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We investigate the topological and transport properties of the recently discovered valley-polarized quantum
anomalous Hall (VQAH) phase. In a single layer, the phase is realized through the competition between two
types of spin-orbit coupling, which breaks the symmetry between the two valleys. We show that the topological
phase transition from conventional quantum anomalous Hall phase to the VQAH phase is due to the change of
topological charges with the generation of additional skyrmions in the real spin texture, when the band gap closes
and reopens at one of the valleys. In the presence of short-range disorders, pairs of the gapless edge channels
(one from each valley in a pair) would be destroyed due to intervalley scattering. However, we discover that in
an extended range of moderate scattering strength, the transport through the system is quantized and fully valley
polarized, i.e., the system is equivalent to a quantum anomalous Hall system with valley-filtered chiral edge
channels. We further show that with an additional layer degree of freedom, a much richer phase diagram could
be realized with multiple VQAH phases. For a bilayer system, we demonstrate that topological phase transitions
could be controlled by the interlayer bias potential.
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I. INTRODUCTION

Gapless one-dimensional (1D) edge channels are intriguing
physical objects which are usually associated with nontrivial
topological phases of two-dimensional (2D) systems. For
example, the precise quantization of Hall plateaus in quantum
Hall effect is tied with the dissipationless chiral edge channels
and is related to a bulk topological invariant known as the
Chern number (or TKNN invariant) [1,2]. It was later realized
that the existence of such edge channels in fact does not
necessarily require the orbital effects of external magnetic
field. Instead, it could arise from the combined effects of spin
polarization (e.g., due to magnetic ordering) and spin-orbit
coupling (SOC) [3–7]. This topological phase, known as the
quantum anomalous Hall (QAH) phase, has been sought for
more than 20 years. Hence, its first realization in magnetically
doped topological insulator thin films has attracted significant
attention and research activities recently [8–12].

It is possible that these edge channels may carry additional
flavors. For example, in quantum spin Hall effect, the chirality
of the edge channel is tied with its spin, hence on each
edge, there is a Kramers pair of counterpropagating spin-
polarized edge channels, which are protected by time-reversal
symmetry [13,14]. When the band structure has multiple
energy extrema, carriers could have another type of flavor:
valley. Similar to spintronics, it was proposed that this valley
degree of freedom may also be utilized for information
processing, leading to the concept of valleytronics [15–21].
It has been shown that there could be topological charges
associated with the valleys and it is possible to realize 1D
channels that carry specific valley indices [22–27]. However,
in these previous studies, the numbers of 1D channels in each
valley are balanced, due to the presence of either time-reversal
symmetry or inversion symmetry.

In a recent work, we demonstrated that by breaking
both time-reversal symmetry and inversion symmetry, it is
possible to achieve a different topological phase: the valley-
polarized quantum anomalous Hall (VQAH) phase [28]. The
hallmark of this phase is that at system edges where valleys
can be distinguished, there exist unbalanced numbers of
counterpropagating chiral edge channels associated with the
two valleys. This imbalance automatically indicates that the
system is in a QAH phase. The additional valley features
of the edge channels are manifestations of the unbalanced
valley topological charges in the bulk. Therefore, such phase
is characterized by two bulk topological invariants: the total
Chern number C and the valley Chern number Cv . We have
found that such a phase could be realized due to the competition
between two types of SOCs in a low-buckled honeycomb
lattice model which may describe 2D materials such as silicene
or germanene [29–36].

Due to length restrictions, several important physical
aspects of the VQAH phase were not exposed in the pre-
vious work. In this paper, we would address these details.
More importantly, we greatly extend our previous work by
investigating the disorder effects on VQAH phase and the
valley-polarized topological phases in a bilayer system. The
valley-polarized channels are robust against smooth-varying
scattering potentials, expected from the large-momentum
separation between the two valleys. Through explicit transport
calculations, we show that for short-range scatterers, although
the intervalley scattering would destroy pairs of counterpropa-
gating valley channels, remarkably, the remaining |C| channels
can still retain their valley character in transport. As a result,
each edge could serve as a perfect valley filter with chiral
edge channels for one specific valley. We show that this
happens for an extended window of intermediate scattering
strength. Furthermore, for a bilayer system formed by stacking
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two single layers, we find that the resulting properties are
not simply a superposition of the two. In fact, the bilayer
system exhibits a much richer phase diagram including several
VQAH phases with different (C,Cv) invariants. The topological
phase transitions between these phases could be more easily
controlled by tuning the interlayer bias potential.

Our paper is organized as follows. In Sec. II, we discuss the
VQAH phase in a single-layer lattice model. By decomposing
the topological charges into real spin and pseudospin sectors,
we show that the topological phase transition to VQAH phase
is accompanied with the change of real spin topological charge
in one valley. In Sec. III, we study the effects of short-range
scattering on the VQAH phase based on a two-terminal
transport calculation and show that in a window of intermediate
scattering strength, only one chiral edge channel with K ′ valley
character is left. In Sec. IV, we investigate the rich topological
phases in a bilayer system and demonstrate the tunability of
the phases through interlayer bias and exchange field strength.
Finally, we give our conclusion and summarize our results in
Sec. V.

