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Insights into the structure of many-electron wave functions of Mott-insulating antiferromagnets:
The three-band Hubbard model in full configuration interaction quantum Monte Carlo
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We investigate the ground-state wave function of a prototypical strongly correlated system, a three-band
(p-d) Hubbard model of cuprates, using full configuration interaction quantum Monte Carlo. We show that
the configuration interaction description of the exact ground state wave function is profoundly affected by
the choice of single-particle representation, in a counterintuitive manner. Thus a broken-symmetry unrestricted
Hartree-Fock basis, which at a single configuration level produces a qualitatively correct description of the
antiferromagnet, results in a highly entangled exact solution consisting of high particle-hole excitations of the
reference. This wave function is found to be very difficult to approximate using subspace diagonalizations.
Conversely, a restricted Hartree-Fock basis, which yields at a single configuration level a qualitatively incorrect
paramagnetic metal, results in a relatively rapidly converging configuration interaction expansion. Convergence
can be further accelerated by adopting a natural orbital representation. Our results suggest that with the correct
single-particle basis, such strongly correlated systems may be described by relatively compact wave functions.
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Introduction. Mott-insulating antiferromagnets are ubiq-
uitously found in the parent compounds of many strongly
correlated materials, including cuprates and 3d transition metal
mono-oxides. It is well known that their electronic properties
arise in large part from electron correlation: spin-restricted
band theory such as the local density approximation (LDA) of
density functional theory wrongly predicts such compounds
to be paramagnetic metals [1]. By allowing spin symmetry
to break at a mean-field level [2], it is possible to recover
antiferromagnetic behavior, but only at the cost of unphysical
spin contamination, and such band theory does not provide
a viable route to study the metal-insulator transition. Mott-
insulating behavior can be obtained within the framework of
dynamical mean field theory (DMFT) [3], through a mapping
of the interacting system onto a cluster of sites embedded in a
dynamical bath, but the lack of fine resolution in momentum
space of the correlation effects [4,5] is a serious drawback.
There is therefore growing interest in using wave function
methods, including density matrix renormalization group [6]
and configuration-interaction (CI) methods [7], such as full
configuration interaction quantum Monte Carlo, (i)-FCIQMC
[8,9], applied to periodic clusters to describe such systems
[10–12].

While wave functions of strongly correlated molecular
systems primarily build on restricted one-particle bases, the
general approach in condensed matter physics communities is
to start from a qualitatively correct broken-symmetry solution.
In this study, we therefore ask how the structure of the many-
electron wave function of a typical Mott insulator depends on
the representation of the single-particle basis used to describe
the configuration space of the system. On the face it, such
a question appears to be more of a mathematical rather than
a physical one: a unitary transformation of a basis cannot
change the physical content of the wave function, any more
than a rotation of a Cartesian system of coordinates changes
the physical content of a tensorial quantity. However, we will
show that the choice of basis impacts the convergence of the

exact full configuration interaction (FCI) [13] expansion of
the many-electron wave function in a dramatic and counter-
intuitive manner. Thus a broken-symmetry mean-field basis
(UHF), which produces a qualitatively correct description
of the antiferromagnet, is shown to provide an extremely
poor basis to construct the exact FCI wave function: the CI
coefficients decay very slowly with increasing particle-hole
excitation of the reference, resulting in a highly complex wave
function which is very difficult to approximate. In contrast,
we find that the qualitatively incorrect band structure of
spin-restricted mean-field theory (RHF) provides a rapidly
convergent CI expansion, which is much more amenable
to approximation. Natural orbitals, which diagonalize the
exact one-particle density matrix, provide yet more rapidly
converging, compact wave functions. Our results suggest that
with the correct single-particle basis, such strongly correlated
systems may be amenable to powerful single-reference wave
function methods, opening a new direction of theoretical
research for these systems [14,15].

