless quasiparticles, which move with a
Fermi velocity rather than with the speed of light [3]. The
Dirac model was applied by many authors to calculate the
van der Waals, Casimir, and Casimir-Polder interactions
in layered systems including graphene (see, for instance,
Refs. [4–8]). The most straightforward formalism for perform-
ing these calculations uses the polarization tensor in (2+1)-
dimensional space-time [9–14]. Recently, an equivalence of
the formalisms exploiting the polarization tensor and the
density-density correlation function has been proven [15].
Furthermore, the formalism of the polarization tensor was
applied [16,17] for comparison with the measurement data
of a recent experiment [18] and demonstrated very good
agreement.

Another approach used in the theoretical description of the
properties of graphene is the hydrodynamic model [19,20].
This model considers graphene as an infinitesimally thin
positively charged sheet, carrying a homogeneous fluid with
some mass and negative charge densities. In the framework
of this model, the dispersion relation for quasiparticles in
graphene is quadratic with respect to the momentum. The
hydrodynamic model was also considered and applied to
calculate the van der Waals, Casimir, and Casimir-Polder
interactions in many papers [11,12,21–28]. It was found [11]
that in an interaction of graphene with either a Si or a Au
plate, the hydrodynamic model predicts larger magnitudes of
the Casimir free energy than the Dirac model.

In this paper, we compare theoretical predictions of the
hydrodynamic model with the experimental data of a recent
measurement [18] of the gradient of the Casimir force
between a Au-coated sphere and a graphene sheet deposited
on a SiO2 film covering a Si plate. For this purpose, we

derive exact expressions for the reflection coefficients of
the electromagnetic oscillations on a three-layer structure,
where one layer is a two-dimensional sheet described by
the hydrodynamic model, whereas the two other layers are
described by frequency-dependent dielectric permittivities.
Then, the Casimir force and its gradient are calculated by
using the standard Lifshitz theory [29,30] in the proximity
force approximation [30] (PFA). We demonstrate that the
theoretical predictions of the hydrodynamic model are ex-
cluded by the measurement data at a 99% confidence level
over a wide region of separations between the sphere and
the graphene sheet. This allows us to conclude that the
hydrodynamic model of graphene does not describe such
physical phenomena, as the van der Waals and Casimir
forces.

The paper is organized as follows. In Sec. II we derive the
reflection coefficients for a graphene-coated substrate under an
assumption that graphene is described by the hydrodynamic
model. Using these reflection coefficients, in Sec. III we
calculate the gradient of the Casimir force in the experimental
configuration of a recent experiment [18] and compare the
theoretical results with the experimental data. Section IV
contains our conclusions and a discussion.

II. REFLECTION COEFFICIENTS
IN THE HYDRODYNAMIC MODEL

We consider the amplitude reflection coefficients R(g,s)

from a graphene sheet deposited on a thick plate (semispace)
made of an ordinary material. Let us denote the reflection
coefficient from a freestanding graphene sheet by r (g) and
from a semispace in vacuum by r (s). Then, for the transverse
magnetic (TM) and transverse electric (TE) polarizations of
the electromagnetic field, one obtains [16]

R
(g,s)
TM,TE = r

(g)
TM,TE + r

(s)
TM,TE

(
1 ∓ 2r

(g)
TM,TE

)
1 − r

(g)
TM,TEr

(s)
TM,TE

. (1)

Here, the minus and plus signs should be chosen for the TM
and TE polarizations, respectively.
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In the framework of the hydrodynamic model, the reflection
coefficients r (g) for a graphene sheet in vacuum calculated at
the Matsubara frequencies along the imaginary frequency axis
take the form [11,12,21–23,25,27,30]

r
(g)
TM ≡ r

(g)
TM(iξl,k⊥) = c2qlK

c2qlK + ξ 2
l

,

r
(g)
TE ≡ r

(g)
TE (iξl,k⊥) = − K

K + ql

. (2)

Here, the Matsubara frequencies are ξl = 2πkBT l/�, kB is the
Boltzmann constant, T is the temperature, l = 0,1,2, . . ., q2

l =
k2
⊥ + ξ 2

l /c2, k⊥ = |k⊥|, and k⊥ is the projection of the wave
vector on the plane of graphene. The quantity K is the single
parameter characterizing graphene in the framework of the
hydrodynamic model. It has the meaning of the wave number
of a graphene sheet and is determined by the parameters of
the hexagonal structure of graphite (one π electron per atom,
resulting in two π electrons per hexagonal cell). Calculation
leads to [19–21]

K = 2π
ne2

mc2
= 6.75×105 m−1, (3)

where e and m are the charge and mass of the π electrons
and n = 4/(3

√
3l2), with l = 1.421 Å being the side length of

the hexagon in a crystal lattice. The wave number in Eq. (3)
corresponds to the frequency ωK = cK = 2.02×1014 rad/s.

