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Temporal coherence of one-dimensional nonequilibrium quantum fluids
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We theoretically investigate the time dependence of the first-order coherence function for a one-dimensional
driven dissipative nonequilibrium condensate. Simulations on the generalized Gross-Pitaevskii equation show
that the characteristic time scale of exponential decay agrees with the linearized Bogoliubov theory in the regime
of large interaction energy. For very weak interactions, the temporal correlation deviates from the linear theory,
and instead respects the dynamic scaling of the Kardar-Parisi-Zhang universality class. This nonlinear dynamics
is found to be quantitatively captured by a noisy Kuramoto-Sivashinsky equation for the phase dynamics.
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I. INTRODUCTION

The condensation of exciton polaritons realized in semi-
conductor microcavities has provided a new setting to study
Bose-Einstein condensation (BEC) under a nonequilibrium
condition [1,2]. In contrast to conventional BEC [3], exciton-
polariton condensation is achieved at relatively high tempera-
tures [4,5]. This remarkable feature is owed to the much lighter
effective mass of the polariton quasiparticles as compared
to the atoms in conventional BEC, making it possible to
reach condensation even at room temperature [6,7]. The
nonequilibrium character has its origin in the dynamic balance
between the losses and pumping of the cavity as a result of the
short quasiparticle lifetime, ranging from a few to 100 ps. In
this respect, polariton condensates resemble spatially extended
lasers.

It is of fundamental importance and interest to understand
how the quantum fluid develops its coherence when the system
departs from equilibrium. The coherence function is thus a
key observable in studies regarding the onset of superfluidity
and algebraic order due to the Berezinskii-Kosterlitz-Thouless
transition [8—10]. Recently, it was found by us [11] and
Sieberer et al. [12] that nonlinear Kardar-Parisi-Zhang (KPZ)
physics is crucial in understanding the coherence of polariton
condensates. We derived an equation for the long wave phase
dynamics that takes the form of a noisy Kuramoto-Sivashinsky
equation (KSE), which is in the KPZ universality class [13].
It was shown that the nonlinearity in the noisy KSE phase
equation becomes especially important when the collisional
polariton-polariton interactions become weak. In that regime,
the linearized Bogoliubov theory that successfully describes
the coherence of equilibrium condensates breaks down.

Various nonlinear phenomena associated with KPZ dy-
namics have been intensively studied for decades, such as
stochastic interfacial growth, propagation of flame fronts, and
directed polymers [14—16]. Their dynamic scaling properties
are characterized by the two-point correlation function in space
and time,

Clx,t;x',t") = ([0(x,1) — (X, 1)), )

where the interpretation of scalar field 6(x,7) depends on the
specific physical problem under investigation. In the present
case, 6(x,t) corresponds to the local phase fluctuation of a
quantum fluid at point x and time ¢. It is well known that at long
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times and large scales, the correlator of the KPZ class follows a
scaling form, C(x,t;x',t") = |x — x'|>X f(|t — t'|/L?), where
x and z are two scaling exponents satisfying x +z =2,
and f(x) is the KPZ scaling function [14,17]. For the 1+1
dimensional case, the exact values of the scaling exponents,
obtained via dynamic renormalization group analysis and

confirmed by several numerical studies, are y = % and 7 =

%. Hence, in the Fourier space, the correlator scales as

C(k,t) o k=2 f(tk3/?). The occurrence of such scaling in the
one-dimensional (1D) nonequilibrium condensate has been
reported in Ref. [11], where the discussion was restricted to the
static properties of first-order spatial coherence. The properties
of the dynamic correlations in the nonequilibrium condensate
are still not clear so far. It is the purpose of this paper to
fill this gap and clarify the scaling properties that emerge
in the 1D nonequilibrium system. We shall demonstrate that
the characteristic KPZ scaling behavior can be most easily
identified in the temporal correlation function in the weak
interaction regime.