II. VALLEY-POLARIZED QAH PHASE IN SINGLE-LAYER
SYSTEM

The VQAH phase was first discovered in a lattice model
defined on a low-buckled single-layer honeycomb lattice [28].
The tight-binding Hamiltonian is written as [31]

H = −t
∑
〈ij〉α

c
†
iαcjα + itSO

∑
〈〈ij〉〉αβ

νij c
†
iαsz

αβcjβ

− itR2

∑
〈〈ij〉〉αβ

μij c
†
iα(s × d̂ij )zαβcjβ

+ itR1

∑
〈ij〉αβ

c
†
iα(s × d̂ij )zαβcjβ + M

∑
iαβ

c
†
iαsz

αβciβ . (1)

Here, c†iα (ciα) is a creation (annihilation) operator for an elec-
tron with spin α at site i. The summation with 〈. . .〉 (〈〈. . .〉〉)
runs over all nearest- (next-nearest) neighbor sites. The s’s
are the Pauli matrices for real spin degree of freedom. For
the right-hand side, the first term is the usual nearest-neighbor
hopping term. The second term is the so-called intrinsic SOC
term involving the next-nearest-neighbor hopping [37,38]
νij = +1(−1) if the electron makes a left (right) turn in going
from site j to site i along the nearest-neighbor bonds. The
third and fourth terms are the intrinsic and extrinsic Rashba
SOC terms, respectively. d̂ij is the unit vector pointing from
site j to i, and μij = ±1 depending on the AB sublattice. The
last term represents an exchange coupling. The various t’s and
M denote the strengths of the terms.

This model was first derived in the study of low-energy
physics of silicene [31]. The various SOC terms are the
symmetry-allowed terms for the low-buckled honeycomb
lattice structure [39]. The exchange term breaks the time-
reversal symmetry, which is necessary for the realization of
QAH phase [3,40]. As discussed in the previous work [28],
the VQAH phase results from the competition between the
intrinsic and extrinsic Rashba SOC terms, i.e., the third and
the fourth terms in Eq. (1). The intrinsic Rashba term is due
to the mirror symmetry breaking of the 2D plane from the

FIG. 1. (Color online) Upper panel: bulk band structure along the
line of ky = 0. Lower panel: the corresponding energy spectra for a
zigzag edged ribbon with a width of 400 atomic sites. (a), (d) With
only extrinsic Rashba SOC tR1 = 0.06 and no intrinsic Rashba SOC.
(b), (e) With only intrinsic Rashba SOC tR2 = 0.1 and no extrinsic
Rashba SOC. (c), (f) When both extrinsic and intrinsic Rashba SOCs
are present, tR1 = 0.06 and tR2 = 0.1. Other model parameters are set
as t = 1 and M = 0.5.

lattice buckling [31]. The extrinsic Rashba term further breaks
the inversion symmetry and it can result from a perpendicular
electric field or from a substrate. To simplify the analysis,
in the following we shall focus on these two SOC terms and
neglect the intrinsic SOC term. The effects of the intrinsic SOC
term and possible sublattice symmetry-breaking term will be
discussed later in the paper.

First, we examine the properties of the model when either
the intrinsic Rashba or extrinsic Rashba term is present, but
not both. Figure 1(a) shows the bulk energy spectrum near the
band gap along the kx direction when only extrinsic Rashba
SOC is present, and Fig. 1(d) shows the corresponding energy
spectrum for a ribbon with zigzag edge termination. The results
for the case with only intrinsic Rashba SOC are shown in
Figs. 1(b) and 1(e). One observes that, for both cases, the
system is in insulating state with a finite band gap. In the results
for ribbons, four gapless chiral edge states can be identified in
the band gap. From their wave functions, it is easily checked
that on each edge, there are two edge states propagating in
the same direction, indicating a QAH phase with C = 2. The
Chern number can be directly calculated from the bulk band
structure using the formula [2]

C = 1

2π

∑
n∈occ.

∫
BZ

d2k �n, (2)

where the integration is over the Brillouin zone and the
summation is over all occupied valence bands. �n is the
momentum-space Berry curvature for the nth band

�n(k) = −
∑
n′ �=n

2 Im〈ψnk|vx |ψn′k〉〈ψn′k|vy |ψnk〉
(εn′k − εnk)2

, (3)

where vx(y) is the velocity operator and |ψnk〉 is the Bloch
eigenstate with eigenenergy εnk. The magnitude of Berry
curvature is usually peaked at avoided band crossings where
the gap is small [41]. For a system with multiple valleys, such
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as the case here with two valleys K and K ′, Berry curvature
will be concentrated around the valley centers [28]. This allows
us to define a topological charge associated with each valley
by integrating the Berry curvature over the neighborhood of
each valley as in Eq. (2) [22,23,42]. We denote the results by
CK and CK ′ . They represent the contribution to the total Chern
number from each valley, and their difference Cv = CK − CK ′

is called the valley Chern number. Note that the concept of
valley as well as the valley topological numbers are well
defined only when the low-energy regions are well separated in
the reciprocal space. This condition is ensured in our following
calculations. In the studied parameter range, the various SOCs
are small perturbations compared with the nearest-neighbor
hopping which is the largest energy scale.

