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Origin of coherent G-band phonon spectra in single-wall carbon nanotubes

A. R. T. Nugraha,1 E. H. Hasdeo,1 G. D. Sanders,2 C. J. Stanton,2 and R. Saito1

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2Department of Physics, University of Florida, Box 118440, Gainesville, Florida 32611-8440, USA

(Received 5 August 2014; revised manuscript received 26 November 2014; published 8 January 2015)

Coherent phonons in single-wall carbon nanotubes (SWNTs) are observed as oscillations of the differential
absorption coefficient as a function of time by means of pump-probe spectroscopy. For the radial breathing mode
(RBM) of a SWNT, the coherent phonon signal is understood to be a result of the modulated diameter-dependent
energy gaps due to the coherent RBM phonon oscillations. However, this mechanism might not be the dominant
contribution to other phonon modes in the SWNT. In particular, for the G-band phonons, which correspond to
bond-stretching motions, we find that the modulation of the interatomic optical dipole (electron-photon) matrix
element gives rise to a strong coherent G-band phonon intensity comparable to the coherent RBM phonon
intensity. We also further discuss the dependence of coherent G-band and RBM phonon amplitudes on the laser
excitation pulse width.
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I. INTRODUCTION

Single-wall carbon nanotubes (SWNTs), characterized by
the chiral index (n,m) [1], have been important materials that
provide us with a one-dimensional model system to study
the dynamics and interactions between electrons, photons,
and phonons [2]. In particular, rapid advances in ultrafast
pump-probe spectroscopy have allowed researchers to observe
lattice oscillations of SWNTs with the same phase in real time,
known as coherent phonon spectroscopy [3–8]. The coherent
phonon motions can be observed as oscillations of optical
properties, such as the differential transmittance (�T/T ) or
differential reflectivity (�R/R) as a function of delay time
between pump and probe pulses. To excite a coherent phonon
of a given frequency, it is necessary for the pump pulse
to have a Fourier component at the phonon frequency. By
performing a Fourier transform of the oscillations of �T/T

or �R/R with respect to time, we can obtain the coherent
phonon spectra as a function of phonon frequency. Several
peaks found in the coherent phonon spectra of a SWNT
correspond to Raman active phonon modes, such as the radial
breathing modes (RBMs), D bands, G bands, and G′ bands [9].
Lim et al. showed that even the low-frequency acoustic
phonon signals can be observed in purified (6,5) SWNTs by
coherent phonon spectroscopy because of its ultrafine spectral
resolution [10]. Moreover, ultrafast spectroscopy techniques
allow us to directly measure phonon dynamics, including phase
information or lifetime of phonons, in the time domain [3,4,6].

It is known that oscillations of �T/T or �R/R as functions
of delay time t between pump and probe pulses in coherent
phonon spectroscopy are directly related to the modulations
of the absorption coefficient α as a function of the probe
energy Eprobe and t [11]. Therefore, in order to obtain the
coherent phonon spectra theoretically, we need to calculate
the absorption coefficient α(Eprobe,t) for a given coherent
phonon amplitude. In the case of RBMs, the oscillations of
α(Eprobe,t) have been understood as a result of energy gap
modulations, which are inversely proportional to the nanotube
diameter [4,6]. However, in the case of G bands, which are
assigned to longitudinal-optical (LO) and in-plane transverse-
optical (iTO) phonon modes [2], it is known that these modes

do not significantly modify the energy gaps because the SWNT
diameters are not sensitive to the LO/iTO vibrations. While the
coherent G-band signals are experimentally observed to be on
the same order of magnitude as the RBM signals [10,12], our
previous theoretical calculation predicted that the modulations
of absorption coefficient due to the G-band (LO) phonons are
about 1000 times smaller than those caused by the RBM [13].
We expect that the reason for the discrepancy is because
we considered only the change of the energy gap as a main
contribution for the coherent G-band spectra and also because
the excitation pulse used in the calculation was too long (50 fs)
compared to the G-band oscillation period (20 fs). This fact
indicates that a different mechanism is necessary to explain the
coherent G-band intensity and that the effects of laser pulse
width on the coherent phonon intensity should be taken into
account, both of which are the main subjects of this paper.