This paper is organized as follows. In Sec. II, we re-
capitulate the linear Bogoliubov and nonlinear noisy KSE
approaches to the calculation of the coherence function. Then
we describe our numerical schemes of simulation, which can
adequately take into account the effects of nonlinearities on the
temporal correlations. In Sec. III, the KPZ dynamic scaling
properties in Fourier and real space are elaborated with the
numerical results. Our conclusions are finally drawn in Sec. IV.

II. THEORY AND METHODS

We study the dynamics of nonequilibrium quantum fluids
in terms of the generalized Gross-Pitaevskii equation (GGPE).
The GGPE reads [8,11]

Ay (x,1) V2 2, . Py
— =+ + - -
T am TV T Y)Y
dw
- 2
+ @)
where ¥ (x,r) is the classical field wave function, g the
interaction strength, Py the pump strength, n, the saturation
density, and y the damping rate. The last term of Eq. (2)
represents the effect of random noise. Its correlations are taken
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to be Gaussian and uncorrelated in both space and time,
(dW(x,H)dW*(x',t")) =2D8(x — x)8(t — t)dtdt', (3)

where D is the noise strength.

In the absence of noise, the steady state density of GGPE
isng = [Yol|*> = ng(Py/y — 1) when the pumping exceeds the
losses (Py > y). If the Bogoliubov theory of quantum fluids is
valid, we can linearize the macroscopic wave function near the
steady state as V¥ (x,f) = [y + Sy (x,t)]e” ™™, with 8y (x,t)
the fluctuation field and p = gng the oscillation frequency
determined by the self-interaction energy of the bosons. In
the presence of noise, the linearization of the GGPE leads to
an equation of motion for the fluctuation field in the Fourier
space [8],

(dsy\ {8y AW
(ot ) = (0 o+ (Cs) @

with £ the Bogoliubov matrix defined as
_ (e +pn—ill uw—il
£_<—,u—iF ——pu—ill)’ )
where €, = k?/(2m) is the kinetic energy of the bosons
and ' = y(Py — y)/ Py the dressed damping rate of the
|

8,1y = 2w De7 =1

Wi

where k., = +/2m(y/ % + I'2 — p)!/* is the critical momentum
for bifurcation. Assuming ¢ = ¢’ in Eq. (8), we then recover
the expression for the momentum distribution of density in

Ref. [8],
2n D 4
r

In thermal equilibrium, the linearized Bogoliubov theory is
sufficient to compute the low temperature (loosely speaking,
the analog of weak noise) correlation functions. Out of
equilibrium, however, it turns out that the nonlinearity in the
phase evolution can affect the coherence, even for small D.
The long wavelength phase fluctuations are described by a
noisy Kuromoto-Sivashinsky equation (KSE),

4 2 2 FZ
ne = (Wl OW(0) = il s )]. ©)

kK2(k* + 4mp)

RN [_i

2m|  2m

= V4 + 2nu V20 — (V0)?
o7 m +2nu (Vo)

D dW,y

_—, 10
no dt 10

where n = (1 4+ ny/ng)y ' is a parameter determined by the

gain medium. As noticed in Ref. [11], if one rescales the KSE
variables as

x=24xl,, t=7t, 6=200,,

11
k=k/l,, (n

B = Ay,

[wL(,ﬁE;kzrz + l#) sinhaw(t — t) + %(1 + ’BE;;Z) cosh wy(t — t’)], for k <k,

(12472 | et o 1 2412
252 i) sinanc — ) + 41+ 5
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fluctuation field. After diagonalizing £, one gets two branches
of eigenenergies, )»,f = —i[ + iy, where wy = +/|T'% — E,f|,

and Ey = Jer(ex +2u) is the energy dispersion of the
standard Bogoliubov mode.