Straightforward calculations using the present model con-
firm that for both cases, the system is in the same QAH phase
with C = 2 and Cv = 0 showing that contribution from the two
valleys are equal (CK = CK ′ = 1). Indeed, on one edge, each
valley contributes one chiral edge channel propagating in the
same direction.

The situation becomes quite different when both SOCs
are present. Starting from a fixed intrinsic Rashba SOC as
in Figs. 1(b) and 1(e), gradually increasing the strength of
extrinsic Rashba SOC, it has been shown that the gap at K

valley remains open but the gap at K ′ valley closes and reopens,
leading to a topological phase transition to the VQAH phase
with Cv �= 0. As shown in Figs. 1(c) and 1(f), in VQAH phase,
the two valleys become asymmetric. In K valley, there are
still two gapless edge states, but in K ′ valley there are four.
These states can be more clearly seen in the zoom-in images

FIG. 2. (Color online) (a) and (b) are the enlarged spectra show-
ing the gapless edge states (a) in the K valley and (b) in K ′ valley,
corresponding to the boxes in Fig. 1(f). (c) Schematic figure of the
spatial distribution of the edge channels in the ribbon. The colors label
the edge states at different valleys. (d) Phase diagram as a function of
tR1 and M . The dashed lines are the phase boundaries where the bulk
gap closes. Phase I is the conventional QAH phase, while Phase II is
the VQAH phase.

in Figs. 2(a) and 2(b). In Fig. 2(c), we schematically plot the
spatial distribution of these edge states in the ribbon geometry.
One notes that on each edge, there are two chiral channels
from K ′ valley propagating in opposite direction to only one
channel from K valley. Calculation of the topological charge
shows that CK in this case is still 1, but CK ′ changes from 1
to −2, which is consistent with the doubling of the K ′ valley
edge channels and the reversed chirality. In such a VQAH
phase, on the edge, there is an imbalance between channels
from different valleys, and in the bulk, it is characterized by
both a nonzero C and a nonzero Cv . In the present case, we
have (C = −1,Cv = 3).

By looking at the figures in Fig. 1, one notices that for the
cases with either one Rashba SOC, the energy spectra at K and
K ′ valleys are symmetric. But, when both SOCs are present,
the symmetry of the spectra is broken. To understand this, we
expand the model around the K and K ′ points to obtain the
low-energy effective Hamiltonian. The corresponding forms of
the kinetic energy term, the extrinsic Rashba term, the intrinsic
Rashba term, and the exchange coupling term are

H0(k) = v(τzσxkx + σyky), (4a)

HR1 (k) = λR1 (τzσxsy − σysx), (4b)

HR2 (k) = λR2σz(kysx − kxsy), (4c)

HM (k) = Msz, (4d)

where τz = ±1 refers to K and K ′ valleys, σ ’s are Pauli
matrices representing the AB-sublattice pseudospin degree of
freedom, the coupling strengths in these terms are related to
the parameters in Eq. (1) by v = √

3t/2, λR1 = 3tR1/2, and
λR2 = 3tR2/2. When the extrinsic Rashba SOC is absent, i.e..
λR1 = 0, as in Figs. 1(b) and 1(e), the remaining terms all have
inversion symmetry P = σx , such that PH(k)P−1 = H(−k),
meaning that the spectra at the two valleys must be symmetric
under inversion. When the extrinsic Rashba term is present,
the inversion symmetry is broken. However, in the absence
of intrinsic Rashba term, the low-energy model has another
symmetry Q = σxsz which is an inversion with an additional
spin rotation, such that QH(k)Q−1 = H(−k). Therefore, the
spectra in Figs. 1(a) and 1(d) also exhibit similar symmetric
feature. We emphasize that Q is not an intrinsic symmetry for
the crystal, it is an emergent symmetry only for the low-energy
model. Finally, when both Rashba terms are present, the two
symmetries P and Q are both broken. The spectra at the
two valleys become asymmetric, as observed in Figs. 1(c)
and 1(f). The asymmetry between the two valleys is a necessary
condition for realizing the VQAH state.

The topological phase transitions from conventional QAH
phase to VQAH phase can be realized by tuning the model
parameters. In Fig. 2(d), we show the phase diagram in the
(tR1 -M) plane at a fixed intrinsic Rashba strength. It can be
seen that the VQAH phase has an extended parameter range in
the phase diagram (region II). On each side of VQAH phase,
it is the usual QAH phase with (C = 2,Cv = 0). The color
map shows the size of the band gap. One observes that the
topological phase transitions are accompanied with the gap
closing and reopening processes, as usually mentioned in the
study of topological insulators [14]. However, in the present
model, such gap closing happens only at one valley (the K ′
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valley), hence, the topological charge is only changed at that
valley, leading to the valley-polarized feature.

To gain a better understanding of the change in topological
charge between conventional QAH and VQAH phases, we
decompose CK and CK ′ at each valley in terms of contributions
from real spin (s) as well as sublattice pseudospin (σ ) degree
of freedom. We calculate the winding number of the spin
(pseudospin) textures using the formula [6]

n = 1

4π

∫ ∫
dkxdky(∂kx

ĥ × ∂ky
ĥ) · ĥ, (5)

where the unit vector ĥ (k) is the spin (pseudospin) polariza-
tion vector at k.