Model. The physics of copper oxide planes can be described
by a three-band (p-d) Hubbard Hamiltonian [16–18]. This
model describes the dynamics of holes in a CuO2 plane which
is represented by a 3dx2−y2 orbital centered on the copper site
and two O 2pσ orbitals, a 2px on an oxygen atom displaced
in the x direction from the copper site, and a 2py on the O site
displaced along the y direction. The Hamiltonian comprises
kinetic energy and hole interaction terms,

Ĥ =
∑
i,j,σ

tij a
†
i,σ aj,σ +

∑
i,j,σσ ′

Uija
†
i,σ ai,σ a

†
j,σ ′aj,σ ′ , (1)

where a
†
i,σ creates a hole with spin σ in the Cu 3d or O

2pν orbital at site i and ai,σ annihilates such a hole. The
site-diagonal terms tii represent the energy levels of the
Cu, εd = 0.00, and O, εp = 3.60, orbitals, while tpd = 1.30
and tpp = 0.65 describe nearest-neighbor hopping processes
between Cu 3d and O 2px/y orbitals with the phase convention
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of Ref. [19]. Local on-site repulsions are taken into account by
the site-diagonal Uii , Ud = 10.50 and Up = 4.00, whereas
nearest-neighbor repulsions are represented by Udp = 1.20
and Upp = 0.00. We present results for a tilted lattice with
10 CuO2 unit cells, populated by N = 10 holes, which
corresponds to an undoped system at half filling. The full
Hilbert space encompasses 20.3 × 109 determinants. The
chosen parameters (all in eV) were obtained with a constrained
first-principles calculation for La2CuO4 by Hybertsen et al.
[20].

Method. In FCIQMC [8] the wave function |�〉 is sampled
by an ensemble of Nw signed walkers which stochasti-
cally evolve in a combinatorially large Hilbert space of
N -particle Slater determinants constructed from an orthonor-
mal one-particle basis set of size M . Application of the
imaginary-time evolution propagator to an initial state, |�〉 =
limτ→∞ e−τ (Ĥ−E0)|�〉, projects out the exact ground state wave
function which is written as an FCI expansion in the orthogonal
basis of Slater determinants |Di〉,

|�〉 =
∑

i

Ci|Di〉. (2)

Stochastic sampling of |�〉 by discrete walkers exploits
the sparsity of this FCI representation, thereby avoiding
storage of the large number of Ci coefficients which scales
combinatorially in both N and M [13]. The imaginary-time
evolution of walkers is given by

Ci,τ+δτ = [1 − δτ (Hii − E0)] Ci,τ − δτ
∑
j�=i

HijCj,τ , (3)

where the first term increases or decreases the walker popu-
lation on determinant |Di〉 and the second causes transitions
of walkers from determinant |Dj〉 to |Di〉 (Hij = 〈Di|Ĥ |Dj〉).
Since contributions to each determinant can be of either sign,
a fermion sign problem results in the form of an exponential
increase in noise [21]. The discrete basis allows for effective
cancellation algorithms [22], such that for sufficiently large
walker populations Nw, the fermion sign problem can be
controlled. A substantial reduction in the computational costs
of FCIQMC [8] has been achieved by the initiator adaptation,
i-FCIQMC [9], which maintains a high cancellation rate and
controls the propagation of noise at the cost of a systematically
improvable initiator error. However, as Nw increases, i-
FCIQMC converges to the FCI limit within stochastic errors,
with a reduced scaling compared to traditional FCI (exact
diagonalization) [10–12,23–25].

The invariance of the FCI energy to unitary transformations
of the one-particle basis set enables a choice between a variety
of the latter. The purpose of this study is to investigate the
impact of this choice on the resulting Ci coefficients, which
may lead to a compact and sparse FCI representation of |�〉
that is more amenable to treatment with configuration-based
methods. A natural measure for the sparsity of a wave function
is the L1 norm, L1 = ∑

i |Ci|, which within (i)-FCIQMC is
quantified, up to a normalization constant, by the total walker
number, L1 ∝ Nw. We therefore seek a representation of |�〉
in which the L1 norm and level of complexity are small, once
the energy has converged to within small error bars. For this
purpose, we investigate two widely available sources of single-

FIG. 1. (Color online) The convergence of ground-state energy
E0 (eV/hole) for RHF and UHF basis sets as measured by the shift
〈S〉τ and projected energy 〈Eproj〉τ

[8].

particle orbitals, restricted and unrestricted Hartree-Fock spin
orbitals (RHF, UHF), which we also compare with restricted
and unrestricted natural orbitals (RNO, UNO), which have
been shown to give rapidly converging FCI expansions
[26–30].