The physical quantity we are interested in is the first-order
coherence function,

1
gV, t;x' 1) = ;«w (O (1)), ©6)

where #n is the average density. The Fourier transform of the
spatial coherence gives the momentum distribution

V@t = (Wl O

= [aret g )
4

In the eigenbasis of £, by performing a stochastic integration
over the noise field [18], the k-dependent correlation function
of fluctuation field can be obtained as

®)

) cos wy(t — 1], for k> k.,

E2

(

then Eq. (10) can be cast into a dimensionless form,
90(x,7 e o ax dwW;
g ) 5+ 420 — (V6 + d—tf’, (12)

where the rescaling factors are given by

1 4/7 D -1/7
L=(~— I — : 13
=) G e

1\27 D\ 47
t, =kl — ST — , 14
* (21’)1) n hno (14)
1\ D\
0, =— vt =1 15
(Zm) 7 hng (1%
1 1\~ ] D \*7
== — =1 . 16
w=glm) () 0o

Thus one can see the only free parameter in the dimensionless
KSE is the rescaled chemical potential fi, a measure of
effective interaction strength between the bosons. The validity
of KSE formalism relies on a fact that the spatial and temporal
coherence of the quantum fluid is primarily dominated by
the phase correlator. As usual, the contribution from density
fluctuations turns out to be negligible for the long distance
decay of the coherence. Therefore, the behavior of the first-
order coherence function g("(x,¢) is well approximated by

g(l)(x,t) — (efie(x,t)ei9(0,0)> — (efiAQ(x,t))’ (17)

where Af(x,t) = 0(x,t) — 0(0,0). If the phase fluctuation
d W, behaves as a white noise and has a Gaussian distribution,
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then the average in Eq. (17) can be determined by a standard
cumulant expansion up to the second order, which yields

La6%(x,0)

gM(x,1) oc e = 300N, (18)

where a constant factor has been omitted.

To reveal the KPZ scaling of the temporal coherence for
the exciton-polariton system, we have performed numerical
studies on both GGPE and KSE in one spatial dimension.
The GGPE (2) is numerically solved using the splitting-flip
method: The wave function evolves alternatively as ¥ (¢) —
e~'T A1y (¢) in the Fourier space and ¥ (x,t) — e~ VA (x,t)
in the real space, where T = k*>/(2m) and V = g|y|> +
i[Py/(1 + |¥|*/ng) — y]. The two evolutions are connected
by a Fourier transform, and the noise term is added every time
the real space wave function v (x,¢) is updated. The KSE (12)
is numerically simulated in Fourier space with the Euler
one time step method, O;(f + A7) = Gz(7) + AG¢(). In this
process, the temporal discretizations of linear and noise terms
of KSE are performed directly. Meanwhile, the nonlinear part,
related to the square of the phase gradient, is obtained using
the pseudospectral discretization approach [19]: The phase
gradient is first computed in Fourier space by multiplication
k6 (7), then a Fourier transform of it yields VA(%,7), from
which [V4(#,7)]? can be calculated and at the end transformed
back to Fourier space. Since the simulation is performed on
Eqg. (12) in a dimensionless form, the real units of phase
correlation Eq. (18) are retrieved by employing the rescaling
formula Eq. (11).

In both GGPE and KSE cases, we implement the simula-
tions on a one-dimensional system of 128 sites with periodic
boundary conditions. To measure the correlation function of
the GGPE under dynamic balance, we start from the initial
configuration with uniform density and random local phase.
For the numerical comparison between the GGPE and the KSE,
we have used in the GGPE simulations the following fixed
numerical values for the parameters: m = 1, y = 10, ny, = 1
and Py = 20 and grid spacing Ax = 0.5. After about 10°-10°
iterations with a time step Ar = 0.001, the system is stabilized
at a steady state. Then the ensemble averaging of temporal
correlation g™ (x,¢) is performed over about 1000 sequences
of samples of ir(x,t). Each sequence of time evolution has
a duration of r = 1000. For the KSE, we start with a flat
distribution of 6(x,?). We let the phase field evolve freely at
the same step as GGPE up to ¢ = 1000, during which the phase
correlation is measured. This process is repeated about 1000
times to get the ensemble average.