For the conventional QAH phase with either extrinsic or
intrinsic Rashba SOC, as in Figs. 1(a) and 1(b), we find that
the band-resolved topological charges carried by the real spin
or pseudospin for valleys K and K ′ are

nK,1s = nK ′,1s ≈ 0;

nK,2s = nK ′,2s ≈ 1;
(6)

nK,1σ = nK ′,1σ ≈ 0.5;

nK,2σ = nK ′,2σ ≈ −0.5.

Here, subscripts 1 and 2 refer to the two valence bands with
band 2 close to the gap. One observes that the topological
charges are symmetric between the two valleys. The topolog-
ical charges of pseudospin from the first and second valence
bands are, respectively, 0.5 and −0.5 for each valley, hence
canceling each other. The net contribution is from the real spin
in the second valence band which is 1 for each valley, with the
texture corresponding to one skyrmion. Therefore, we have
CK = CK ′ = 1 and (C = 2,Cv = 0), which are consistent with
previous calculations.

In the VQAH phase, as in Fig. 1(c), straightforward
calculation shows that

nK,1s = nK ′,1s ≈ 0;

nK,2s ≈ 1; nK ′,2s ≈ −2;
(7)

nK,1σ = nK ′,1σ ≈ 0.5;

nK,2σ = nK ′,2σ ≈ −0.5.

Comparing with the results for the QAH phase in Eq. (6),
one can find that the topological charges associated with
pseudospin texture remain the same and are still canceled
between the two valence bands. The difference is from the real
spin in the K ′ valley of the second valence band. After the gap
closing and reopening at the K ′ valley, the topological charge
nK ′,2s changes from 1 to −2. This results in an imbalance of
the total topological charges between the two valleys, leading
to CK = 1 and CK ′ = −2 with an imbalanced number of chiral
edge channels associated with the two valleys.

In order to visualize the change of nK ′,2s more clearly, in
Fig. 3, we plot the real spin textures in k space for the second
valence band at the K ′ valley in the QAH phase and in the
VQAH phase. Figures 3(a) and 3(b) show the z component of
real spin 〈sz〉 before and after phase transition. One observes
that near the valley center, 〈sz〉 is negative and away from the
center it changes to positive values. This feature remains the

FIG. 3. (Color online) Textures of real spin in the second valence
band of the K ′ valley. (a) Map of 〈sz〉 component for the conventional
QAH phase with (tR2 = 0.1, tR1 = 0). (b) Map of 〈sz〉 for the VQAH
phase with (tR2 = 0.1, tR1 = 0.06). (c) and (d) are the corresponding
maps for the angle φ of the in-plane spin component. The white
colored loop is the 〈sz〉 = 0 boundary [as in (a) and (b)]. The black
circled arrows indicate the rotation direction of the angle φ around
each vortex.

same across the phase boundary. Figures 3(c) and 3(d) show
the azimuthal angle of the in-plane vector (〈sx〉,〈sy〉) in the
two phases. The winding number nK ′,2s can be visualized by
counting the number of vortices of the phase winding. For the
QAH phase, there is one vortex at the valley center, as seen
in Fig. 3(c), corresponding to nK ′,2s = 1. In the VQAH, in
contrast, close to the K ′ point three new vortices appear around
the places where the gap closes during the phase transition.
Their winding directions are opposite to the one at the center,
therefore leading to a total winding number nK ′,2s = −2. It is
these additional skyrmions generated at the K ′ valley in the
gap closing and reopening processes that are responsible for
the realization of the VQAH phase.

III. DISORDER-INDUCED VALLEY-FILTERED CHIRAL
EDGE CHANNELS

As we discussed in the previous section, in the VQAH phase
of the present model, there exist valley-polarized chiral edge
channels as shown in Fig. 2(c). Due to the large separation of
the two valleys in k space, the valley index is robust against
smooth disorder potentials [15]. In the presence of short-range
disorder scattering, intervalley scattering events would be
important and would typically destroy the edge channels.
Nevertheless, the VQAH phase is first of all a QAH phase
characterized by a Chern number C = −1. The topological
protection of QAH phase is much stronger than that for the
valley indices. Therefore, we can expect that at moderate
short-range scattering strength, a pair of counterpropagating
edge channels (one from K and one from K ′) should be
destroyed, leaving only one chiral channel on each edge, as
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FIG. 4. (Color online) Schematic figure showing the two-
terminal setup for transport calculation. (a) A zigzag edged ribbon is
divided into a left lead, a right lead, and a central scattering region.
The propagating modes in the leads with their valley characters are
indicated. (b) Distribution of the edge modes in the scattering region
without scattering or with only weak long-range scattering. (c) With
short-range scattering, at moderate scattering strength, the transport
property of the system is equivalent to a QAH system with one chiral
edge channel in the K ′ valley. The colors label the edge states at
different valleys.

required by the C = −1 constraint. An important question to
ask is that whether the remaining channel still retains a valley
character in terms of its transport property?