The reflection coefficients r (s) from the boundary plane of a
semispace described by the dielectric permittivity ε1l ≡ ε1(iξl)
are the well-known Fresnel coefficients

r
(s)
TM ≡ r

(s)
TM(iξl,k⊥) = ε1lql − k1l

ε1lql + k1l

,

r
(s)
TE ≡ r

(s)
TE(iξl,k⊥) = ql − k1l

ql + k1l

, (4)

where

k2
1l ≡ k2

1(iξl,k⊥) = k2
⊥ + ε1l

ξ 2
l

c2
. (5)

Substituting Eqs. (2) and (4) in Eq. (1), we find the reflection
coefficients from a graphene sheet deposited on a semispace
made of ordinary material,

R
(g,s)
TM ≡ R

(g,s)
TM (iξl,k⊥) = ε1lqlξ

2
l − k1lξ

2
l + 2c2qlKk1l

ε1lqlξ
2
l + k1lξ

2
l + 2c2qlKk1l

,

R
(g,s)
TE ≡ R

(g,s)
TE (iξl,k⊥) = ql − k1l − 2K

ql + k1l + 2K
. (6)

For computational purposes, we express the reflection coeffi-
cients (6) in terms of the dimensionless variables

y = 2aql, ζl = 2aξl

c
, (7)

where a is a parameter having the dimension of length (in
the next section, a has the meaning of a separation distance
between a graphene-coated substrate and a sphere). Then one

arrives at

R
(g,s)
TM ≡ R

(g,s)
TM (iζl,y) = ε1lyζ 2

l − k̃1lζ
2
l + 2K̃yk̃1l

ε1lyζ 2
l + k̃1lζ

2
l + 2K̃yk̃1l

,

R
(g,s)
TE ≡ R

(g,s)
TE (iζl,y) = y − k̃1l − 2K̃

y + k̃1l + 2K̃
, (8)

where

k̃2
1l = 4a2k2

1l = y2 + (ε1l − 1)ζ 2
l , K̃ = 2aK. (9)

III. COMPARISON OF THE HYDRODYNAMIC MODEL
WITH THE MEASUREMENT DATA

In the first experiment on the Casimir effect in systems
including graphene, the gradient of the Casimir force was
measured between a Au-coated hollow glass sphere of radius
R = 54.1 μm and a graphene sheet deposited on a SiO2 film
covering a Si plate [18]. The thickness of the SiO2 film was
D = 300 nm. The thickness of the Si plate (500 μm) was
large enough to consider it as a Si semispace when calculating
the Casimir force. In a similar way, the Au coating on the
sphere resulted in the same Casimir force as an all-Au sphere.
Measurements were performed by means of a dynamic atomic
force microscope operated in the frequency-shift technique
[31–35]. The force-distance relations were obtained with
different applied voltages (20 repetitions) and with applied
compensating voltages (22 repetitions) over the separation
region from 224 to 500 nm for two different graphene samples.
All the mean gradients of the Casimir force were found
to be in very good mutual agreement in the limits of the
experimental errors [18]. As an example, in Figs. 1(a) and
1(b) the typical mean gradients of the Casimir force (the
first sample, the measurement results obtained with applied
compensating voltage) are shown as crosses at different
separations a between the sphere and the plate. The vertical
arms of the crosses indicate twice the total error �F ′ =
0.64 μN/m in the measurements of the gradient of the Casimir
force, and the horizontal arms are twice the error �a = 0.4 nm
in the measurements of the absolute separations. These errors
were found at a 67% confidence level, i.e., the true values
of the force gradients and separations with a probability of
67% belong to the intervals [F ′(a) − �F ′,F ′(a) + �F ′] and
[a − �a,a + �a], respectively.

