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Light-matter interaction and lasing in semiconductor nanowires: A combined finite-difference
time-domain and semiconductor Bloch equation approach
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We present a time-domain model for the simulation of light-matter interaction in semiconductors in arbitrary
geometries and across a wide range of excitation conditions. The electromagnetic field is treated classically
using the finite-difference time-domain method. The polarization and occupation numbers of the semiconductor
material are described using the semiconductor Bloch equations including many-body effects in the screened
Hartree-Fock approximation. Spontaneous emission noise is introduced using stochastic driving terms. As an
application, we present simulations of the dynamics of a nanowire laser including optical pumping, seeding by
spontaneous emission, and the selection of lasing modes.
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I. INTRODUCTION

Semiconductor lasers are important components of optical
technologies with numerous applications in daily life. Their
large-scale use, e.g., in optical networks, has raised the need
for reduced power consumption as a contribution to global
energy savings. Therefore, semiconductor nanolasers are at the
forefront of current research to meet this need. Recently, semi-
conductor nanowires have attracted widespread interest due to
their unique combination of electrical and optical properties,
which allow for applications as photonic and plasmonic lasers
or as resonators for the observation of polaritonic effects [1–5].
Many applications rely on sophisticated geometries, where
bending and folding of individual wires or the interaction
between multiple wires play an important role in determining
the optical properties [6,7].

On the other hand, the performance of a nanolaser device
relies heavily on the electronic properties of the respective
gain material. In nanowire laser systems, the gain is typically
provided by the wire material itself. Alternatively additional
constituents such as incorporated transition-metal or rare-
earth ions can provide the gain. For semiconductor active
materials, the single-particle electronic states are defined by
structural properties such as material composition, quantum
confinement, and strain.

The optical properties, however, are additionally influenced
by many-body effects of the excited carriers. In the weakly
excited regime, these effects give rise to excitonic absorption
peaks lying below the band gap. In the high-excitation regime,
the excitation dependence of the optical gain is dominated by
phase-space filling and many-body energy renormalizations.
Coulomb enhancement of interband transitions, screening,
and excitation-induced dephasing additionally contribute to
the magnitude and spectral distribution of the gain [8–11].
Therefore, a predictive theory of nanowire lasing needs to
incorporate these effects as well as the device geometry.

Numerical methods like finite-difference time-domain [12]
(FDTD) simulations allow for the modeling of electrody-
namics in arbitrarily complex geometries and can be readily
extended to solve additional differential equations describing
dispersive, nonlinear, or gain media. However, while this
approach has been used to model semiconductor media using

incoherently coupled two-level systems [16], the combination
of the FDTD method with a proper semiconductor gain model,
including excitonic and band-gap renormalization effects, is
still lacking. To bridge this gap, we present a theoretical
model combining semiconductor Bloch equations [10] with
the FDTD method. The Coulomb interaction is treated in
the screened Hartree-Fock approximation [9] to provide for
an accurate description across different excitation density
regimes. Since nanowire lasing modes usually have a nontrivial
polarization structure, several bands and electronic transitions
need to be included in order to describe the coupling of
different electric field polarizations to the material. As a
first application, we present simulations of the dynamics of
an optically pumped semiconductor nanowire, including the
amplification of spontaneous emission up to the onset of lasing
and the selection of transverse and longitudinal modes.

II. THEORETICAL MODEL

A. General formulation

To investigate light-matter interaction in semiconductor
nanowires (NWs), we solve Maxwell’s equations,

∂

∂t
�D = 1

μ0

�∇ × �B, (1)

�D = εε0 �E + �P, (2)

∂

∂t
�B = −�∇ × �E, (3)

using the standard FDTD algorithm [12,13] and taking into
account the full vectorial character of the electric field �E,
the magnetic induction �B, and the dielectric displacement
�D. The passive material response is incorporated in a nondis-

persive dielectric constant ε(�r), while the dynamic action of the
semiconductor material is represented by the polarization �P ,
which includes contributions from all optical transitions from
valence bands with indices λ to the conduction band (index
e) at electron Bloch vectors �k. We assume the microscopic
polarizations ψλ,q,k as well as the occupation numbers ns,k

for conduction-band electrons (s = e) and for holes in the
different valence bands (s = λ) to depend only on the absolute
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value k of the Bloch vector, so that the polarization in a bulk
semiconductor takes the form

�P = 2Re

⎛
⎝∑

λ,q

∫
k

dk
k2

π2
�dλ,q,kψλ,q,k

⎞
⎠ , (4)

where �dλ,q,k is the dipole matrix element attributed to the
transition from valence band λ to the conduction band and
coupling to the electric field component pointing in direction q.
To explicitly take into account the nature of the active material,
we employ semiconductor Bloch equations (SBEs) [10] in the
screened exchange-Coulomb hole approximation [9].