To address this question and to test the above physical
picture, we carry out direct transport calculations on a standard
two-terminal structure. As shown in Fig. 4(a), the structure is
divided into a left lead, a right lead, and a central scattering
region. We take a zigzag-edged ribbon described by our model
for the central region. The two leads are taken as semi-infinite.
To eliminate the contact resistance and also for the analysis
of the valley character of the transport channels, we model
the leads with the same lattice model and with the same
width as the central region. Short-range scatterers are confined
in the central region and are modeled by random onsite
disorder potentials with magnitude in the range [−W/2,W/2].
The parameter W characterizes the disorder strength. We
emphasize that due to disorder scattering, valley is no longer a
good quantum number in the central region. However, its valley
transport property could be inferred from the transmission
and reflection amplitudes of valley-polarized carriers from the
leads. To this end, the two leads must have valley well defined.
Our setup resembles that of the original proposal of valley
filter [15] and we shall demonstrate that our system indeed acts
as a perfect valley filter when moderate short-range scatterers
are incorporated.

The two-terminal conductance can be calculated based on
the Landauer-Büttiker formula [43]

G = e2

h
Tr[�LGr�RGa], (8)

where Gr,a are the retarded and advanced Green’s functions
of the central scattering region. The quantities �L/R are the

linewidth functions describing the coupling between the left
and right leads and the central region, and can be obtained from
�p = i(�r

p − �a
p). Here, �

r/a
p is the retarded and advanced

self-energy due to the pth semi-infinite lead (p = L,R), and
can be numerically evaluated using a recursive method [44].

Before turning on the disorder potential (W = 0), we know
that on each edge there are three conducting channels and the
propagation directions of them are tied to their valley indices.
For example, on the upper edge, there is one channel in the
K valley propagating to the right and two channels in the
K ′ valley propagating to the left, as shown schematically in
Fig. 4(b). For the lower edge, the directions of the channels
are reversed. Obviously, the two-terminal conductance for the
structure should be G = 3 (in units of e2/h) due to three
ballistic transport channels in each direction.

When we increase the disorder strength W , backscattering
occurs in these edge channels because short-range scatterer
can couple the counterpropagating channels at K and K ′
valleys. This would decrease the conductance. However, at
moderate scattering strength, there must be one remaining
transport channel as dictated by the total Chern number
C = −1. The chirality requires that at the upper edge, this
channel propagating to the left, while at the lower edge, it
propagates to the right. This should lead to a plateau of G = 1
for the two-terminal conductance.

In Fig. 5(a), we plot numerical results of the conductance G

as a function of the disorder strength W . The central scattering
region has a width of 480 atomic sites and a length of 1200
atomic sites. The Fermi level is set at EF = 0.004 in the gap

FIG. 5. (Color online) (a) The two-terminal conductance as a
function of disorder strength W . Each data point is averaged over 100
disorder configurations. The error bar shows one standard deviation.
(b) The valley-resolved transmission probability as functions of W .
(c) The valley-resolved reflection probability versus W . (d) The
charge (G), valley (Gv) conductance, and the valley polarization (ηV )
as functions of W . The model parameters used here are M = 0.5,
tR1 = 0.045, and tR2 = 0.08. Fermi energy is taken as EF = 0.004.
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and an ensemble of 100 random disorder configurations are
taken for each data point. Indeed, as we expected, G starts
from the value of 3 at W = 0 and decreases with increasing
W . A quantized plateau of G = 1 appears around W = 0.5
with negligibly small fluctuations. This implies that a pair of
counterpropagating channels are localized by the short-range
scattering and there is one channel left. Further increasing
W above ∼ 0.75 eventually destroys the QAH channels by
coupling the two chiral channels at the opposite edges through
strong scattering across the bulk. All these are consistent with
our previous argument.

However, we do not yet know whether the one chiral
channel on the G = 1 plateau still retains a well-defined valley
character, although one may intuitively think that after one
channel in the K valley gets annihilated with one in the
K ′ valley, the remaining one should be from the K ′ valley.
With finite disorder strength, it is difficult if not impossible
to check the valley feature in energy spectrum. Instead, we
infer the valley character of the channel from its transport
properties. More specifically, we consider the valley-resolved
transmission probability Tvv′ (v,v′ ∈ {K,K ′}) which is defined
as the transmission probability from any incoming mode in
valley v′ of the left lead to any outgoing mode in valley v

of the right lead. Hence, Tvv′ = ∑
m∈v,n∈v′ Tmn, where Tmn

is the transmission probability from mode n to mode m, n

and m label the propagating modes in the left and the right
leads, respectively. In our case, since we consider the Fermi
level in the band gap, the only propagating modes in the
leads are the edge modes. The Tmn for each pair of incoming
and outgoing propagating modes can be calculated using the
technique developed in Refs. [45–47].