III. TEMPORAL CORRELATION AND
DYNAMIC SCALING

A. Correlation time in Fourier space

The spatial coherence of nonequilibrium condensates has
been explored in an earlier work by us by means of the
GGPE and the KSE [11], where the long distance decay of the
spatial coherence was found to be exponential. It was found
that the nonlinear term in the noisy KSE (10) can affect the
coherence length but it does not change the nature of the decay.
In the present work, we shall concentrate on the temporal
correlations. In analogy with the spatial coherence, we expect
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FIG. 1. (Color online) Characteristic momentum dependence of
correlation time 7, in (a) the linear regime of u =2 and (b) the
nonlinear regime of p = 0. Three typical power-law dependences of
k are plotted by red dashed, black dashed-dotted, and blue solid lines
as guide to the eyes. The green squares and red circles are simulations
on GGPE and KSE, respectively, and the blue open circles denote
Bogoliubov theory. k. is the bifurcation momentum, and Ax = 0.5
the discretization length in real space.

the effects of the nonlinearity in the phase equation (10) to be
more prominent for weak interactions fi — 0.

As seen in Eq. (8), the Bogoliubov theory claims an
exponential decay for the temporal correlation. We therefore
introduce a correlation time 7, to characterize the time
dependence of correlations, and estimate this time scale by
fitting the temporal correlation function to an exponential,

g (1) = e/, (19)

Figure 1 displays our numerical results for 7. as a function of
momentum k in two representative cases, the “linear” regime
with u = 2 in Fig. 1(a)and the “nonlinear” regime with i = 0
in Fig. 1(b). The simulations on GGPE and KSE are plotted
by the green squares and red circles, respectively, which agree
with each other very well in both panels, justifying that the
spatial and temporal coherences are indeed dominated by
the phase fluctuations. For comparison, the blue open circles
represent the Bogoliubov theory predictions from Eq. (8). The
red dashed, black dashed-dotted, and blue solid lines indicate,
respectively, the 1/ k41 / k2, and 1/ k3/2 relations in the double
logarithmic scale.

According to the Bogoliubov theory Eq. (8), the long time
properties of g,(cl) are classified into two categories depending
on the value of k. When k > k. (k. is marked by black dotted
lines in Fig. 1), the profile of g,(cl) shows a time dependence of
e~ T, which corresponds to a trivial constant 7. = 1/ I". When
k < k., the long time behavior turns out to be e~ T~ and
one gets

7. ~ 1/[T = VT2 — ex(ex + 20)]. (20)

If ©w+#0, in the region k — 0, the leading order terms
of Eq. (20) give 1. ~ I'/(€xu) ~ 1/k>. This behavior is
illustrated in Fig. 1(a) by the gathering of three different
symbols along the black dashed-dotted line for small momenta,

045301-3



KAIJI, VLADIMIR N. GLADILIN, AND MICHIEL WOUTERS

indicating that Bogoliubov theory works well if the interaction
energy p is sufficiently strong (linear regime for the phase
equation). At the smallest wave vectors, however, a small
discrepancy between the Bogoliubov theory and the numerics
appears. This is expected, because the nonlinear KPZ scaling
behavior should take over at large distance and time scales.

When the interaction energy vanishes (i — 0), deviations
from the linear theory become pronounced at much smaller
scales (larger momenta). In Fig. 1, we show Eq. (20), giving
7. ~2I'/e} ~ 1/k*, by the red dashed line and blue open
circles in Fig. 1(b). The numerical simulations on GGPE
and KSE reveal a marked deviation from the Bogoliubov
theory, immediately below the bifurcation wave vector k..
Instead of the 7. ~ 1/ k* relation, the simulations show
unambiguously a 1/k%? dependence, a well-known feature
due to the dynamic scaling behavior of the KPZ universality
class. In the simulation of GGPE in Fig. 1, the noise strength is
fixed at D = 0.01. We have also tested some different values
of D. Except for a shift in 7., we did not find any difference in
the scaling.