This leads to equations of motion for the microscopic
interband polarizations ψλ,q,k of the form

i�
∂

∂t
ψλ,q,k = (1 − ne,k − nλ,k)�λ,q,k

+ [εe,k + ελ,k + ελ,gap − �εk − iγ (N )]ψλ,q,k

+
ψ,λ,q,k, (5)

with the renormalized Rabi frequency

�λ,q,k = �dλ,q,k
�E +

∫
k′

dk′Wk,k′ψλ,q,k′ , (6)

using the screened Coulomb matrix elements Wk,k′ . We include
an excitation-density-dependent dephasing γ (N ) caused by
carrier-carrier Coulomb interaction [14]. Transition energies
are defined by the band gap energy ελ,gap and the renormalized
single-particle energies

εs,k = �
2k2

2meff,s
−

∫
k′

dk′Wk,k′ns,k′ , (7)

where meff,s are the effective masses. The Coulomb hole
contribution can be written as

�εk =
∫

k′
dk′(Wk,k′ − Vk,k′), (8)

where Vk,k′ is the unscreened Coulomb matrix element [15].
The screened and unscreened Coulomb interaction is given by

W|�k−�k′| = e2

εε0

1

|�k − �k′|2 + κ2
(9)

with screening wave number

κ =
√√√√ e2

π2ε0εr�

∑
s∈{e,λ}

meff,s

∫
dkns,k (10)

and by

V|�k−�k′| = e2

εε0

1

|�k − �k′|2 , (11)

respectively. To evaluate these matrix elements numerically,
we utilize an angle-averaging procedure, which is described
in [10]. This yields the matrix elements Vk,k′ and Wk,k′ that are
used above.

Similarly to the equation of motion for the transition
amplitudes, the time evolution of the occupation numbers is

given by

∂

∂t
ne,k = −2

�

∑
λ,q

Im(�λ,q,kψ
∗
λ,q,k) − γrec

∑
λ

nλ,kne,k

+ γf,e(fe,k − ne,k) + 
ne,k (12)

for electrons and by

∂

∂t
nλ,k = −2

�

∑
q

Im(�λ,q,kψ
∗
λ,q,k) − γrecnλ,kne,k

+ γf,h(fλ,k − nλ,k) +
∑
λ′ �=λ

�λλ′k + 
nλ,k (13)

for holes in the valence band λ. The first term describes
the carrier excitation by the electromagnetic field. The two
terms involving γrec and γf respectively phenomenologically
describe nonradiative recombination and intraband relaxation
of carriers towards Fermi-Dirac distributions with a band-
dependent Fermi level fs,k [16]. To allow for the relaxation
between valence bands, an additional contribution

∑
λ′ �=λ �λλ′k

is included in the equation of motion for the hole populations,
where

�λλ′k = γλ′λnλ′,k(1 − nλ,k) − γλλ′nλ,k(1 − nλ′,k). (14)

To allow for the description of spontaneous emission in our
semiclassical model, we add noise terms as previously used
for two-level systems [17,18],


ψ,λ,q,k = (ξ1,λ,q,k + iξ2,λ,q,k)
√

γse,kne,knλ,k (15)

γse,k = γ − 1
2γrec

to the right-hand side of Eq. (5) as well as


ne,k =
∑

λ

ξ3,λ,k

√
ne,knλ,kγrec (16)


nλ,k = ξ3,λ,k

√
ne,knλ,kγrec. (17)

to the right-hand sides of Eqs. (12) and (13). ξ are Gaussian
random numbers with zero mean. The individual ψλ,q,k’s are
coupled by the Coulomb interaction, and therefore excitonic
effects are included in the spontaneous emission, which lies
mainly below the band gap. The intraband relaxation processes
associated with γf,e and γf,h are microscopically caused by a
combination of carrier-carrier Coulomb scattering and carrier-
phonon scattering and redistribute the populations towards
quasi-Fermi distributions. These processes do not describe
a decay of polarization and conserve quasiparticle densities.
Therefore associated additional noise amplitudes can be safely
neglected, at least for high excitation densities and in the lasing
regime.