The result for each Tvv′ as a function of disorder strength
is shown in Fig. 5(b). One observes that when W is small
(< 0.3), both TKK ′ and TK ′K are zero. This is easily understood
by inspecting the configuration of channels in Fig. 4(a). In
order for an incoming mode in the K valley from the left
lead to transfer to an outgoing mode in the K ′ valley at
the right lead, it has to cross the insulating bulk, hence,
such probability is negligibly small. For small W (< 0.1),
we approximately have TK ′K ′ ≈ 2TKK because the number
of channels in the K ′ valley doubles that of the K valley.
They both decrease with increasing W . When W reaches the
plateau region as in Fig. 5(a), TKK vanishes implying that
the transport channel at the K valley in the central region
is totally destroyed. Meanwhile, TK ′K ′ shows a quantized
plateau at 1. This indicates that the remaining chiral edge
channels protected by Chern number C = −1 is of K ′ valley
character. The result suggests the physical picture in which the
short-range scattering couples the edge states of the two valleys
and destroys a pair of counterpropagating modes (one from
each valley), leaving only one edge channel of the K ′ valley in
the system. Finally, at very large W , scattering can couple the
two edges, and the plateau is destroyed. The discussed features
are schematically shown in Figs. 4(b) and 4(c). At moderate
disorder strength (in the plateau region), the central region can
be viewed effectively as having one chiral channel in the K ′
valley on each edge [Fig. 4(c)].

The valley-resolved reflection probability Rvv′ can be
defined in a similar way as Tvv′ [45]. The results are shown in
Fig. 5(c). The key thing to notice is that in the QAH plateau

region, RK ′K ′ remains 0 because such reflection process
requires the electron to transfer across the insulating bulk to
the other edge. This condition, combined with TK ′K ′ = 1 in
this region, means that carriers in the K ′ valley can transmit
through the system without reflection while maintaining its
valley character. In addition, the rapid increase of RKK ′

and RK ′K at small W demonstrates that the short-range
scatterers indeed cause strong backscattering between the
counterpropagating channels at each edge.

Based on the valley-resolved transmission probability, we
could define a valley-resolved conductance by

Gv = e2

h

∑
m;n∈v

Tmn, v ∈ {K,K ′} (9)

which measures the likelihood of transmission of incoming
carriers in each valley. Then, the total conductance can be
written as G = GK + GK ′ . Analogous to quantities defined
for spin transport, we can define a valley conductance GV =
GK ′ − GK and the valley polarization ηV = GV /G. The
numerical results for these quantities are shown in Fig. 5(d).
One observes that in the QAH plateau region, the valley
polarization shows a plateau of 1, meaning that the transport
through the system is fully valley polarized.

From the above results and discussions, we confirm the
intuitive picture that we postulated at the beginning of this
section. We show that at moderate disorder strength, the
scattering localizes a pair of edge channels on each edge,
leaving the system in a C = −1 QAH state. The remarkable
point is that the remaining one channel still retains its K ′ valley
character. This implies that disorder scattering effectively
induces a transition from a VQAH phase with (C = −1, Cv =
3) to another VQAH phase with (C = −1, Cv = 1). Such
disorder-induced VQAH phase with |C| = |Cv| always has
fully valley-filtered chiral edge channels in the bulk mobility
gap, and may be termed as a VQAH Anderson insulator phase,
analogous to the concept introduced in the study of transport
features of disordered topological insulator systems [48,49].
In this case, whether a carrier can be transmitted through the
system is determined by its valley index. Hence, this phase
could be used to realize a perfect valley filter for valleytronics
applications.

IV. VQAH PHASES IN BILAYER SYSTEM

We have shown that the VQAH phase can arise in a
single-layer honeycomb lattice model due to the competition
between two types of SOCs. In the following, we show that
by combining two such single layers into a bilayer system,
more VQAH phases with different (C,Cv) could be realized.
The model we consider is

H = Ht + Hb + t⊥
∑

i ∈ (t,A);
j ∈ (b,B)

(c†i cj + H.c.) + U
∑

i

ξic
†
i ci ,

(10)
where Ht and Hb each given by Eq. (1) are the Hamiltonians for
the top and the bottom layers. The third term on the right-hand
side is an interlayer coupling. Here, we take a bilayer with AB

stacking, hence, hopping between the nearest A site in the top
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FIG. 6. (Color online) Phase diagram of the bilayer model in
the (tR1 , tR2 ) plane. Five extended insulating phase regions can be
identified. The color indicates the size of the bulk band gap. Other
model parameters used here are M = 0.4, U = 0, and t⊥ = 0.18.

layer and B site in the bottom layer is considered. The last
term is an interlayer bias potential with ξi = ±1 for the two
layers.

We first set the interlayer bias U = 0. Figure 6 shows
the phase diagram in the (tR1 , tR2 ) plane. One observes that
there are five phase regions. The color map indicates the
magnitude of the bulk band gap. The phase boundaries are
the points at which the gap closes. The topological invariants
for each phase are listed in Table I. It can be seen that Phase
I is the conventional QAH phase with (C = 4, Cv = 0) and
Phase III is a VQAH phase with (C = −2, Cv = 6). These two
phases can be understood as resulting from the corresponding
topological phases in single layer by a direct doubling. Aside
from these two, interestingly, there is one additional phase,
Phase II. We find that this phase is also a VQAH phase.
It is characterized by (C = 1, Cv = 3), which differs from
that of Phase III. Therefore, one sees that by combining two
single-layer models, it is possible to generate new VQAH
phases. The phase transition between each neighboring phase
is accompanied by the gap closing and reopening processes,
which is a general feature of topological phase transitions. In
this case, the gap closing only occurs in the K ′ valley, similar
to the single-layer case. This is consistent with the variation
of the valley topological charge CK and CK ′ in Table I, i.e., CK

is the same for all the three phases and only CK ′ changes.
In the following, let us have a closer look at the two