One possible dominant contribution to the coherent G-band
intensity is the modulation of the electron-photon interaction.
For example, Grüneis et al. discussed the optical absorption of
graphene from π to π∗ bands, where the interatomic optical
dipole matrix elements for the nearest-neighbor carbon-carbon
atoms, mopt, are essential [14]. The optical matrix elements
are sensitive to the change in the carbon-carbon bond length,
which can be significantly modified by the G-band phonons.
In this work, in addition to the changes in electronic structure
which arise from the coherent phonons, we now consider
changes to the optical matrix element which arise from the
coherent phonon oscillations. We find that modulation of mopt

is particularly relevant to the coherent G-band intensity and
that the changes to the optical matrix element for the G band
are larger than for the RBM oscillations. We calculate the
coherent G-band spectra for a specified SWNT chirality and
compare them with the other coherent phonon modes in the
SWNT. By a simple analytical model, we also study how the
variation of the laser pulse width affects the coherent phonon
intensity.

This paper is organized as follows. In Sec. II, we explain
coherent phonon simulation methods which include a general
theory for the generation and detection of coherent phonons in
SWNTs. In Sec. III, we present the main results and discuss
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how the coherent G-band intensity could have a stronger
signal by considering the modulation of optical interaction and
shorter pulse width. Finally, we give a conclusion in Sec. IV.

II. SIMULATION METHODS

To calculate coherent phonon spectra, we follow the meth-
ods described in our earlier papers [13,15], except that we also
now treat the effects of the coherent phonon modulations of
the electron-photon interaction which we previously neglected
for simplicity. We define a coherent phonon mode with wave
vector q = 0 (�-point phonon) whose amplitude satisfies a
driven oscillator equation,

∂2Qm(t)

∂t2
+ ω2

mQm(t) = Sm(t), (1)

where m and ωm denote the phonon mode (e.g., RBM, oTO,
LO, iTO) and its frequency, respectively. Equation (1) is solved
subject to the initial conditions Qm(0) = 0 and Q̇m(0) = 0.
The driving function Sm(t) on the right-hand side of Eq. (1) is
given by

Sm(t) = −2ωm

�

∑
nk

Mm
n (k)

[
fn(k,t) − f 0

n (k)
]
, (2)

where fn(k,t) is the time-dependent electron distribution
function and f 0

n (k) is the initial equilibrium electron distri-
bution function. Here n labels an electronic state, while k

gives the electron wave vector. The electronic states of a
SWNT are calculated within the extended tight-binding (ETB)
approximation [16]. The electron-phonon matrix element
Mm

n (k) in Eq. (2) is a shorthand for Mm,0
nk;nk , where Mm,q

n′k′;nk is
the deformation potential electron-phonon matrix element in
the ETB model with phonon wave vector q = k − k′ and with
a transition from the state n to n′ [17].

From Eq. (2), we see that the driving function Sm(t) depends
on the photoexcited electron distribution functions, which
can be calculated by taking photogeneration and relaxation
effects into account. The electron-phonon matrix element in
this equation tells us that the coherent phonon oscillations
are basically generated by the time-dependent electronic
population through the electron-phonon interaction, while the
electronic population is induced by the optical pulse through
the electron-photon interaction. Besides creating the electronic
population, the ultrafast laser pulse also generates an interband
polarization that oscillates much faster than the phonon modes
considered in this study. It thus averages to zero and hence we
neglect its contribution for simplicity. The observed coherent
phonon intensity is then proportional to the power spectrum of
the oscillations of the optical properties [11]. Within the scope
of this work, we ignore relaxation effects of the photoexcited
carriers and consider only the rapidly varying photogeneration
term which can be calculated directly from the Fermi’s golden
rule. Neglecting carrier relaxation has a negligible effect on
the computed coherent phonon signal since the relaxation time
is much greater than the laser pulse duration and the coherent
phonon period [13].

Using the Fermi’s golden rule, we obtain the photogenera-
tion rate for the distribution functions as [18]

∂fn(k)

∂t
= 8π2e2 u(t)

� n2
g (Epump)2

(
�

2

m0

) ∑
n′

|Pnn′ (k,t)|2

× [fn′ (k,t) − fn(k,t)] δ[Enn′ (k,t) − Epump], (3)

where Enn′(k,t) = |En(k,t) − En′ (k,t)| are the k-dependent
transition energies at time t of a coherent phonon oscillation,
Epump is the pump laser energy, u(t) is the time-dependent
energy density of the pump pulse, e is the electron charge, m0

is the free electron mass, and ng is the refractive index of the
surrounding medium. The pump energy density u(t) is related
with the pump fluence F by a relation F = (c/ng)

