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We use quantum Monte Carlo simulations to study a finite-temperature dimensional-crossover-driven evolution
of spin and charge dynamics in an anisotropic two-dimensional system of weakly coupled Hubbard chains with
a half-filled band. The low-temperature behavior of the charge gap indicates a crossover between two distinct
energy scales: a high-energy one-dimensional (1D) Mott gap due to the umklapp process and a low-energy
gap which stems from long-range antiferromagnetic (AF) spin fluctuations. Away from the 1D regime and at
temperature scales above the charge gap, the emergence of a zero-frequency Drude-like feature in the interchain
optical conductivity σ⊥(ω) implies the onset of a higher-dimensional metal. In this metallic phase, enhanced
quasiparticle scattering off finite-range AF spin fluctuations results in incoherent single-particle dynamics.
The coupling between spin and charge fluctuations is also seen in the spin dynamical structure factor S(qqq,ω)
displaying damped spin excitations (paramagnons) close to the AF wave vector qqq = (π,π ) and particle-hole
continua near 1D momentum transfers spanning quasiparticles at the Fermi surface. We relate our results to the
charge deconfinement in quasi-1D organic Bechgaard-Fabre salts.
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I. INTRODUCTION

Dimensional crossovers are interesting because there are
relevant couplings between the lower dimensional objects
which dramatically alter the physical properties of the
system [1]. The renormalization at low energy and long
wavelengths is therefore higher-dimensional, but the question
of how remnants of the one-dimensional (1D) physics remain
visible when the couplings get stronger is largely left open. One
would expect the 1D characteristics to survive when probing
the system at high energy or when the temperature is larger than
the interchain coupling but lower than the typical scales of the
1D problem. Below we give three examples of experiments in
different fields whose complete description requires a deeper
understanding of dimensional crossover phenomena.

Cold atoms in optical lattices provide a controllable and
flexible model realization of correlated quantum systems and
offer a clean setup to probe their dynamics [2,3]. For example,
a variable strength of the interchain coupling in a recent real-
ization of a tunable optical lattice comprising weakly coupled
1D chains [4] allows one to study the impact of a dimensional
crossover on antiferromagnetic (AF) spin correlations and
stimulated a renewed interest in low-dimensional quantum
many-body physics [5–9].

Other systems to explore the interplay between low-
dimensional quantum dynamics and electron correlations
are quasi-1D organic Bechgaard-Fabre salts [10]. A rich
variety of phenomena in their global temperature-pressure
phase diagram has been ascribed to a decreasing degree of
dimerization, i.e., the strength of the umklapp process [11],
and increasing electronic dimensionality with applied pressure
which triggers a metal-insulator transition [12,13]. Whether
the nature of this higher-dimensional metallic phase and its
low-energy excitations can be accounted for by a Fermi
liquid (FL) theory is the key question in the physics of these
compounds.

Finally, fingerprints of a strongly anisotropic metallic phase
have been observed in the proximity to the AF ground

state in high-Tc cuprate superconductors [14]. In this case,
a dimensional reduction is driven by an inhomogeneous
self-organization of doped holes which condense into arrays
of parallel stripes separating regions with enhanced AF spin
correlations. Since the charge dynamics occurs mainly along
the stripes, it can be effectively described by a quasi-1D model
in which the transport across the stripes is incoherent [15].

From the theoretical point of view, the complexity of a
dimensional crossover in coupled 1D Hubbard chains comes
from single- and two-particle processes generated by the
interchain coupling [16]. On the one hand, the crossover in
metallic chains is easily induced by the interchain one-particle
hopping process thus replacing the Luttinger liquid (LL)
behavior with a conventional FL metal [17–20]. On the
other hand, the umklapp-induced Mott gap in a half-filled
band makes the problem more difficult due to the enhanced
relevance of two-particle fluctuations: binding of particle-
hole pairs from neighboring chains generates a finite AF
superexchange coupling J⊥ and may induce an onset of the
broken-symmetry spin-density-wave (SDW) phase [21]. In
contrast, when the single-particle tunneling t⊥ overcomes the
magnetic coupling J⊥, it drives a metal-insulator transition
thus leading to the formation of a higher-dimensional Fermi
surface (FS) [22–26].