VQAH phases, Phases II and III. In Figs. 7(a) and 8(a), we
plot the total Berry-curvature distribution �(k) of the valence
bands, which sums over the Berry curvature for each individual
valence band. One can find that the nonzero Berry curvatures
are mainly concentrated around the valley centers and have

TABLE I. The topological numbers of each phase in Fig. 6.

Phase C Cv CK CK ′

I 4 0 2 2
II 1 3 2 −1
III −2 6 2 −4

FIG. 7. (Color online) Phase II in Fig. 6. (a) Berry-curvature
distribution in the Brillouin zone. (b) Spectrum of a zigzag-edged
ribbon with a width of 400 atomic sites. (c), (d) The enlarged spectra
in the gap region of (b), corresponding to the two valleys K and K ′. (d)
Schematic figure showing the distribution of edge channels labeled
in (c) and (d). The parameters are set to be tR1 = 0.03, tR2 = 0.1,
U = 0, M = 0.4, and t⊥ = 0.18.

an overall opposite sign between the two valleys. This is in
contrast to the conventional QAH effect, in which the Berry
curvature usually has the same sign for different valleys [24].
For both phases, the asymmetry between the two valleys can be
clearly observed. Comparing the two phases, one observes that
the curvature distributions at the K valley are almost the same,
but the curvature at the K ′ valley differs a lot. �(k) around K ′

FIG. 8. (Color online) Phase III in Fig. 6. (a) Berry-curvature
distribution in the Brillouin zone. (b) Spectrum of a zigzag-edged
ribbon with a width of 400 atomic sites. (c), (d) The enlarged spectra
in the gap region of (b), corresponding to the two valleys K and K ′. (d)
Schematic figure showing the distribution of edge channels labeled
in (c) and (d). The parameters are set to be tR1 = 0.065, tR2 = 0.15,
U = 0, M = 0.4, and t⊥ = 0.18.
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for Phase III has a larger negative magnitude compared with
Phase II. This difference leads to the different CK ′ between the
two phases.

In Fig. 7(b), we plot the energy spectra of a zigzag-edged
nanoribbon for Phase II. In the zoom-in images in Figs. 7(c)
and 7(d), one observes that for valley K , there are two pairs of
gapless edge states while for valley K ′, there is one pair. On
each edge, there are two channels from K valley propagating in
one direction and another channel from K ′ valley propagating
in the opposite direction, as shown schematically in Fig. 7(e),
which is consistent with the bulk topological invariants (C =
1, Cv = 3). This net valley polarization of the edge channels
is one signature of VQAH phase.

Similarly, for Phase III, we plot its energy spectrum in
Figs. 8(b)–8(d), in which one identifies two pairs of gapless
edge states in valley K and the other four pairs in valley
K ′. As illustrated in Fig. 8(c), on each edge, there are two
edge channels from valley K propagating in one direction and
four edge channels from valley K ′ propagating in the opposite
direction. Compared with Phase II, the number of channels in
the K valley remains the same, while the number in the K ′
valley changes from 1 to 4. This change reverses the valley
polarization of the channels, i.e., now the system has more
edge channels in K ′ than in K .

Bilayer systems provide another layer degree of freedom,
which offers additional controllability. In the following, we
examine the effect of tuning interlayer bias potential on the
topological phases of the system. In Fig. 9, we plot the phase
diagram in the (U , M) plane, with fixed SOC strengths. One
can identify five different topological phases in this diagram.
The topological invariants for each phase are listed in Table II.
We take the values of tR1 and tR2 such that at small U , the
system is in the conventional QAH phase with (C = 4, Cv = 0)
(Phase I in Fig. 9). With increasing U , we see that the
system can undergo topological phase transitions to a series of
VQAH phases with (C = 1, Cv = 3) (II), (C = −2, Cv = 6)
(III), (C = −3, Cv = 5) (IV), and (C = 0, Cv = 2) (V). By
inspecting CK and CK ′ , we can see the sequence of gap closing
and reopening processes at the two valleys during these phase
transitions. For the transition from I to II and from II to III,

FIG. 9. (Color online) Phase diagram of the bilayer model in the
(U , M) plane. Five extended phase regions can be identified. The
color indicates the size of the bulk band gap. Other model parameters
are fixed as tR1 = 0.2, tR2 = 0.12, and t⊥ = 0.18.

TABLE II. Chern number contribution of each valley in Fig. 9.