In the nonlinear regime, where the Bogoliubov theory
breaks down, it is a priori no longer guaranteed that the
exponential decay (19) remains accurate. In order to address
this concern, we present our raw data of simulations, together
with fitting curves, in Fig. 2. Here we show the time evolutions
of function ln[g,((l) @/ g,(cl)(O)] for three different momenta,
k = m /32 (the smallest nonzero k in our simulation), 7 /8, and
7 /2. The black squares and green circles denote the simulation
data of GGPE and KSE, and their fitting results are plotted
by the red dashed and blue solid lines, respectively. One can
see in both linear (upper panels) and nonlinear (lower panels)
regimes that the straight lines fit quite well on the simulation
results up to a cutoff point, after which numerical errors spoil

([
= (a)
=3
. k=n/32 N
=)
= _4f| © GGPE
=2 KSE
Z Liner theory
%’ 6| - - —GaPE it
= —— KSE fit
-8 -
0 500 1000

0
) \
k=32 gy

(d)
0 500 1000
t t t

FIG. 2. (Color online) Extraction of correlation time 7, by fitting
the temporal correlations in terms of Eq. (19). The upper panels
[(a)—(c)] show the correlations for three different values of £ when
u = 2. The lower ones [(d)—(f)] are for u = 0. The black squares
and green circles are from GGPE and KSE simulations, respectively.
Numerical fittings to exponential decays are illustrated by the red
dashed and blue solid lines. The orange dashed-dotted lines represent
results from Bogoliubov theory as a reference.
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FIG. 3. (Color online) Time evolution of representative correla-
tion functions in (a) the linear regime with & = 2 and (b) the nonlinear
regime with u = 0. The blue solid lines depict the correlations at short
distances, x/Ax = 16, while the black dashed-dotted lines present
those at long distances, x/Ax = 48, both of which are obtained via
GGPE. The corresponding KSE simulations are plotted by the red
squares and green circles, respectively.

the data. These errors reflect the stochastic fluctuations due to
the noise terms, which decrease for longer time averaging.

Within our numerical uncertainty, we can conclude that
the temporal correlation decays as an exponential even in
the nonlinear regime, and the 1/k*? dependence of 7. does
characterize the dynamic coherence of the nonequilibrium
quantum fluid.

B. Scaling function in real space

So far, we have investigated the scaling of the temporal
coherence in momentum space. While experimentally acces-
sible, it may be hard to make a precise measurement of the
coherence time close to zero momentum, where the intensity
is very high. Alternatively, coherence at fixed distance also can
be studied.

In Fig. 3, we study the time evolution of spatial correlation
in the linear regime with u = 2 in Fig. 3(a), and the nonlinear
regime with i = 0 in Fig. 3(b). The blue curves (red squares)
display the time dependence of the correlation for closely
spaced points with x/Ax = 16, obtained with the GGPE
(KSE). For comparison, the correlation between two distant
points of x/Ax = 48 is shown by the black dashed-dotted
curve (green circles) computed with GGPE (KSE) over the
same time range.

As one can see, with an elapsing time difference, the
temporal correlations at short and long spatial distances tend
to the same asymptote, though they are very different at equal
times. Here one also notices some small difference between
the GGPE and KSE results, which we attribute to density
fluctuations.

As discussed in the Introduction, the KPZ universality
class is characterized by a distinctive scaling function. With
Eq. (18), we can connect the scaling function f to the spatial
coherence as

f(t/x) = Clx,nHx~2* = =2In[gP(x,n)]x X, (21)
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FIG. 4. (Color online) Dynamic scaling behaviors of GGPE (up-
per panels) and KSE (lower panels) for different interaction energies
w. Here f(¢/x%) is the dynamic scaling function, and z is the scaling
exponent extracted from numerical simulations (see text). The three
different curves in each panel denote short, intermediate, and long
distances.