Recently, we have studied the effects of interchain coupling
between the half-filled Hubbard chains in two limiting cases
in the effective zero-temperature regime [27,28]. First, the
dimensional crossover dominated by single-particle tunneling
can be examined with a cluster extension of the dynamical
mean-field theory (CDMFT) [29,30]. On the one hand,
CDMFT neglects most of the spatial magnetic fluctuations
restricted to the cluster size. On the other hand, it captures
well umklapp scattering and thus reproduces the density-
driven Mott transition in the 1D Hubbard model [31,32].
The CDMFT scenario of the dimensional-crossover-driven
metallic phase with a FS broken into pockets is plausible
when the low-temperature SDW instability of the nested FS is
eliminated, e.g., by a sufficiently large geometrical frustration;
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a similar broken FS has also been found in the spinless fermion
model [33].

Second, the two-particle crossover and a dynamical con-
finement which occurs, for instance, in a system of coupled
spin-1/2 Heisenberg chains [34,35] can be addressed with
lattice quantum Monte Carlo (QMC) simulations by tracking
the evolution of elementary spin excitations [28]. Indeed, the
interchain AF superexchange coupling confines fractionalized
excitations (spinons) of the individual 1D chains back to form
S = 1 magnons, the Goldstone modes of the broken continu-
ous SU(2) symmetry group. This gives rise to low-frequency
spin waves which decay into a two-spinon continuum at
high energies seen in the QMC dynamical spin structure
factor S(qqq,ω) [28]. Such a dual nature of magnetic excitation
spectra has been resolved in the inelastic neutron scattering
data on weakly coupled S = 1/2 chains of BaCu2Si2O7 and
KCuF3 [36–38].

The present work is aimed at investigating the regime
in which the single- and two-particle interchain fluctuations
intertwine and contribute to the low-frequency dynamics of
the system. In a correlated metal, a mutual interaction between
finite-range spin fluctuations and fermionic quasiparticles
(QPs) introduces damping of the collective spin excitations
(paramagnons) which decay into a continuum of independent
electron-hole pairs [39–41]. Concurrently, dressing of QPs
with a cloud of spin fluctuations enhances the QP scattering
rate and leads to a partial depletion of the single-particle
spectral weight at the Fermi level [42,43]. This non-Fermi-
liquid behavior is frequently reflected in anomalous transport
and thermodynamic properties of nearly AF metals and its
theoretical description has proven to be a challenge [44–47].

To treat the single-particle tunneling and dynamically gen-
erated interchain superexchange interaction on equal footing,
we use an auxiliary-field QMC algorithm [48]. We charac-
terize the low-frequency excitations in the quasi-1D metallic
phase by looking at both momentum-resolved single-particle
spectral function and two-particle quantities: frequency- and
polarization-dependent optical conductivity as well as spin and
charge dynamical structure factors. The paper is organized as
follows: After introducing the model and method in Sec. II, we
present our results in Sec. III, and then conclude in Sec. IV.

II. MODEL AND QMC METHOD

We consider the Hubbard model on a square lattice with an
anisotropic hopping at half filling,

H − μN = −
∑
ijijij ,σ

tijijij c
†
iiiσ cjjjσ + U

∑
iii

niii↑niii↓ − μ
∑
iii,σ

niiiσ ,

(1)

where the hopping tijijij is t (t⊥) on the intrachain (interchain)
bonds, extended by a diagonal next-nearest-neighbor hopping
t ′ = −t⊥/4. Thus, the corresponding single-particle dispersion
relation reads

εkkk = −2(t cos kx + t⊥ cos ky) + t⊥ cos kx cos ky. (2)

The diagonal hopping t ′ brings about geometrical frustration
thus reducing FS nesting properties responsible for the onset of
the long-range AF phase in coupled spin S = 1/2 Heisenberg

chains [49–52]. To account for broken particle-hole symmetry
and force a half-band filling away from the 1D limit, we adjust
the chemical potential μ. Previously [28], we have shown that
the Hubbard model (1) with U/t = 3 develops Néel order in
the presence of any infinitesimally small interchain coupling
in the effective zero-temperature limit. Here, we consider
a smaller value of the Coulomb interaction U/t = 2.3 and
study finite-temperature properties of the emergent quasi-1D
(t⊥/t � 0.3) metallic phase.

