PHYSICAL REVIEW B 91, 045405 (2015)

Tracking electron pathways with magnetic field: Aperiodic Aharonov-Bohm oscillations in coherent
transport through a periodic array of quantum dots
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We study resonant tunneling through a periodic square array of quantum dots sandwiched between modulation-
doped quantum wells. If a magnetic field is applied parallel to the quantum dot plane, the tunneling current exhibits
a highly complex Aharonov-Bohm oscillation pattern due to the interference of multiple pathways traversed by
a tunneling electron. Individual pathways associated with conductance beats can be enumerated by sweeping the
magnetic field at various tilt angles. Remarkably, Aharonov-Bohm oscillations are aperiodic unless the magnetic
field slope relative to the quantum dot lattice axes is a rational number.
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I. INTRODUCTION

Interference effects in quantum transport in semiconductor
quantum dots (QD) have been among the highlights in electron
transport studies [ 1-3]. A simple example of coherent transport
is resonant tunneling through a pair of QDs independently
coupled to left and right doped semiconductor leads that
shows a conductance peak narrowing due to the interference
between the tunneling electron pathways [4]. In the presence
of magnetic field, the tunneling current through a QD system
exhibits Aharonov-Bohm (AB) oscillations [5—7] as a function
of magnetic flux through a surface enclosed by pathways
[4,8,9]. AB oscillations have been widely studied in systems
where electron motion is constrained by the system geometry,
such as, e.g., metal or semiconductor rings [10-13], carbon
nanotubes [14-16] or, more recently, graphene nanorings
[17,18].

At the same time, in open two-dimensional (2D) electron
systems, i.e., when the electron motion in a 2D plane is
unconstrained, oscillations of magnetoresistance were ob-
served in the presence of a weak 1D [19-21] or 2D [22-25]
periodic potential and in a system of antidots [26—29]. In such
structures, the oscillations are caused by geometric resonances
occurring when the size of the electron’s Larmor orbit,
which changes with magnetic field, is commensurate with
the potential period [30]. For magnetic fields corresponding
to magnetoresistance maxima, electron trajectories run close
to the potential energy minima, indicating that oscillations
originate from electron orbital motion rather than its phase.

Here we show that AB oscillations can occur in an
open 2D system where electron transport takes place via
multiple pathways. We consider resonant tunneling through
a square periodic array of QDs sandwiched between two 2D
electron gases (2DEGs) in doped semiconductor quantum
wells separated from the QD plane by tunneling barriers
(see the inset in Fig. 1). Highly periodic square arrays of
QDs have been recently manufactured [31-33]. Tunneling
current, e.g., from left to right 2DEG, involves an electron
traversing back and forth along closed pathways comprising
electron trajectories within 2DEGs and tunneling between
them through QD lattice sites (we assume that direct interdot
coupling is negligibly small). For each closed pathway, an
in-plane magnetic field B generates a flux BS,, where S, is
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the area of the surface enclosed by such a pathway projected
onto the plane normal to B. We demonstrate that the array
magnetoconductance exhibits a highly complex AB oscillation
pattern originating from multiple pathways traversed by the
tunneling electron (see the inset in Fig. 1). For high mobility
2DEG characterized by a mean free path [ that is much
larger than the QD lattice constant a, the conductance AB
beats correspond to pathways of length L < [ which, hence,
can be tracked by sweeping the magnetic field. Remarkably,
conductance oscillations are aperiodic unless the magnetic
field slope relative to the QD lattice axes is a rational number.
The lack of AB beat periodicity for a general field orientation
implies the absence of pathway degeneracies caused by two or
more pathways accommodating the same flux.