Using the Lifshitz theory and the PFA, the gradient of the
Casimir force between a Au sphere and a graphene sheet
deposited on a SiO2 film covering a Si plate (semispace) is
given by

F ′(a) = kBT R

4a3

∞∑
l=0

′ ∫ ∞

ζl

y2dy

×
[

r
(Au)
TM (iζl,y)R(g,f,s)

TM (iζl,y)

ey − r
(Au)
TM (iζl,y)R(g,f,s)

TM (iζl,y)

+ r
(Au)
TE (iζl,y)R(g,f,s)

TE (iζl,y)

ey − r
(Au)
TE (iζl,y)R(g,f,s)

TE (iζl,y)

]
. (10)

Here, T = 300 K is the temperature at the laboratory, the prime
on the summation sign multiplies by 1/2 the term with l = 0,
and the dimensionless variables y and ζl are introduced in
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FIG. 1. (Color online) The experimental data for the gradient of
the Casimir force between a Au-coated sphere and a graphene sheet
deposited on a SiO2 film covering a Si plate (the first sample) are
shown as crosses plotted at a 67% confidence level over different
separation regions, (a) from 224 to 350 nm and (b) from 350 to
500 nm. The respective theoretical predictions of the hydrodynamic
model of graphene are indicated as the blue bands.

Eq. (7). The reflection coefficients from a Au semispace (which
replaces a sphere in the PFA) are given by Eq. (4). In terms of
dimensionless variables, they take the form

r
(Au)
TM (iζl,y) = ε

(Au)
l y − k̃

(Au)
l

ε
(Au)
l y + k̃

(Au)
l

,

r
(Au)
TE (iζl,y) = y − k̃

(Au)
l

y + k̃
(Au)
l

, (11)

where, in accordance to Eq. (9),

k̃
(Au)
l = [

y2 + (
ε

(Au)
l − 1

)
ζ 2
l

]1/2
. (12)

The reflection coefficients from a graphene sheet deposited
on a SiO2 (fused silica) film covering a Si plate are expressed
by the standard formulas of the Lifshitz theory between layered
structures [30,36],

R
(g,f,s)
TM,TE(iζl,y) = R

(g,s)
TM,TE(iζl,y) + r

(f,s)
TM,TE(iζl,y)e−2Dk̃1l /(2a)

1 + R
(g,s)
TM,TE(iζl,y)r (f,s)

TM,TE(iζl,y)e−2Dk̃1l /(2a)
.

(13)
Here, the reflection coefficients R

(g,s)
TM,TE describe the reflection

from a graphene sheet deposited on a SiO2 semispace. If
graphene is described by the hydrodynamic model, they are
given by Eq. (8) with ε1l = ε(SiO2)(icζl/2a). The coefficients
r

(f,s)
TM,TE describe the reflection on the boundary plane between

the two semispaces made of SiO2 and Si. They are the standard
Fresnel reflection coefficients,

r
(f,s)
TM (iζl,y) = ε2l k̃1l − ε1l k̃2l

ε2l k̃1l + ε1l k̃2l

,

r
(f,s)
TE (iζl,y) = k̃1l − k̃2l

k̃1l + k̃2l

, (14)

where ε2l ≡ ε(Si)(icζl/2a) and k̃2l is defined similar to Eq. (9)
with a replacement of ε1l with ε2l .

The quantity ε
(Au)
l ≡ ε(Au)(icζl/2a) entering Eq. (11) is

found [30,31] using the Kramers-Kronig relation from the
measured optical data [37] for Im ε(Au) extrapolated to zero
frequency either by the Drude model with a plasma frequency
ωp = 9.0 eV and a relaxation parameter γ = 0.035 eV or by
the nondissipative plasma model. Note that the above values
of the Drude parameters are in very good agreement with
the measured optical data [38]. Contrary to expectations, the
most precise experiments on measuring the Casimir interaction
between metallic surfaces [30–34,39–42] are in agreement
with the theoretical predictions using the plasma model
extrapolation of the optical data and exclude the theoretical
results using the Drude model extrapolation. Deep physical
reasons as to why the plasma model extrapolation of the optical
data is in agreement with the most precise measurements and
the Drude model extrapolation is excluded by them remain
unknown. Here, we perform all computations using both
extrapolations for Au. We find that for a sphere interacting
with a graphene-coated substrate, where graphene is described
by the hydrodynamic model, the difference arising from using
different extrapolations is rather small. This allows one to
include it in the magnitude of the theoretical error, as it was
done in the case of a metal-graphene interaction computed
using the Dirac model of graphene [11,16,18].