For this purpose, we use a finite-temperature implemen-
tation of the auxiliary-field QMC algorithm (see Ref. [53]
and references therein) which allows one to compute the
expectation value of an observable O in the grand-canonical
ensemble:

〈O〉 = Tr[e−β(H−μN)O]

Tr[e−β(H−μN)]
. (3)

It is based on a path-integral formulation of the partition
function which maps a quantum system in d spatial dimensions
onto a d + 1-dimensional classical problem with an additional
imaginary-time dimension β = 1/T . The essence of the QMC
method is to separate the one-body kinetic Ht and two-body
Hubbard interaction HU terms with the help of the Trotter
decomposition,

e−�τ (HU +Ht ) � e−�τHU e−�τHt . (4)

We have used a fixed small discretization of the temporal axis
�τt = 1/6. This introduces an overall controlled systematic
error of order (�τ )2. We have opted for a discrete, Ising,
Hubbard-Stratonovitch field coupling to the z component of
the magnetization. The QMC simulations were performed for
lattice sizes ranging from L = 8 to L = 20 and in the broad
range of temperatures t/5 � T � t/30 restricted by the QMC
minus-sign problem. In addition to equal-time observables, the
QMC method provides access to imaginary-time displaced
correlation functions. We use a stochastic version of the
maximum entropy method [54] to analytically continue the
imaginary-time QMC data and to extract the real-frequency
single- and two-particle excitation spectra.

III. RESULTS

We proceed now to present our QMC results for the
Hubbard model (1). We first consider static quantities and then
study single- and two-particle dynamical correlation functions.

A. Uniform charge susceptibility and static spin structure factor

Due to the relevance of umklapp scattering in the 1D limit,
the single-particle imaginary-time Green’s function, G(rrr =
0,τ ) = 〈crrr (τ )c†000〉, follows for large τ t 	 1 an exponential
decay ∝ e−�qpτ , where �qp is the QP gap. The latter might be
extracted from the uniform charge susceptibility,

χc = β

L2
(〈N2〉 − 〈N〉2), (5)

where N is the particle number operator. At low temperatures
one expects χc ∝ e−�qp/T . In order to quantify the behavior
of the QP gap upon increasing t⊥, we plot in Fig. 1 ln(χct) vs
1/T for several values of the interchain hopping. In this way,
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FIG. 1. (Color online) Uniform charge susceptibility ln(χct) vs
1/T for several values of the interchain hopping t⊥ found on a 16 × 16
lattice. The inset shows the evolution of the QP gap �qp on increasing
t⊥ extracted from a linear fit.

the activated behavior is reflected in the slope of the curves
given by �qp: a decreased negative slope signals the reduction
of the magnitude of �qp. A rough estimate of the QP gap
�qp extracted from a linear fit of the data points indicates
that it does not close but shows an inflection point around
t⊥/t = 0.15; see the inset in Fig. 1.

The existence of the inflection point is suggestive of a
crossover in the origin of the charge gap. Numerical evidence
for this conjecture is provided in Fig. 2 showing the Fourier
transform of equal-time spin-spin correlations,

S(qqq) = 4

3

∑
rrr

eiqqq·rrr〈SSS(rrr) · SSS(000)〉. (6)

On the one hand, the low-T enhancement of S(π,0) for
t⊥/t � 0.1 in Fig. 2(a) indicates the predominance of spin-spin
correlations along the chains thus confirming the relevance of
umklapp scattering. On the other hand, the low-T increase of
the staggered spin structure factor S(π,π ) shown in Fig. 2(b)
suggests the formation of significant AF spin correlations. To
further study the spin-spin correlations, we plot in the inset
of Fig. 2(b) the finite-size scaling of the staggered magnetic
moment,

ms = lim
L→∞

√
S(π,π )

L2
, (7)

at t⊥/t = 0.2. As is apparent, ms is consistent with a finite
value below our lowest temperature T = t/30, thus marking
the effective zero-temperature regime in our finite-size sys-
tems [55]. At sufficiently low temperatures, a finite system
develops local moments when the QMC lattice size becomes
smaller than the AF spin correlation length.