B. Optical transitions for 2-6 semiconductors

Simulations of photonic nanostructures require a fully
vectorial treatment including the coupling of all electric field
components to the material system. Therefore the consider-
ation of all transition elements between bands in a relevant
frequency range is necessary. In this section we discuss the
involved bands and the possible transitions for the case of
2-6 semiconductors with wurtzite structure (Fig. 1). These
materials are most interesting in the case of nanowire lasers.
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FIG. 1. (Color online) Bands and transitions with their relative
dipole matrix elements for the case of a 2-6 semiconductor with
wurtzite structure and a crystal axis pointing into the z direction.
Grayed-out items are not included in the calculations.

However our algorithm can be easily modified to simulate
other band structures.

Photonic wires with wurtzite structure are birefringent with
the optical axes pointing in the z direction along the wire.
The optical properties arise from transitions between three
p-like valence bands (occupation numbers nλ,k , λ ∈ {a,b,c})
and a single s-like conduction band (occupation number
ne,k) [19,20].

The degeneracy of the valence bands a (total angu-
lar momentum j = 3

2 , z component mj = ± 3
2 ), b (j = 3

2 ,

mj = ± 1
2 ), and c (j = 1

2 , mj = ± 1
2 ) is lifted due to spin-orbit

coupling and interaction with the hexagonal crystal field. The
valence band c can be safely neglected in a description of
the optical properties, since its energy is significantly set off
from the fundamental band gap. Thus, the relevant occupation
numbers for our model are ne,k,na,k,nb,k .

To find all possible transitions and their respective relative
dipole matrix elements, states are expanded in spin and orbital
angular momentum eigenstates |l,ml〉|ms〉 using Clebsch-
Gordan coefficients. Assuming conservation of electron spin,
allowed optical transitions are characterized by a conservation
of angular momenta of photons and electrons. Light polarized
linearly along the z axis aligned with the crystal’s c axis
induces transitions with �ml = 0. A transition with �ml = 1
corresponds to circular polarization in the xy plane perpendic-
ular to the c axis. These transitions are expanded in a linear
polarization basis to allow for coupling to FDTD simulations.

We obtain two possible transitions between the valence
band a and the conduction band coupling to x- and y-polarized
light with dipole matrix elements �da,xy,k = 1 × d0,a,k�exy . The
valence band b turns out to be active for all three polarization
directions, and we obtain dipole matrix elements �db,xy,k =√

1
3 × d0,b,k�exy and �db,z,k = 2

√
1
3 × d0,b,k�ez.

C. Parameters for CdS

In this work we focus on CdS nanowire structures. Gap
energies for the two relevant bands εgap,a = 2420 meV
and εgap,b = 2435 meV are taken from theoretical calcu-
lations [21,22]. Anisotropic effective masses found in the
literature [23] have to be angle averaged to be applied in our
model, where only the absolute values of the k vector are used.
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FIG. 2. (Color online) Absorption spectra of CdS calculated with the multiband semiconductor Bloch equation model for different excitation
densities N . (a) Excitation polarized perpendicular to the crystal c axis. (b) Excitation polarized along the crystal c axis. The peaks labeled A
and B correspond to the exciton 1s resonances of the transitions respectively involving valence band a and valence band b.
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We obtain meff,e = 0,1619me for electrons as well as meff,a =
0,5951me and meff,b = 0,713me for holes. The background
refractive index nbg = √

ε = 2.74 has been chosen so that
reported values for the exciton binding energy [24] are
reproduced. The dipole matrix element d0 = 0.279e nm is
taken from literature [25].

We use a density-dependent dephasing time constant as in
the experimental and theoretical literature [14,26]

γ (N ) = γ0 + γaN
0.3
e , (18)

with γ0 = 5 ps−1 and γa = 4 × 10−5 cm
ps . Typical values for

relaxation and recombination times are γrec = 109 s−1, γf,e =
1012 s−1, and γf,h = 1013 s−1. Holes relax from valence band
b to valence band a, so that Eq. (14) becomes

�ab,k = γbanb,k(1 − na,k), (19)

�ba,k = −�ab,k (20)

using the relaxation rate [27] γba = 6 × 109 s−1.