II. CONDUCTANCE THROUGH A PERIODIC
ARRAY OF QUANTUM DOTS

To obtain electron conductance through a QD array,
we adopt the tunneling Hamiltonian formalism [34]. The
Hamiltonian of a square lattice of N QDs with in-plane
coordinates r; separated by potential barriers from left and
right 2DEG planes has the form

H = Z Eocj.cj + Zg,fc,tacka + Z (Vf‘kc;cka + Hc)
j ka

vaj

ey

where 07;, cj, and Eq are, respectively, the creation and
annihilation operators and energies for QD localized states,
c,ta, Cka» and & are those for 2DEG states (¢ = L,R), and
Vi, is a transition matrix element between localized and
2DEG states. We assume that direct tunneling between QDs is
weak and does not include interdot coupling in Hamiltonian
(1). We restrict ourselves to the single-electron picture of
transport and disregard electron interaction effects due to a
low probability of QD double occupancy in a large array. We
also assume that the magnetic field, to be included below, is
sufficiently weak and/or the electron g-factor is sufficiently
small to cause significant Zeeman splitting and suppress
spin indices throughout. The zero-temperature conductance
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FIG. 1. (Color online) Normalized conductance vs electron
Fermi momentum. (a) Emergence of sidebands for zero-field conduc-
tance with decreasing 2DEG scattering rate. (b) Conductance line-
shape change with varying in-plane magnetic field. Inset: Schematic
view of a QD lattice placed between 2DEGs with several closed
electron pathways.

through a system of N QDs is given by [35]

&2 AR 1 AL 1
G=—Tr|(T I =], @
mh EF—E()—E E}:—E()—E]L

where %;; = X 4+ % is the self-energy matrix of QD states
due to coupling to electron states in the left and right 2DEGs,

Vl‘;‘(V,f‘. i
Yo — L7 E—NC R 3
ij ZEF—5f+i)/a ij— nij €)

v

Here the principal and singular parts of X7 determine the
energy matrix A¥ and the decay matrix I'j;, respectively,
and the trace is taken over QD lattice sites. The transition
matrix element can be presented as [4] V5 = A2tk
where k and r; are, respectively, the electron momentum
and coordinate in 2DEGs, f, is the tunneling amplitude
between QD and 2DEG, and A = Na? is the normalization
area. We assumed that the barrier is sufficiently high so
that electron tunneling between 2DEG and the QD plane
takes place along the shortest path and the dependence of
t, on energy is weak [4]. Then the self-energy (3) takes the
form Ef‘j = t(fGa(ri —r ), where G,(r; — r}) is the electron
Green’s function between the QD lattice sites projected onto
2DEQG planes.

The coupling between the QD lattice states and the
continuum of electronic states in 2DEGs gives rise to an
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in-plane quasimomentum p that conserves across the system
[34]. The 2DEG momentum space k splits into Bloch bands
k =g+ p,where g = (2nm/a,2nwn/a) are reciprocal lattice
vectors (m and n are integers) and p lies in the first 2D
Brillouin zone (—m/a < px,p, < m/a). The energy spectrum
of the QD lattice states can be obtained by performing a
Fourier transform of the self-energy matrix Eq. (3) as X, =

N1 Zp eil"(’/_’f)EZ, where

o t(% o t(% l

= Xg:Gﬁg = Xg: g @
Here G , is the momentum space 2DEG Green’s function
of the band g electron having a quasimomentum p, &, =
K2 (g + p)2 /2m, is its dispersion (m, is the electron mass),
and y, is its scattering rate. In momentum space, the self-
energy X, = Aj —% p is a complex function of p that
determines the QD lattice band dispersion, E, = Eg + Aé +
Af, and its decay width, F; + F;f, due to the coupling to left
and right 2DEGs.