∫
u(t)dt

and u(t) is also assumed to be a Gaussian. Thus,

u(t) = Ape−4t2 ln 2/2τ 2
p , (4)

where Ap = (2ngF
√

ln 2/π )/(cτp) and c is the speed of
light. In Eq. (4), τp is defined as the pump duration or laser
pulse width. Unless otherwise mentioned, we use parameters
τp = 10 fs, F = 10−5 J cm−2, and ng = 1. To also account
for lifetime broadening of the photoexcited carriers during the
absorption process, we replace the δ function in Eq. (3) with a
Lorentzian line shape

δ(Enn′ − Epump) → �p/(2π )

(Enn′ − Epump)2 + (�p/2)2
, (5)

where �p = 0.15 eV is the spectral linewidth [full width at
half maximum (FWHM)] [13]. Here the time dependence of
Enn′ is determined by Qm(t) mainly through the RBMs, in
which the energy dispersion is inversely proportional to the
SWNT diameter [4,13].

By considering light polarized parallel to the tube axis (z
axis) that contributed to the optical absorption, we can write
the optical matrix element Pnn′ in Eq. (3) within the dipole
approximation as [14]

Pnn′ (k) = �√
2m0

∑
i,jJ

C∗
i (n′,k)Cj (n,k)eiφJ(k)mopt(i,jJ), (6)

where Ci(n,k) and φJ(k) respectively denote the expansion
coefficient and phase factor from the N th two-atom unit cell
of the symmetry-adapted ETB wave functions [19]. The atomic
electron-photon matrix element is given by

mopt =
∫

drϕ∗
i0(r − Ri0)

∂

∂z
ϕjJ(r − RjJ), (7)

where ϕjJ is the 2pz orbital of the j th atom in the Jth unit cell.
We should note that Eqs. (6) and (7) still do not have an

explicit time dependence. The time dependence of the optical
matrix element comes from the coherent phonon amplitude
Qm(t), which allows the atomic matrix element mopt to also
vary as a function of time as the positions of the carbon atoms
change. Grüneis et al. calculated the integral in Eq. (7) for
planar graphene analytically by expanding the orbital wave
functions in terms of Gaussians and it was found that mopt

explicitly depends on the bond length between two carbon
atoms aCC [14]. If the bond length aCC is altered by coherent
phonon oscillations, the atomic matrix element mopt is directly
affected, as is the dipole optical (electron-photon) matrix
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FIG. 1. (Color online) (a) Atomic matrix element as a function of carbon-carbon bond length in SWNTs and (b) the change of bond length
as a function of time due to a coherent LO phonon oscillation in a (6,5) SWNT at a laser (both pump and probe) energy of 1.15 eV. The
inset in (a) shows an enlarged region between 1.40 and 1.45 Å. The dot in the inset corresponds to the bond length without coherent phonon
oscillations, whereas the shaded region corresponds to the area in which the bond length oscillates as shown in (b). (c) Coherent phonon
intensity as a function of phonon frequency, showing the RBM and LO peaks. The solid black (dashed red) line is the calculated result with
(without) considering the modulation of the optical matrix element. Solid (open) circles are also guides for eye to see the intensity values which
include (exclude) the modulation of optical matrix element.

element Pnn′ . This is because the deformation of the bond
lengths alters the transfer integral and overlap matrix elements
in the ETB model.

Based on above argument, the time dependence of Enn′ (k,t)
and Pnn′ (k,t) can be obtained from the time-dependent lattice
displacements due to the change in aCC by the coherent
phonon oscillations, especially for the G band, which is the
in-plane C-C bond-stretching mode. From the coherent phonon
amplitudes, the time-dependent macroscopic displacement of
each carbon atom in an SWNT is given by [13]

UjJ(t) = �√
2M

∑
m

êm
jJ√

�ωm

Qm(t), (8)

where êm
jJ ≡ êm

jJ(q = 0) is the unit phonon mode polarization
for the j th atom in the J = (0,0) two-atom unit cell, �ωm ≡
�ωm(q = 0), and M is the mass of a carbon atom. The bond
length aCC at each time t of a coherent phonon oscillation
can then be calculated from the macroscopic carbon-atom
displacements. Eventually, the time-dependent optical matrix
element can be evaluated by

Pnn′ (k,t) = Pnn′ (k,0) + �Pnn′ (k,t), (9)

where �Pnn′ (k,t) is directly proportional to the time-
dependent mopt and we take an average of Pnn′ over three
nearest-neighbor atoms.