III. RESULTS

In order to probe the linear response of our material model,
we simulate a thin CdS sample in air irradiated with a plane
wave and record the spectrum of the electric field �E(ω) and the
polarization �P (ω) inside the sample. From this, the electronic
contribution to the permittivity δχij = Pi

ε0Ej
is calculated and

the absorption coefficient α is obtained. For an excitation
polarized perpendicularly to the crystal c axis (Ex/y), the
absorption spectrum shows two distinct peaks corresponding
to the exciton 1s resonances of the transitions between each
of the valence bands and the conduction band [Fig. 2(a)]. For
an excitation along the c axis (Ez), only one absorption peak
can be observed, since for this polarization only the transition
from the valence band b to the conduction band is accessible
[Fig. 2(b)]. In both cases the exciton peaks vanish for higher
excitation densities due to the combined effects of screening
and band filling.

We now turn our attention to the lasing dynamics of
optically excited nanowire lasers. We simulate a nanowire
with diameter d = 250 nm and length l = 7.5 μm extending
along the z axis centered on z = 0 and resting on a fused
silica substrate as shown in Fig. 3. The wire is pumped
from above (y direction) with an x-polarized plane wave
pump pulse with a sech-shaped time dependence (central
wavelength λ0 = 500 nm, temporal width wt = 100 fs). To
inject this excitation pulse, we utilize the total field–scattered

FIG. 3. (Color online) Sketch of the simulated nanowire geome-
try including polarization and propagation direction of the exciting
pulse. The wire is centered on z = 0.
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FIG. 4. (Color online) Temporal field dynamics inside a
nanowire laser (l = 7.5 μm, d = 250 nm) excited with a pump
pulse (central wavelength λ0 = 500 nm, temporal width wt = 100 fs)
polarized perpendicularly to the wire axis. (a) Dynamics of electron
volume density and electric field intensity inside the wire. The
inset shows a zoom into the temporal region of the initial laser
pulse. (b) Temporal dynamics of the individual longitudinal modes
obtained from a windowed Fourier transform of the temporal fields
(normalization per time slice). (c) Population dynamics in k space.
(d) Spectrum showing the emission lines (black). For better orien-
tation, the absorption coefficients for a low excitation density (blue)
and a high excitation density (red), similar to the densities present
after the absorption of the pump pulse, are included.

field (TF-SF) formalism [12], which allows for the excitation
of a plane wave inside a bounded simulation volume. Outside
the TF-SF border, only fields scattered or emitted by the
nanowire are present. Figure 4(a) shows the temporal dynamics
of the electric field and of the electron density. The electron
density is recorded in a slice perpendicular to the wire axis
positioned close to an end facet (z = 3.6 μm). The electric
field intensity is averaged across a slice outside the wire
(z = 4.2 μm). After applying a windowed Fourier transform
to the time-domain data, the dynamics of the involved modes
can be studied [Fig. 4(b)].

Starting from thermal equilibrium, the conduction band
electron density is pumped by the excitation pulse, which is
centered at t = 0. After the passage of the excitation pulse,
intensities drop until stimulated emission sets in with a steep
rise at about t = 1 ps [inset of Fig. 4(a)]. The presence of
equally spaced modes in the time-dependent spectra [Fig. 4(b)]
indicates lasing emission from approximately t = 1 ps up to
the end of the simulation window. Initially, the emission is
dominated by a single longitudinal mode, which is rapidly
amplified and depletes the material gain, until the emission
reaches its maximum value at t = 1.5 ps. At this point, power is
redistributed to other longitudinal modes which can access the
remaining material gain. The lasing emission continues with a
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FIG. 5. (Color online) Spatiotemporal field dynamics inside a nanowire laser (l = 7.5 μm, d = 250 nm). (a),(d) Electric field intensity in
an xz and an xy slice of the simulation volume during pumping. (b) |E|2 averaged across transverse slices and plotted along z and t . (e)–(g)
Transverse intensity profiles inside the wire during lasing emission. (c) Intensity profile in an xz slice after the maximum of the lasing emission.

slowly falling slope, leading to a strongly asymmetric shape of
the emitted pulse sequence. Due to interference between the
lasing modes the emitted pulse sequence has a rather irregular
temporal shape.

The k-resolved inversion of the transition from the valence
band a to the conduction band is plotted in Fig. 4(c). The pump
pulse is positioned at higher energies than the plotted Bloch
vector states. The lasing pulse initially depletes excitations
in a region of wave-vector space around k = 0.6 nm−1. This
explains why modes which mostly access other regions of k

space are still weakly amplified and continue to lase after the
maximum of the overall emission.