In the independent-particle HF approximation, |�HF〉 is
written as a single Slater determinant whose energy is vari-
ationally minimized with respect to unitary transformations
of the one-particle states. Solving a set of effective one-
particle Schrödinger equations, the Roothan-Hall equations
[31] and Pople-Nesbet [32] equations, leads to the RHF
and UHF spin orbitals, respectively. The eigenvectors which
diagonalize the exact one-particle density matrix, γ = UωU†

(whose elements γ
p
q = 〈�|a†

paq |�〉 are evaluated from the
i-FCIQMC wave function [33]), are referred to as natural
orbitals (NO) and their eigenvalues, ωp, as NO occupation
numbers. Whereas restricted HF and NO orbitals, φi,R, restrict
the spatial distributions ψi (r) to be equal for α and β

channels,

φi,R =
{
ψi (r) α (σ ) ,

ψi (r) β (σ ) ,
φi,U =

{
ψα

i (r) α (σ ) ,

ψ
β

i (r) β (σ ) ,
(4)

unrestricted spin orbitals, φi,U, are characterized by relaxation
of this constraint, ψα

i (r) �= ψ
β

i (r) [34].
Since the exact Hamiltonian commutes with the total (S2)

and projected (Sz) spin operators, the FCI wave function is
a simultaneous eigenfunction of both. However, approximate
wave functions, such as UHF, may not necessarily display
the full symmetry. Imposing symmetry constraints to fulfill
this criterion may raise the energy, a situation referred to as
the symmetry dilemma [34,35]. By contrast, the RHF wave
function |�RHF〉 is an eigenfunction of S2 with S = 0 by virtue
of being a closed-shell determinant.

Results and discussion. To begin with, we establish con-
vergence to the FCI limit with walker number Nw (Fig. 1).
Working with RHF orbitals leads to a |�〉 with a smaller L1

norm (L1 = 723.6) given that for a tenfold growth in walker
number to Nw = 1.0 × 109 the energy changes by < 0.4 meV
which is on the order of statistical errors. In contrast, for
UHF spin orbitals the energy still changes significantly at
Nw = 1.5 × 109 and a larger L1 norm (L1 = 1059.5) results
for |�〉.

Ground states. In order to shed light on the reasons behind
this, we examine the i-FCIQMC, RHF, and UHF ground
states (Table I). Whereas the UHF approximation is able to
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TABLE I. Ground-state energies E0 (eV/hole), energy of the lowest-energy determinant ED (eV/hole), percentage of correlation energy
pcorr = E0−ED

Eexact−ED
(%) captured by |�CAS〉, average hole densities per atom 〈nat〉 (holes/atom), staggered magnetization 〈M2〉, square magnitude

of spin 〈S2〉. Errors in the previous digit are presented in parentheses [36]. Local spin-spin correlation function 〈�FCI|Si · Sj |�FCI〉 (i = 1)
(right) of the correlated i-FCIQMC wave function |�FCI〉 in the metallic RHF one-particle basis.