We now include an in-plane magnetic field B tilted by
an angle ¢ relative to the x axis (see the inset in Fig. 1)
through the vector potential A = (B,z, — B,z,0). This leads
to amomentum shift in the left and right 2DEGs, located at z =
—d and z = d, respectively, as k + (e/hc)A®, where ALR —
FdB(sin ¢, — cos ¢). In the presence of the QD lattice, the
momentum space in the left or right 2DEG is now split as
k“ = g% + p, where

LR _ 2

g5 —7<m$%sin¢,ni%cos¢) &)
is a field-dependent band wave vector. Here ® = 2daB is
the magnetic flux through the elementary area enclosed by
pathways running between 2DEGs (pathways I or II in the
inset of Fig. 1) and @ = hc/e is the flux quantum. The field
dependence of gé’R in the 2DEG electron dispersion 5;‘% +p
translates to the field dependence of the QD lattice self-energy,
EZ(B) = A%(B — %F;(B), still given by Eq. (4) but with g
replaced by g%. Finally, the array conductance is obtained via
a Fourier transform of Eq. (2) as

LT R
Iﬂl’r‘P

Neé? 2/‘ dp
= —d ,
S CaP (B~ Bp) 4 §(Th 4 TE)

(6)

where the p integral is taken over the 2D Brillouin zone. The
field dependence of G(B) comes from those of the QD lattice
band dispersion E ,(B) = Eo + AL(B) + AX(B)and its width
I'“(B).

P

III. DISCUSSION AND NUMERICAL RESULTS

Changing the magnetic field magnitude may cause a 2DEG
electron to jump to another band, according to Eq. (5).
Since the QD lattice energy spectrum, E,(B) — iF;(B)/Z,
includes contributions from all 2DEG bands, these field-
induced interband transitions lead to oscillatory behavior of
Ep(B)andI';(B) which, in turn, gives rise to AB conductance
oscillations. Importantly, depending on the field orientation ¢,
interband transitions for the x and y components of g% can
take place at different field values. For example, for B oriented
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along the x or y axes (¢ = 0 or 7 /2), only one component of
g% can jump to the next value mn - nE1orm - mF1)
with changing field magnitude [see Eq. (5)]; in real space, only
the surfaces’ projection onto the (yz) or (xz) planes, respec-
tively, would contribute to oscillations (e.g., either pathways
IT or I in the inset of Fig. 1). However, for ¢ = 7 /4, interband
transitions simultaneously take place for both components
of g4 (n—n=x1and m — m 1), ie., pathways I and
II would lead to similar oscillations. Note that an interband
transition involves contributions from many pathways, but,
due to the square lattice symmetry, only two independent sets
of oscillations in 2D momentum space, described by Eq. (5),
are generated by all electron pathways. For a general field
orientation, these two oscillation sets are incommensurate,
implying that the resulting AB oscillation pattern is aperiodic.
The AB beats are periodic for field orientations that render
commensurate interband transitions for both g% components,
i.e., for tan¢ = p/q, where p and g are integers. In other
words, the fluxes through projections of a surface, enclosed
by an electron pathway, onto the (yz) and (xz) planes must
be commensurate, which only takes place, given the lattice
symmetry, if the magnetic field slope is a rational number.

Below we present numerical calculations for a symmetric
configuration, i.e., for a QD lattice at midpoint between similar
quantum wells (y, = y and m, = m, t,, = t). The lattice con-
stant was chosen to set £y = 9E,, where E, = 712712/2ma2
is a geometric energy scale associated with the lattice, so
that the transmission resonance Er = Ej occurs at a Fermi
momentum kr = 37 /a. The 2DEG electron width y = hvg /I
due to elastic scattering was varied in the range from 0.01 E,, to
0.1E,, yielding [ /a in the range from 20 to 200; for the lattice
period a = 20 nm, this corresponds to a low-to-intermediate
2DEG mobility in the range 10*~10% cm?/V s.