Figure 5(b) shows the spatiotemporal dynamics of the lasing
process. The electric field intensity averaged over each xy

slice is plotted over time and over the length of the simulation
volume along the z direction. Initially, the field maxima inside
the wire retain a fixed location along the z axis, as expected
for nearly single-mode lasing action. As the initial emission
peak is reached, the field profile along the wire gets strongly
modulated, since the contribution of additional longitudinal
modes becomes relevant.

Apart from longitudinal modes, the properties of a nanowire
laser are also strongly influenced by transverse modes. The
transverse field structure determines the modal gain as well as
the mode reflectivity at the end facets of the nanowire [28,29].
Figures 5(d)–5(g) show the transverse fields across a slice

(z = 0) of the nanowire at different times during the sim-
ulation. Figures 5(a) and 5(d) display the scattering of the
incident pump light on the nanowire, leading to a spatially
inhomogeneous pump profile. In Figs. 5(e)–5(g), the mode
dynamics after the onset of lasing can be observed. As
predicted from linear calculations [30], the field profiles of
wires of the investigated diameter range are dominated by
the HE21 mode, which has a high modal reflectivity as well
as a high confinement factor. However, the field profile is
fluctuating between the individual time steps, indicating an
admixture of additional transverse modes. This is especially
visible in Fig. 5(f), where the polarization of the HE21 mode is
still recognizable, but the intensity profile differs significantly
from that of the pure mode. Panels (e) and (g) show almost
pure HE21 mode profiles.

As the numerical treatment of semiconductor Bloch equa-
tions is quite cumbersome one might be tempted to restrict
consideration to simpler material models. Indeed, some of
the observed dynamical features are not inherent to the
semiconductor material, but more to the wire geometry.
However, others require the material model to be reproduced.
For comparison, we include a simulation of a nanowire laser
where the active material is described by a two-level system, as
often employed in FDTD simulations. The transition between
the two levels couples equally to all three field polarizations
[see the inset of Fig. 6(a)]. The material is assumed to be

045203-5



ROBERT BUSCHLINGER, MICHAEL LORKE, AND ULF PESCHEL PHYSICAL REVIEW B 91, 045203 (2015)

0
2
4
6
8

10
x 10

15 Temporal Dynamics for a Two−Level System (Wire)

|E
(t

)|
2 (a)

0.6

0.8

n e(t
)

t [ps]

E
ph

ot
on

 [m
eV

] (b)

0 0.5 1 1.5 2 2.5

2300

2350

2400

2450
−4 −2 0

α
α

S
B

E
α

2Lvl
(c)

FIG. 6. (Color online) Dynamics inside a nanowire laser (l = 7.5 μm, d = 250 nm) consisting of a two-level material with a gain profile
fitted to that of highly excited CdS [see panel (c)]. (a) Temporal dynamics of field strength |E|2 and excitation density ne. (b) Mode dynamics
obtained from windowed Fourier transform (normalized per time slice). (c) Absorption spectrum of the two-level system (red). The absorption
spectrum for the full model is plotted in blue for comparison.

excited to an upper-level occupation of ne = 0.8 and material
parameters are tuned to fit the gain profile of highly excited
CdS. We observe that even though the gain profile [Fig. 6(c)]
looks very similar to that of the semiconductor material, the
resulting lasing dynamics differs considerably. As opposed
to the full model, there is no prolonged stimulated emission
after the initial peak, leading to a more symmetric temporal
shape of the emission [Fig. 6(a)]. Since the shape of the
gain profile of a single two-level system does not change as
carriers are depleted, the spectral shape of the emission stays
approximately constant during lasing action [Fig. 6(b)]. Lasing
emission stops as soon as the dominant mode no longer fulfills
the lasing condition.

IV. CONCLUSIONS

We presented a theoretical model for the simulation of
light-matter interaction in arbitrarily shaped semiconductor
structures based on the FDTD method and the semiconductor

Bloch equations. We adapted the model to the band structure
of 2-6 semiconductors and presented simulations of the lasing
dynamics of an optically pumped CdS nanowire. Our model
allows for the description of semiconductors across the whole
range of excitation conditions from the weakly excited case to
the lasing regime and is not limited to equilibrium distributions
of carriers in either Bloch vector or real space. Thus it is
especially interesting for lasing simulations where excitation
conditions vary strongly across space or time as well as for
simulations of nonlinear optical phenomena in the weakly to
moderately excited regime.
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