In coherent phonon spectroscopy, a laser probe pulse is
used to measure the time-varying absorption coefficient of the
SWNT. The time-dependent absorption coefficient α(t) at a
probe energy Eprobe is given by Fermi’s golden rule,

α(Eprobe,t) ∝
∑
nn′

∫
dk |Pnn′ (k,t)|2[fn(k,t) − fn′ (k,t)]

× δ[Enn′ (k,t) − Eprobe]. (10)

We replace the δ function in Eq. (10) with a broadened
Lorentzian spectral line shape with a FWHM of γ = 0.15 eV
[13], similar to that in Eq. (5). Excitation of coherent phonons
by the laser pump modulates the optical properties of the
SWNTs, which gives rise to a transient differential transmis-
sion signal, or the modulations of absorption coefficient. The

time-resolved differential gain measured by the probe is then
given by

�α(Eprobe,t) = −[α(�ω,t) − α(�ω,t → −∞)]. (11)

We take the theoretical coherent phonon signal (or intensity,
I ) to be proportional to the Fourier power spectrum of such
absorption modulations at a given energy Eprobe,

I (ω) =
∫

e−iωt |�α(Eprobe,t)|2dt, (12)

where ω represents the phonon frequency that contributes to
the coherent phonon spectra.

III. RESULTS AND DISCUSSION

A. Modulation of optical interaction

First we discuss the effects of coherent phonon oscillations
on the optical interaction. The changes in aCC modulate the
atomic matrix element mopt because of the direct correspon-
dence between these two quantities at time t . Figure 1(a)
shows the calculated mopt as a function of aCC based on the
formula given by Grüneis et al. [14,20]. It indicates that the
strength of optical interaction monotonically decreases as a
function of aCC. In the inset of Fig. 1(a), we show the atomic
matrix element within an enlarged region around 1.40 and
1.45 Å. The shaded region corresponds to the possible values
of aCC affected by the coherent LO phonon oscillation given
in Fig. 1(b). From this figure, we can say that the modulations
of optical interaction is about 0.02 [a.u]−1 for the change of
vibration amplitude of about 0.02 Å. These modulations of
optical interaction is thus approximately 10 % of mopt = 0.25
[a.u.]−1, which is not negligible for calculating the absorption
coefficient of a SWNT. The coherent phonon intensity is
proportional to |�α|2 ∝ |�mopt|4, which is the leading order
of the spectra. In the previous study, however, this fact was
not taken into account and the optical matrix element was
considered constant as a function of time [13].

Next, from the time-dependent optical matrix elements,
we proceed to the calculation of coherent phonon spectra by
taking the Fourier transform of Eq. (11). The calculation is
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performed by allowing the probe energy in Eq. (10) to be
varied independently while keeping the pump energy in Eq. (3)
constant. We take a (6,5) SWNT chirality as a sample for
this calculation. This SWNT has the first and second optical
transition energies (band gaps) of 1.27 and 2.42 eV, denoted by
E11 and E22, respectively [21]. In this calculation we neglect
the exciton effects for simplicity. Basically, the exciton-photon
matrix elements are about 100 times larger than the electron-
photon matrix elements [22], but such enhancement factors
are common for all the phonon modes. On the other hand,
the values of exciton-phonon matrix elements are almost the
same as the electron-phonon matrix elements [22]. Therefore,
the exciton effects will not modify the relative intensity
between the phonon modes. In Fig. 1(c), we show an example
of the calculation for intensity as a function of phonon
frequency by including or excluding the modulation of the
optical interaction. The coherent phonon spectra shows both
the RBM and the LO peaks for a particular laser excitation
energy of 1.15 eV. It can be seen that the LO intensity is
enhanced significantly when taking the modulation of the
optical interaction into account (about 12 times larger than
without considering the modulation of optical interaction),
while the RBM intensity is just enhanced slightly (only by a
factor of about 1.5).