Hence, on the basis of the static quantities, one can conclude
in the T = 0 limit the onset of a higher-dimensional insulating
phase gapped out by long-range AF spin fluctuations. How-
ever, a strong reduction of the QP gap �qp upon increasing t⊥
implies that for this value of the Coulomb repulsion U/t = 2.3,
the onset of the insulating state occurs at lower temperatures in
comparison to the 1D Mott gap. This opens up a possibility to
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FIG. 2. (Color online) Temperature dependence of the static spin
structure factor S(qqq) found on a 16 × 16 lattice: (a) qqq = (π,0) and (b)
qqq = (π,π ). The inset shows the finite-size scaling of the staggered
magnetic moment ms for t⊥/t = 0.2 at T = t/10, t/20, and t/30.

study finite, but still low-enough to avoid dominant thermal
broadening effects, temperature properties of the quasi-1D
metallic state in the dimensional crossover.

B. Optical conductivity

A response function particularly suitable for investigating
transport properties in the anisotropic system such as weakly
coupled 1D Hubbard chains is the frequency- and polarization-
dependent optical conductivity σα(ω): it allows one to resolve
a distinct behavior of the charge dynamics along σ‖(ω) and
perpendicular σ⊥(ω) to the chains. Noting that, experimentally,
the dimensionality is controlled not only by the physical or
chemical pressure, which changes the ratio of the interchain
transfer integral to the intrachain one, but also by the energy
scale used in the measurement, the knowledge of σα(ω) offers
a possibility to track the evolution of remnant aspects of the
1D physics in the high-energy part of the spectrum. Finally,
optical conductivity is a useful experimental [56,57] and
numerical [58–64] response to study the interplay between
the QP itineracy and the tendency towards their localization
by dressing with AF spin fluctuations.

A real part of σα(ω) is a measure of the rate at which
particle-hole pairs are created by the absorption of photons
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FIG. 3. (Color online) Metal-insulator crossover in weakly cou-
pled 1D chains upon increasing interchain hopping t⊥. The plot shows
(a) intra- σ‖(ω) and (b) interchain σ⊥(ω) optical spectra found on a
16 × 16 lattice at T = t/20. From bottom to top: t⊥/t = 0.05, 0.1,
0.15, 0.2, 0.25, and 0.3.

with a given frequency ω. It might be calculated from the
Kubo formula by looking at the QMC imaginary-time current-
current correlation functions,

〈jα(τ )jα(0)〉 = 1

π

∫
dw

e−ωτω

1 − e−βω
σα(ω). (8)

Here, j‖ (j⊥) is the intrachain (interchain) component of the
current operator:

jα = i
∑
ijijij ,σ

tijijij δ
α
ijijij (c†iiiσ cjjjσ − H.c.), (9)

respectively, with δα
ijijij being the α component of the vector

connecting sites iii and jjj .

1. Dimensional crossover

A dimensional-crossover-driven reconstruction of elec-
tronic states as evinced by frequency-dependent intra- σ‖(ω)
and interchain σ⊥(ω) optical conductivities at a given tem-
perature T = t/20 is shown in Fig. 3. At our smallest
interchain coupling t⊥/t = 0.05, both optical conductivities
display solely a finite-frequency feature typical of the 1D Mott-
insulating phase [65,66]. Its location �opt/t � 0.6 roughly
matches twice the magnitude of the single-particle gap �qp, cf.
Fig. 1, thus corresponding to the particle-hole pair absorption
across the lower and upper Hubbard bands. While some
smearing of this absorption mode becomes apparent, the
peak retains its position in the weakly coupled regime with
t⊥/t � 0.1. It reflects the relevance of umklapp processes and
indicates charge confinement to the individual chains.