In Fig. 1(a), zero-field per QD normalized conductance is
shown for several values of y. For low mobility 2DEG with
y/E, = 0.1, the conductance shows a single peak centered at a
QD resonance with weak shoulders on the left and right sides.
With decreasing y, these shoulders develop into sidebands
while the main peak gets slightly shifted. These features are
due to the appearance of new resonances in the integrand
of Eq. (6) satisfying Er = E, originating from QD lattice
coupling to 2DEGs [see Eq. (4)]. At the same time, with
decreasing y, the electron escape rate from the QD lattice
to 2DEG, I'), = —2Im X, becomes a sharp function of Ef.
The combination of these two factors results in sharp features
near the resonance and in the emergence of minor features
away from it, the latter coming from neighboring bands.

An in-plane magnetic field leads to a significant decrease
in the overall conductance and to a change in the sidebands’
positions and widths [see Fig. 1(b)]. While the latter behavior
reflects the field dependence of Er = E,(B) resonances,
the amplitude drop comes from the change in interference
between the tunneling paths caused by AB flux. Sweeping the
magnetic field reveals pronounced AB oscillations of the peak
conductance with an amplitude exceeding half of its zero-field
value (see Fig. 2). For ¢ = 0, the largest period in the AB
oscillation pattern, in units of flux through elementary area
So = 2da, is provided by pathways enclosing surfaces that
project area Sy onto the (yz) plane, e.g., pathways II, III, and
V in the inset of Fig. 1, while strong half-period beats come
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FIG. 2. (Color online) AB oscillations of magnetoconductance
for the 2DEG scattering rate y in the range 0.1E,-0.01E,. With
increasing 2DEG mobility, the oscillation pattern develops a fine
structure associated with longer electron pathways.

from pathways enclosing area 2S5, when projected onto the
(yz) plane, e.g., pathway IV. With decreasing y, conductance
oscillations develop a fine structure due to the short-period
beats coming from longer pathways.

Tilting the magnetic field reveals a dramatic increase of
the fine structure complexity due to the reduction of pathway
degeneracies, which are maximal for B oriented along the
lattice axes (see Fig. 3). Individual beats in the AB oscillation
pattern correspond to specific pathways traversed by an

(@) d=m/4
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FIG. 3. (Color online) AB oscillations of magnetoconductance at
y/E, = 0.01 for a magnetic field slope equal (a) 1, (b) 1/2, and
(c) 3712, The oscillation pattern in (c) is aperiodic.

045405-3



L. S. PETROSYAN AND T. V. SHAHBAZYAN

electron, i.e., a varying magnetic field enumerates the path-
ways by highlighting those with surfaces accommodating
the integer AB flux (in units of ®(). Note that the pathway
degeneracies persist for any rational field slope (i.e., tan¢ =
p/q); e.g., for tang = 1, pathways I and II accommodate
the same flux ®/+/2 corresponding to the largest period in
Fig. 3(a). By changing the field slope, a substantially different
oscillation pattern is generated that highlights a different set
of pathways. For example, for tan¢ = 1/2 [see Fig. 3(b)],
pathways I and II are now distinct by producing beats with
periods 2.24 and 1.12, respectively (in units of ®). Note also
that, for any rational slope, there are “missing” pathways
that do not produce AB beats, e.g., pathway I for ¢ =0,
II for ¢ = /2, I for ¢ = /4, IV for tan¢p =2, and V
for tan ¢ = 1/4. For a general field slope, however, the AB
oscillation pattern has no periodic structure and there are no
degenerate or missing pathways. An example of aperiodic
beats for tan ¢ = 37!/2 is shown in Fig. 3(c).
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IV. CONCLUSION

In summary, we have shown that the tunneling current
through a periodic array of quantum dots sandwiched be-
tween 2D electron gases in quantum wells exhibits a highly
complex pattern of Aharonov-Bohm oscillations originating
from multiple pathways that the electron traverses in the
course of transport. For high mobility samples, the AB beats
corresponding to individual pathways are well resolved and
could allow tracking the electron motion in the system by
sweeping the magnetic field. We find that the oscillation pattern
is aperiodic unless the magnetic field slope relative to the lattice
axes is a rational number.
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