In order to calculate the reflection coefficients (13), one
also needs the values of ε(Si) and ε(SiO2) at the imaginary
Matsubara frequencies. The B-doped Si plate used in the
experiment [18] had a resistivity between 0.001 and 0.005
	 cm. This corresponds [43] to a charge carrier density
between 1.6×1019 and 7.8×1019 cm−3, i.e., well above the
critical density at which the dielectric-to-metal phase transition
occurs [44]. Then one obtains for the plasma frequency [45]
the values between 5×1014 and 11×1014 rad/s and for the
relaxation parameter [34] γ ≈ 1.1×1014 rad/s. These Drude
parameters were used to extrapolate the optical data [46] for
Im ε(Si) to zero frequency by means of either the Drude or
the plasma model. Finally, the dielectric permittivity of Si at
the imaginary Matsubara frequencies was found by means of
the Kramers-Kronig relation, as was done previously in the
literature [47]. Different types of extrapolations for Si lead to
only minor differences in the computed force gradients in the
experimental configuration. This is also taken into account in
the theoretical error. An accurate analytic expression [48] has
been used for the dielectric permittivity of SiO2.

The theoretical force gradients using the hydrodynamic
model of graphene were computed by Eqs. (8), (10), (11),
(13), and (14). The computational results were corrected for
the presence of surface roughness whose contribution does not
exceed 0.1% in this experiment [16]. The computed gradients
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FIG. 2. The gradients of the Casimir force between a Au-coated
sphere and a graphene sheet deposited on a SiO2 film covering a Si
plate are computed using the hydrodynamic model (the dashed line)
and the Dirac model (the solid line) as functions of separation.

of the Casimir force are shown as blue bands in Figs. 1(a)
and 1(b) over the entire measurement range. The uncertainty
in the values of ωp of Si and the differences between the
predictions of the Drude and plasma model extrapolations
of the optical data for Au and Si determine the theoretical
error, which is taken into account in the width of the bands.
As is seen in Fig. 1, the theoretical description of graphene
using the hydrodynamic model is excluded by the data at
a 67% confidence level over the entire measurement range
from 224 to 500 nm. With an increasing confidence level, the
error bars of the mean force gradients and separation distances
also increase. Thus, at a 95% confidence level the maximum
increase of the error bars is by a factor of 2 [30,49]. Note that
if the errors are determined at the 95% or 99% confidence
levels, the true values of the force gradients and separations
belong to the wider intervals [F ′(a) − �F ′,F ′(a) + �F ′]
and [a − �a,a + �a] with probabilities of 95% and 99%,
respectively. Taking this into account, it can be seen that, over
the range of separations from 224 to 450 nm, the theoretical
predictions of the hydrodynamic model are excluded by the
data at a higher, 95% confidence level. If we further increase
the confidence level up to 99%, it is easily seen that the
theoretical predictions of the hydrodynamic model are still
excluded, but this time over a more narrow separation range
up to 360 nm.

It is interesting also to compare the theoretical predictions
of the hydrodynamic model with the theoretical predictions of
the Dirac model over a wider separation region from 220 nm
to 1 μm. In Fig. 2 the gradients of the Casimir force in
the configuration of an experiment [18] computed in this
paper using the hydrodynamic model (the dashed line) and
using the Dirac model [16,17] (the solid line) are shown as
functions of separation. As is seen in Fig. 2, the predictions
of the hydrodynamic model continue to be larger than the
experimentally consistent predictions of the Dirac model. The
physical reason why the hydrodynamic model is not suitable
for theoretical descriptions of the Casimir force in layered
systems including graphene may be in the linear dispersion
relation inherent to graphene at low energies. This property
makes a big difference between graphene and all types of
ordinary dielectrics and metals.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have compared the measurement results for
the gradient of the Casimir force between a Au-coated sphere
and a graphene-coated substrate [18] with the theoretical
predictions of the hydrodynamic model of graphene used
by many authors in previous literature. For this purpose, the
reflection coefficients from the three-layer structure, where
the first layer is graphene described by the hydrodynamic
model and the two other layers are described by the frequency-
dependent dielectric permittivities, have been obtained. It was
shown that the hydrodynamic model of graphene is excluded
by the measurement data over the entire measurement range
from 224 to 500 nm at a 67% confidence level. Over a narrower
separation region from 224 to 360 nm an exclusion of the
hydrodynamic model by the data at an even higher 99%
confidence level is demonstrated.

The same experimental data [18] were recently shown [16]
to be in very good agreement with theoretical predictions using
the Dirac model of graphene. Keeping in mind that the Dirac
model is applicable at energies below a few eV, the results
of this paper provide additional arguments in favor of the
low-energy character of the Casimir interaction. In the future it
would be interesting to apply the hydrodynamic model for the-
oretical description of the reflectivity of graphene at higher en-
ergies, outside the applicability region of the Dirac model, and
perform a comparison with respective experimental results.
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