To further understand the laser energy dependence of the
spectra, we calculate the coherent phonon intensity for a given
phonon frequency ωm by considering different laser probe
energy from 1.0–3.0 eV with an interval of 0.1 eV. In Fig. 2,
we show absorption coefficients and coherent phonon spectra
of the (6,5) SWNT as a function of probe energy. For the
coherent phonon spectra, we give the spectra both in the linear
scale and logarithmic scale as shown in Figs. 2(b) and 2(c),
respectively. The spectra are accompanied with the plot of
absorption coefficient in Fig. 2(a) as a reference for showing
the positions of the optical transition energy peaks. In Figs. 2(b)
and 2(c), we compare the coherent G-band phonon spectra (LO
and iTO modes) with RBMs and also with oTO (out-of-plane
TO) mode for the (6,5) tube. In Fig. 2(b), we can see that
the coherent RBM intensity and LO intensity are on the same
order, with the RBM intensity being slightly larger than that of
the LO intensity by a ratio of about 2.5 and 2.1 at E11 and E22,
respectively. These results indicate that modulations of the
optical matrix elements become important in enhancing the
coherent G-band intensity. It should be noted that the coherent
iTO intensity is 100 times smaller than the LO intensity.
Therefore, the coherent G-band phonon spectra are mainly
dominated by the LO phonon modes.

It is also interesting to see in Fig. 2(c) that there is a dip at
2 eV for the RBM phonons, which is related with the zero value
of the coherent RBM phonon amplitude [15]. The dip of RBM
coherent phonon spectra could give information of photon
energy that would correspond to the transition from expansion
to contraction (or vice versa) of the SWNT diameter [15].
Moreover, we obtain two peaks at each transition energy
for all phonon modes, consistent with some earlier works
that reported the excitation energy dependence of coherent
phonon intensity always shows a derivativelike behavior of
the absorption coefficient [4,12]. The double-peak feature
at each transition energy for the plots of coherent phonon
intensity versus probe photon energy can be symmetric or
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FIG. 2. (Color online) From top to bottom shows (a) absorption
coefficient, (b) linearly scaled, and (c) logarithmically scaled coherent
phonon intensities as a function of probe energy for a (6,5) SWNT.
The tube is photoexcited by a 1.15-eV Gaussian pump pulse linearly
polarized along the tube axis (z axis) with a pulse width of τp = 10
fs. The intensity is normalized to the maximum intensity of the RBM.

asymmetric depending on whether the excitonic effects are
taken into account [23]. In this work, the double-peak line
shapes are asymmetric; i.e., the two peaks at each the transition
energy do not have the same intensity, because we have
neglected the exciton effects for simplicity. It is also worth
comparing the ratio of the coherent RBM and LO intensity
obtained in this study with that in the experiment. For example,
a pump-probe measurement by Lim et al. gave the RBM
intensity of about eight times larger than the LO intensity [10];
thus, the calculated relative intensity of RBM and LO is
already on the same order of magnitude as obtained in the
experiment. The small discrepancy, however, might come from
the additional effect of the selection of laser pulse width τp.

B. Effects of laser pulse width

To discuss the effects of laser pulse width (τp) on
the coherent phonon intensity, we can analytically model
the driving function Sm(t) of Eq. (2) by using the laser pulse
in the form of Eq. (4) and then solve for Qm(t). By
understanding the τp dependence of Qm, we can qualitatively
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explain the trend of the coherent phonon intensity when τp is
varied. As we can see from Eq. (2), Sm(t) is proportional to the
carrier density, fn(k,t), which can be obtained by integrating
Eq. (3) with respect to time. For simplicity, we can write Sm(t)
to be directly proportional to the integration of u(t),

Sm(t) ∝
∫ t

−∞
Ape−4t ′2 ln 2/2τ 2

p dt ′

∝ ngF

2c

√
π

ln 2

[
1 + erf

(
2t ln 2

τp

)]
, (13)

where erf(x) = (2/
√

π )
∫ x

0 e−x ′
dx ′ is the error function. To

obtain the full equality between the left-hand and right-hand
sides of Eq. (13), we can put an additional term of electron-
phonon matrix element as also indicated in Eq. (2). This
additional term along with the prefactor in the right-hand side
of Eq. (13) form a constant Am, which will change only when
we have different phonon modes m. We can finally write the
driving function as

Sm(t) = Am

2

[
1 + erf

(
2t ln 2

τp

)]
. (14)