A further increase in t⊥ renders umklapp scattering pro-
gressively irrelevant and the system enters a transient regime
with a competing interchain single-particle tunneling. As
a result, a Drude-like response in σ‖(ω) develops around
t⊥/t � 0.15 accompanied by a tiny zero-frequency weight
in σ⊥(ω). Still, given a nearly t⊥-independent position of
the finite-frequency absorption, the overall structure of σ‖(ω)
is reminiscent of what is expected for a weakly doped 1D
Mott insulator [67,68]. Although there is no actual doping

in the system, a nonnegligible warping of the FS introduced
by t⊥ might be considered as an effective deviation from the
commensurate filling of individual chains, which otherwise
continue to exhibit a substantial tendency to confine charge
carriers reflected in a strongly reduced zero-frequency weight
in σ⊥(ω).

At larger coupling t⊥/t = 0.2, a pronounced Drude-like
feature in σ⊥(ω) signals the onset of a higher-dimensional
metallic phase: single-particle interchain tunneling requires
the recombination of fractionalized excitations characteristic
of the 1D regime into electronic QPs. The crossover in the
effective dimensionality is not restricted to the lowest energies:
a high-energy mode in σ‖(ω), remnant of the 1D Mott gap, is
replaced by a low-frequency hump whose evolution tracks the
QP energy scale �qp. The hump stems from coupling between
charge carriers and short-range AF spin fluctuations beyond
the 1D framework. A similar piling up of optical weight at
finite frequency is also resolved in σ⊥(ω) for 0.15 � t⊥/t �
0.25 and then, in contrast to σ‖(ω), the hump merges with
the high-frequency tail of the Drude mode. We attribute this
difference to a spatial anisotropy in the spin-wave velocity; the
smaller velocity associated with the interchain spin-wave-like
dispersion relation renders the paramagnon decay rate into
particle-hole excitations higher thus giving rise to a FL-like
response in σ⊥(ω).

2. Thermal crossover

Inspection of the static quantities in Sec. III A revealed the
formation of a small QP gap �qp associated with the onset of
the SDW state in the T → 0 limit. It is interesting to explore
the behavior of this gap as a function of temperature. Thermal
evolution of σα(ω) at a fixed value of the interchain coupling
t⊥/t = 0.2 is shown in Fig. 4. At elevated temperature
T = t/10, both intra- σ‖(ω) and interchain σ⊥(ω) optical
conductivities exhibit broad Drude-like features exhausting
most of the optical weight. This indicates a FL-like metal
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FIG. 4. (Color online) Metal-insulator crossover in weakly cou-
pled 1D chains upon decreasing temperature T . The plot shows (a)
intra- σ‖(ω) and (b) interchain σ⊥(ω) optical spectra at t⊥/t = 0.2
(solid) and t⊥/t = 0.1 (dashed). From top to bottom: T = t/10, t/16,
t/20, and t/30. For t⊥/t = 0.1, a complete optical gap develops at
T = t/20 and we expect at lower temperatures qualitatively similar
spectra (not shown).
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albeit with anisotropic transport properties due to inequivalent
hopping amplitudes. As the temperature is decreased down
to T = t/20, a low-frequency depletion of optical weight
separating the narrow Drude-like mode from the finite-
frequency hump becomes apparent. It follows from a marked
enhancement of the AF spin correlation length and dressing of
QPs with a cloud of spin fluctuations. Upon further cooling,
the AF spin correlations extend across the entire lattice and
the SDW gap opens up.

We now compare the above evolution of σα(ω) with the
corresponding redistribution of optical weight at a twice
smaller interchain coupling t⊥/t = 0.1. The low-temperature
increase of the static spin structure factor S(π,0) reveals
dominant 1D spin correlations in this regime; see Fig. 2(a).
A pronounced 1D character of the system is also reflected
in a different frequency dependence of intra- and interchain
optical conductivities. This effect is particularly dramatic at
T = t/10: while a clear finite-frequency depletion of optical
weight is visible in σ‖(ω), only a narrow Drude-like peak is
resolved in σ⊥(ω). In spite of thermal broadening comparable
with the interchain bandwidth masking partially warping of
the FS, the presence of the zero-frequency mode in σ⊥(ω)
suggests that charge carriers retain their electronic QP nature.
This indicates that thermal melting of the quasi-1D Mott
insulator induces at the smallest energy scales a crossover
to the FL characteristics rather than to the LL behavior.
Furthermore, at the intermediate low temperature T = t/16,
the frequency range with a reduced weight in σ‖(ω) becomes
wider thus signaling proximity to the insulating phase. A
reduced mobility of charge carriers also affects σ⊥(ω); here,
most of the Drude-like weight is transferred to a high-energy
feature. Finally, a complete optical gap driven by umklapp
scattering develops already at T = t/20.