Wave function |�FCI〉 |�RHF〉 |�UHF〉 |�CAS〉
One-particle basis RHF/UHF RHF UHF RHF UHF RNO UNO 〈�FCI|Si · Sj |�FCI〉
E0 −1.5817 (5) −0.9521 −1.5291 −1.3399 −1.5341 −1.5586 −1.5587
ED −0.9521 −1.5291 −0.7636 −0.8350
pcorr 61.6 9.5 97.2 97.0
〈nCu〉 0.70 0.49 0.73 0.53 0.73 0.71 0.73
〈nO〉 0.15 0.25 0.14 0.24 0.14 0.15 0.14
〈M2〉 0.118 0.000 0.113 0.056 0.130
〈S2〉 0.00 0.00 4.37 0.00 0.00

capture ∼97% of the true i-FCIQMC ground-state energy, the
RHF approximation only accounts for ∼60%. Similarly, the
UHF wave function only slightly overestimates the degree of
ionicity in the system while the RHF wave function largely
overestimates the degree of covalency.

Like previous studies [37–42], we find that the
exact i-FCIQMC ground state establishes an antifer-
romagnetic long-range order across the copper sites,
illustrated by the staggered magnetization, 〈M2〉 =
1
N

∑
ij (−1)(xi+yi )+(xj +yj )〈�FCI|Si · Sj |�FCI〉 (Table I). Again,

UHF theory reproduces this closely by separating α and
β orbitals on two sublattices while yielding identical band
structures for both channels. Since RHF cannot describe an
antiferromagnetic order by construction, it yields a metallic
paramagnetic phase (Fig. 2) where most orbitals are delo-
calized over all lattice sites. Yet, the UHF wave function
contains a significant amount of spin contamination and
|�RHF〉 and |�UHF〉 constitute a clear example of the sym-
metry dilemma. While the UHF basis provides a physically
closer single-determinant description of the antiferromagnetic
ground state, it breaks spin symmetry leading to an inherent
spin contamination. In contrast, the spin-symmetry-conserving
RHF basis yields a qualitatively incorrect metallic ground
state, but is still found to be a much more effective basis
for correlated calculations within i-FCIQMC.

Orbital occupation numbers and correlation entropy. A
clue with the difficulty introduced by the UHF basis can
be obtained by considering the orbital occupation numbers
γ

p
p in the four basis sets (RHF, UHF, RNO, and UNO)

(Fig. 3). While for the RHF, RNO, and UNO bases the

FIG. 2. (Color online) Metallic RHF (left) and insulating UHF
(right) band structure ε(k) − εF (eV) and density of states d (ε) (a.u.).

occupation numbers decay roughly monotonically with mean-
field orbital energy εp (Fig. 3), a sharp increase in γ

p
p is

observed for the N highest UHF virtuals, which are also
far higher in energy than those of any other basis. These
highest energy virtuals correspond to spin-flipped counterparts
of the occupied UHF orbitals. This is achieved by changing
sublattices for the orbital coefficients on copper atoms,
resulting in orbitals with antibonding character which split
the Hubbard bands far apart (Fig. 2). It has been observed
that for obtaining rapidly converging CI expansions it is
beneficial for orbitals which ought to correlate with each
other to possess spatial distributions ψσ

i (r) which have their
greatest amplitudes concentrated in similar regions of space
while simultaneously providing suitable nodal surfaces [7].
By breaking spin symmetry, UHF theory leads to a set of
single-particle states characterized by localized ψσ

i (r) which
strongly differ in their spatial extent. While this enables
|�UHF〉 to provide a qualitatively correct single-determinant
description, introducing correlation into |�UHF〉 requires very
high energy orbitals. In contrast, the metallic RHF orbitals are
very delocalized and hence exhibit similar spatial distributions
ψi (r). This facilitates correlation of the single-particle states,
thereby favoring a more rapidly converging CI expansion in
comparison to UHF orbitals. Additionally, the RHF orbital
energies cover a smaller energy range than their UHF coun-
terparts which leads to a smaller energy range covered by
determinants with significant amplitudes in |�〉 (Fig. 3). This
seems to be an advantageous characteristic given that it is
also shared by both NO bases which are known to yield
less entangled representations of |�〉 [26,30]. A quantitative
measure of the configurational mixing present in the wave
function representations is provided by the correlation entropy
per hole [44], SCE = − 1

N

∑
p γ

p
p ln γ

p
p . With SCE = 0.6421 for

RNOs and SCE = 0.6115 for UNOs, the entanglement in |�〉
is smallest in NO bases. Whereas the UHF basis produces the
wave function with the largest configurational mixing (SCE =
0.8846), the metallic spin-symmetry-conserving RHF basis
leads to a significantly less entangled |�〉 with a smaller SCE

(SCE = 0.7635), even when describing a strikingly physically
different antiferromagnet to which the spin-symmetry-broken
UHF ground state is a far better approximation.