Phase C Cv CK CK ′

I 4 0 2 2
II 1 3 2 −1
III −2 6 2 −4
IV −3 5 1 −4
V 0 2 1 −1

the gap closing is at K ′ valley, while for the transition from III
to IV, the gap closing happens at K valley. These results are
also confirmed by the band-structure calculations. Therefore,
from the above discussion, the transition from conventional
QAH to VQAH can also be controlled by the interlayer
bias. This is understandable because finite U breaks the
inversion symmetry connecting the two valleys, hence could
drive the system towards a valley-polarized state. Because
interlayer potential is generally easier to control in practice,
e.g., through gating technique, hence this finding offers a
potentially convenient route for engineering a VQAH phase in
layered structures. Finally, at very large U and small M , the
system’s total Chern number would vanish. The topological
charges of the two valleys cancel each other. This is known as
quantum valley Hall phase in previous studies [25].

V. DISCUSSION AND SUMMARY

In the analysis of edge channels, the valley index of them is
only well defined provided that the two valleys are separated
in momentum when projected to the edge. This depends on
the edge orientation. For example, for zigzag edges of a
honeycomb lattice, K and K ′ valleys project to separated
points on the edge, which ensures the valley index to be
defined. In contrast, for armchair edges, the two valleys will
be projected to the same point on the edge. Therefore, the edge
channels do not have a well-defined valley index and usually
strong mixing between them could gap the edge states [15].
This dependence of the edge states on the edge orientation is
analogous to what happens in 3D Dirac and Weyl topological
phases [50–54]. Nevertheless, the topological invariants such
as C and Cv are defined for the bulk, hence, do not depend on
the edge orientation.

In Sec. III, we used the single-layer (C = −1, Cv = 3)
phase as an example to explicitly demonstrate the effects of
short-range disorders. Similar physics also happens for other
VQAH phases such as the phases that we discussed in the
bilayer systems. For example, for the phase (C = −2, Cv = 6)
as shown in Fig. 8, at moderate scattering strength, two pairs
of counterpropagating channels would be localized, leaving
only two transport channels with K ′ valley character. Hence,
the resulting system is equivalent to a C = −2 QAH phase
with edge channels fully polarized in valley K ′. This implies
that it is possible to achieve full valley-polarized transport
with higher conductance values by starting from VQAH states
with higher Chern numbers. From the discussion in Sec. III,
one also expects that the valley-polarized transport plateau
could be extended to even higher disorder strength if one could
arrange the disorders to distribute more near the edges than in
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the bulk, thereby suppressing the coupling between the two
edges. Increasing the edge roughness may be a possible way
to achieve this.

The intrinsic SOC as denoted by tSO term is a term
that preserves the inversion symmetry, hence is generally
not helpful for the purpose of inducing valley polarization.
Previous studies have shown that this term could drive the
system to a quantum spin Hall phase in the absence of
time-reversal symmetry breaking [37]. For the models we
considered here, with other parameters fixed, the intrinsic SOC
tends to drive the system out of the VQAH phase. However,
since the topological phase is protected by the band gap, for
small tSO such that the gap is not closed, the VQAH phase
is still maintained. In the single-layer model, the inversion
symmetry could be broken by a staggered sublattice potential
term [38]. Similar to the effect of interlayer bias potential for
the bilayer model, this term could generate valley polarization,
and is capable of driving the system from conventional QAH
phase to the VQAH phase in the single-layer model.

Finally, a particular lattice model is adopted here for the
proposition and the study of the novel VQAH phase. We
emphasize that the essential features we discuss here, such
as the valley polarization of the gapless edge channels and the
disorder effects on the edge channels, are general features of
the VQAH phase and are not particular to one specific model.
In reality, several 2D materials with low-buckled honeycomb
lattice structure have been discovered or proposed [55–58].
In principle, the strength of each individual term in our model
Hamiltonian (1) could be induced and controlled. For example,
the extrinsic Rashba SOC could be generated by substrate or
adsorbed atoms [59–61]. The exchanged coupling could be
generated by defects, magnetic dopants, or in proximity to a
magnetic insulator [62–65]. Intrinsic SOC and intrinsic Rashba
SOC could be controlled by structural deformation through
applied strains [31]. Furthermore, the candidate material is
not limited to those with 2D honeycomb lattice structure.
Any multivalley systems are possible. Therefore, although fine

tuning the various parameters to achieve the VQAH phase
is a challenging task, with the advance in discovering new
2D materials and in developing new techniques to control
interactions at submicron scale, as demonstrated in the recent
realization of the QAH phase, it is promising to also achieve
the fascinating VQAH phase in the future.

In summary, we investigated in detail the VQAH phase
in single-layer and bilayer systems. We provide a clear
physical picture of the topological phase transition from the
conventional QAH phase to the VQAH phase. We studied the
transport properties of the edge channels. With short-range
disorders, pairs of counterpropagating edge channels (one
from each valley in a pair) could be destroyed. However, at
moderate scattering strength, the transport coefficients exhibit
a plateau on which the transport is fully valley filtered, leading
to a VQAH Anderson insulator phase. This remarkable effect
could be used for designing valley filters for valleytronic
applications. Much richer phase diagrams are shown for the
bilayer system with multiple VQAH phases. We demonstrate
the controllability of the topological phase transition by tuning
the system parameters, especially the interlayer bias potential.
The study presented here endows the valley transport with
topological protection, which is very important for realizing
robust performance of information processing based on valley
degree of freedom.
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