C. Single-particle spectral function

Our next aim is to address momentum-resolved single-
particle spectral properties. In particular, one would like to
know (i) whether the quasi-1D metallic phase can be described
within the FL theory, and (ii) topology and QP weight along
the emergent FS. Another interesting question is whether some
spectral features in the higher-dimensional electronic structure
can be traced back to those of the 1D regime [69,70].

To gain insight into these issues, we compute the
momentum-resolved single-particle spectral function A(kkk,ω)
which is related to the QMC imaginary-time Green’s function
G(kkk,τ ) by the spectral theorem:

G(kkk,τ ) = 1

π

∫
dw

e−ωτ

1 + e−βω
A(kkk,ω). (10)

The evolution of A(kkk,ω) with increasing interchain
coupling t⊥ is summarized in Fig. 5. In the 1D regime,
the relevance of the umklapp process generates a gap in
the half-filled band at kF = ±π/2 and the equivalent points;
see Fig. 5(a). At frequencies above the single-particle gap,
the dispersion is approximately linear reflecting aspects of
the LL theory [71,72]. Moreover, the spectrum significantly
broadens on approaching the Brillouin zone edges reminiscent
of the spinon and holon branches [73–76]. Next, Fig. 5(b)
provides evidence for highly incoherent single-particle dy-
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FIG. 5. (Color online) Single-particle spectral function A(kkk,ω)
obtained at T = t/20 on (a) 32-site chain with a dummy transverse
momentum and (b), (c) 16 × 16 lattice with t⊥/t = 0.15 (middle) and
t⊥/t = 0.3 (bottom). Solid line in panel (c) gives the paramagnetic
Hartee-Fock band structure.

namics in the metallic regime with t⊥/t = 0.15; a significant
depletion of spectral weight at the kkk = (π/2,π/2) momentum
is accompanied by a backfolding behavior in the dispersion at
kkk = (π/2,0) and kkk = (π/2,π ) points. Upon further increase
in the interchain coupling strength, the spectral intensity at
the kkk = (π/2,π/2) point gradually recovers. Finally, a single
QP peak becomes apparent at the Fermi level at t⊥/t = 0.3
and the low-frequency part of A(kkk,ω) follows roughly the
paramagnetic Hartee-Fock band structure; see Fig. 5(c).

Another noteworthy feature is found in the inverse pho-
toemission ω > 0 part of the spectra, i.e., the formation
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FIG. 6. (Color online) The noninteracting Fermi surface with
t⊥/t = 0.3 (solid) and of the purely 1D case (dashed).

of a weakly dispersive QP-like band near the kkk = (π,0)
momentum. While the flatness is reminiscent of the 1D
nature of the problem, only a broad structure is resolved in
the photoemission ω < 0 part around the kkk = (0,π ) point.
The difference between the inverse- and photoemission parts
reflects a broken particle-hole symmetry due to the finite
next-nearest-neighbor hopping t ′.

The evolution of the spectral function A(kkk,ω) is a con-
sequence of dramatic changes in the single-particle Green’s
function G(kkk,ω). In the Mott insulator, the presence of a spec-
tral gap requires that the real part of the zero-frequency Green’s
function Re G(kkk,ω) change sign in momentum space by going
through a zero. This is accomplished by the singularity in
the corresponding self-energy. As one approaches the Mott
transition, the locus of zeros in kkk space affects the topology
of the emergent FS defined by zero-frequency poles of the
Green’s function [77–80]. We address this issue by examining
two special momenta: (i) nodal kkk = (π/2,π/2), corresponding
to a vanishing interchain kinetic energy ∂εkkk/∂t⊥ = 0, and
(ii) an antinodal kkk = (π/2,0) one, where the maximum
warping of the noninteracting 1D FS occurs; see Fig. 6.