Next, to obtain a particular solution for Qm(t) from Eq. (1)
with Sm(t) in terms of Eq. (14), we can use a Fourier transform
or Green’s function method. In doing so, we assume that while
there is a rise time in the carrier density that follows the integral
of the envelope function for the pump pulse, for simplicity,
we can approximate it by a Heaviside step function. This
approximation should not affect the amplitude of the coherent
phonon mode provided the pulse duration is short compared
to the mode frequency. This allows us to write the equation for
Qm in terms of initial condition at t = 0. The corresponding
solution for Qm(t) with an initial condition of Q̇m(0) = 0 [or
equivalent to Qm(0) as a minimum value] is

Qm(t) = Am

ω2
m

[
1 − e−ω2

mτ 2
p/16 ln 2 cos(ωmt)

]
. (15)

Having the solution of Qm(t), we can now discuss its
dependence on τp. First, the value of Am in Eqs. (14) and (15)
can be obtained by fitting to the maximum value of the force
Sm(t) simulated from the full microscopic treatment in Eq. (2).
In Fig. 3(a), we show the simulated Sm(t) for the RBM and LO
mode of (6,5) SWNT under E11 excitation with three different
values of τp. We see that Sm(t) for all cases shows a steplike
behavior with a width of τp and thus is consistent with Eq. (14).
The maximum values of Sm(t) only differ between different
phonon modes. The fitted values of Am for the RBM and LO
mode are 1161.7 and 3516.5 ps−2, respectively. In Fig. 3(b),
we show the magnitude of Qm, denoted as Qmag, as a function
of pulse width τp for the RBM and LO phonon modes. The
definition for Qmag is

Qmag = Am

ω2
m

e−ω2
mτ 2

p/16 ln 2, (16)

which represents the difference between the maximum and
minimum values of the coherent phonon oscillation ampli-
tudes. We also have 2π/ωRBM = 110 fs and 2π/ωLO = 21 fs
for the RBM and LO oscillation periods of the (6,5) SWNT,
respectively. We can see from Fig. 3(b) that as the pulse width
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FIG. 3. (Color online) (a) Coherent phonon driving force (Sm) as
a function of time for the RBM and LO phonon modes of the (6,5)
SWNT under E11 excitation. For each phonon mode in this plot, we
consider three different values of pulse width (τp): 10, 20, and 30 fs.
(b) Coherent phonon amplitude (Qmag) for the RBM and LO phonon
modes obtained analytically as a function of pulse width. (Inset) The
logarithmic plot of the same amplitude as a function of squared pulse
width.

increases, the coherent phonon amplitude quickly decays
following the Gaussian shape of the spectrum of the laser
pulse [24]. However, the rate of the amplitude decay depends
on the phonon mode oscillation frequency or period, as clearly
shown in the inset of Fig. 3(b). If the pulse width is much
smaller than the phonon oscillation period, the amplitude will
be enhanced. In this case, the LO phonon mode is enhanced
more quickly (with decreasing pulse width) than the RBM
mode after the pulse width becomes shorter than the LO
oscillation period. Therefore, as we have used τp = 10 fs in the
simulation discussed earlier, the coherent LO intensity rapidly
increases while at the same time the coherent RBM intensity
increases more slowly. This could be the reason why we have a
slightly different ratio of the RBM to the LO intensity since the
coherent LO phonon amplitude is much more sensitive to the
variation of the laser pulse width within the sub-10-fs region
compared to the coherent RBM phonon amplitude.

IV. CONCLUSION

We have presented the mechanism by which a strong
coherent G-band signal could be generated in ultrafast pump-
probe spectroscopy. Instead of the energy gap modulation
mechanism which is dominant in the RBM case, we suggest
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that the modulations of electron-photon interaction as a
function of time should be relevant to the coherent G-band
intensity. We also find an analytical formula that describes how
a typical coherent phonon amplitude behaves as a function
of laser pulse width. The formula indicates that the G-band
(LO mode) intensity increases more rapidly than the RBM
intensity by decreasing the pump laser pulse width, especially
when the pulse is much shorter than each of the phonon mode
periods.
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A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus,
Appl. Phys. Lett. 85, 5703 (2004).

[17] J. Jiang, R. Saito, Ge. G. Samsonidze, S. G. Chou, A. Jorio,
G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 72, 235408
(2005).

[18] S. L. Chuang, Physics of Optoelectronic Devices (Wiley,
New York, 1995).

[19] V. N. Popov and L. Henrard, Phys. Rev. B 70, 115407
(2004).
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