Subspace diagonalizations. Examination of FCIQMC
descriptions of |�〉 (Fig. 3) shows that all are highly
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FIG. 3. (Color online) The magnitude of coefficients |Ci| � 0.0001 in the FCI expansion |�〉 = ∑
i Ci|Di〉 shown against the respective

determinant energy Ei for RHF (upper left), RNO (lower left), UHF (upper middle), and UNO (lower middle) basis sets. The amplitudes of
determinants within the full space |�〉 are depicted in the lower panels while those of determinants within the (10,10)-CAS space |�CAS〉 are
shown in the top panels. The colors distinguish the x-fold excitations (x ∈ {1,2, . . . ,N}) of the reference. The orbital occupation numbers γ p

p

(upper right) and mean-field orbital energies εi (diagonal elements of mean-field generalized Fock matrix) (lower right) [34,43]. The numbers
indicate degeneracies which are exact for HF and approximate for NO spin orbitals.

multiconfigurational with a large number of single- to N -fold
particle-hole excitations of the reference with |Ci| decaying
approximately exponentially with determinant energy. Yet,
comparing RHF and UHF bases shows that the |�〉 expansion
is both sparser within the RHF space and more strongly
weighted towards lower particle-hole excitations of the
reference. Thus in the UHF expansion a plethora of 10-fold
excitations contribute to |�〉, the amplitudes of which are
extremely difficult to sample. By contrast, the RHF, and more
so RNO and UNO bases, are strongly weighted towards the
low particle-hole excitations which are easy to sample. The
latter are more amenable to accurate treatment of correlations
via a compact set of explicit configurations.

Remarkably, |�FCI〉 in the RHF basis can be well approxi-
mated by simple subspace diagonalizations in a (10,10)-CAS
space (complete active space); i.e., 10 holes are distributed
in 10 orbitals about the Fermi level [45], resulting in a
Hilbert space of 63 504 determinants. This is also the
case for RNO and UNO spaces where |�CAS〉 captures
a majority of the respective correlation energy (Table I)
and basic structure of |�〉. However, in the UHF space
barely any correlation energy at all is captured by this
subspace. This is a consequence of the fact that determinant
weight is entirely absent from high particle-hole excitation
when compared to |�〉 despite the fact that many of the
significant high-excitation determinants are in fact included
in the CAS space. This suggests that orbitals outside the
CAS space, especially the N highest-energy virtuals, are

essential for establishing the basic structure of |�〉 in the UHF
basis.

Conclusions. We have analyzed the FCI wave function
representation in different single-particle basis sets and
their amenability to accurate correlation treatments using
i-FCIQMC and the strongly correlated three-band Hubbard
model as an example. It has been shown that, counterintu-
itively, the effectiveness of single-particle basis sets for rapidly
converging CI expansions is not necessarily paralleled by
their ability to reproduce the physics of the system within
a single-determinant description. While the UHF determinant
represents qualitatively the correct insulating antiferromagnet,
imposing spin symmetry in the RHF basis gives an RHF
determinant describing a qualitatively incorrect metal. Yet,
in this basis the FCI representation of |�〉 is sparser, and
converges rapidly with particle-hole excitations of the refer-
ence. Our results therefore suggest that with an appropriate
single-particle description, it may be possible to describe the
many-electron wave function of strongly correlated materials
based on single-reference quantum chemical methodologies
[34], which opens up a vast array of powerful many-body
techniques for the study of such systems.
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