Figure 4 plots our numerical results of the shifted scaling
function f(¢/x*) — f(0) obtained from numerical simulations
over GGPE (upper panels) and KSE (lower panels), respec-
tively. Here we select several separations in real space x /Ax =
16, 32, 48 on the N = 128 chain with a periodic boundary
condition. The three curves can be made to collapse by a proper
spatiotemporal rescaling. Specifically, when u = 2, we find z
to be 1.7 for the GGPE simulation in Fig. 4(a), and 1.8 for the
KSE data in Fig. 4(c). These values are between the Bogoli-
ubov prediction (z = 2) and the KPZ theory (z = 1.5). This
shows that for our simulations, the finite size effects are still too
large to evidence the KPZ scaling. On the other hand, when in-
teractions vanish, u = 0, we find the typical KPZ value of z =
1.5 for both GGPE and KSE. This result proves that the KPZ
physics dominates at all length scales over the Bogoliubov
physics in the absence of interactions. In finite size nonequi-
librium quantum fluids, it is thus easier to evidence the char-
acteristic KPZ scaling when the interaction energy is small.

Since the periodic boundary conditions are imposed in the
numerical simulations of GGPE and KSE, the calculated 1D
dynamical scaling functions f(¢/x%) turn out to be symmetric
with respect to the center x/Ax = N/2 of the chain, which
to a certain extent modifies the scaling behaviors of f(¢/x%).
To assess such a boundary effect on the finite systems, in
Fig. 5 we check the dynamical scaling function f(f/x%) at
a fixed point x/Ax = 32 for three 1D systems with lengths
N = 64, 128, and 256. Here the values of scaling exponents z
are the same as those in Fig. 4. For the case of N = 64 (blue
dots), as the checkpoint just corresponds the chain center,
the spatiotemporal behavior has been significantly modified
by the periodic boundary condition. One can see that the
dynamical scaling functions show a clear difference from those
of N = 128 (red dashed curves) and 256 (green solid curves).
Although the results of N = 128 and 256 are also subjected to
the periodic boundary conditions, a good agreement between
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FIG. 5. (Color online) Boundary effects on the dynamic scaling
function f(¢#/x%) at the point x/Ax = 32 in the simulation of the
GGPE (upper panels) and KSE (lower panels), where z’s are the same
scaling exponents as in Fig. 4. The boundary-induced modification
is prominent for the chain of N = 64 (blue dots), while it is
negligible for N = 128 (red dashed curves) and 256 (green solid
curves).

them signifies that the boundary effect has become negligibly
small because the checkpoints are sufficiently far from the
chain centers. From this scaling analysis, we can infer that
the dynamic scaling properties presented here are generic
for the 1D quantum fluid and can be observed in the
thermodynamic limit.

In connection with the experimental observation of the
KPZ scaling in microcavity polariton condensates, assuming
no =ng = 100 um~!, D =y = 0.5 meV, we estimate that
the typical length and time scales of KPZ regime are [, =
3.4 um and t, = 45 ps. This means that with a contemporary
experimental setup, it is technically feasible to study the KPZ
scaling effects on the basis of semiconductor microcavities.

IV. CONCLUSIONS

To summarize, we have shown that the coherence function
of a 1D nonequilibrium quantum fluid is subject to the KPZ
dynamic scaling. The KPZ scaling feature is a consequence of
the nonlinearity inherent in the nonequilibrium system. It turns
out to be a leading effect in the weak interaction regime, domi-
nating the decay of phase correlation across space and time. In
the nonlinear regime, consistent numerical results on scaling
exponents have been obtained from the GGPE and KSE.
Especially at weak interactions, the characteristic KPZ scaling
behavior of 1+1 dimensions is recovered with x = % and z =
% in systems of moderate size. With an increase of interaction
strength, the nonlinear effect is, at intermediate distances,
overtaken by the linear one, thus validating the Bogoliubov
approach.

Our results show that the KPZ universality class is important
to describe the coherence properties of 1D nonequlibrium
quantum fluids. It therefore looks promising to further in-
vestigate the effect of the KPZ physics on two-dimensional
clean [12] and disordered [20] systems.
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