We focus first on the nodalkkk = (π/2,π/2) point considered
in Fig. 7. At our smallest t⊥/t = 0.05, Re G(kkk,ω) has a
negative slope in a broad range of frequencies around the
Fermi level. The imaginary part of the corresponding self-
energy −Im (kkk,iωm) displays a diverging-like behavior on
approaching the smallest Matsubara frequency ω0 = πT thus
signaling a zero of Re G(kkk,ω); see Fig. 7, left inset. The
anomalous behavior of the self-energy stems from umklapp
scattering and is responsible for a robust Mott gap in the
single-particle spectral function A(kkk,ω), right inset of Fig. 7.
At larger t⊥, the umklapp process becomes less effective at
low-energy scales. This shrinks the frequency region with
a negative slope of Re G(kkk,ω) and reduces the scattering
rate �kkk = −Im (kkk,ω0). As a result, some thermally excited
single-particle states whose weight is controlled by t⊥ become
apparent at the Fermi energy. Finally, Re G(kkk,ω) develops a
positive slope at t⊥/t = 0.3 thus forming a polelike structure as
in the FL phase. Still, a small kink at ω = 0 signals substantial
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FIG. 7. (Color online) Dimensional-crossover-driven evolution
of the real part of the Green’s function for fixed T = t/20 at the
nodal kkk = (π/2,π/2) point. Insets show the corresponding (left)
low-frequency dependence of the imaginary part of the self-energy
and (right) single-particle spectral function from bottom to top:
t⊥/t = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3.

QP scattering off AF spin fluctuations. Consequently, a broad
QP-like feature is resolved in A(kkk,ω).

We turn now to the antinodal kkk = (π/2,0) point. As shown
in Fig. 8, the zero of Re G(kkk,ω) and the Mott gap in the
spectral function A(kkk,ω) remain for small values of t⊥/t < 0.1
nearly pinned at the kkk = (π/2,0) momentum. Hence, at the
expense of loss in the interchain kinetic energy, the interaction
renders the FS warping tendency irrelevant [81]. In contrast,
at larger interchain hopping amplitude, a reduced scattering
rate �kkk indicates that the kinetic energy gain cannot be further
ignored and the warping effects become discernible. Indeed,
vanishing Re G(kkk,ω) = 0 at the kkk = (π/2,0) point requires
now a finite frequency ω > 0 thus approaching a polelike
behavior around ω/t = 0.2. The latter produces a faint spectral
feature in A(kkk,ω); it signals backfolding of the conduction
band and as such is a fingerprint of the Mott gap slightly off
the kkk = (π/2,0) momentum. Finally, the finite-frequency zero
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FIG. 8. (Color online) Same as in Fig. 7 but at the antinodal kkk =
(π/2,0) point.
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and polelike features annihilate together and only a shallow dip
in Re G(kkk,ω) is resolved at t⊥/t = 0.15 which in turn evolves
into a smooth behavior at t⊥/t = 0.2.

Obviously, we cannot resolve the Fermi wave vector
kkkF across the (0,0) → (π,0) path on our discrete kkk-point
mesh. Given, however, a comparable slope of the QP energy
dispersion near the antinodal kkk = (π/2,0) and nodal kkk =
(π/2,π/2) points, see Fig. 5(c), we expect a continuous
warped FS. This should be contrasted with the isotropic two-
dimensional Hubbard model at half filling where the flatness
of the QP band around the kkk = (π,0) point renormalizes
locally the Fermi velocity and enhances QP scattering off
AF spin fluctuations. As a result, the depletion of QP weight
starts at different temperatures in different regions of the
Brillouin zone [82]. However, this momentum-sector-selective
opening of the single-particle spectral gap is suppressed by
next-nearest-neighbor hopping t ′ [83]. The latter shifts the flat
region in the QP dispersion away from the Fermi level thus
providing further support for the continuous FS in the quasi-1D
regime.

The evolution of the QMC Green’s function G(kkk,ω) and the
shape of the emergent FS are different from those concluded
on the basis of the CDMFT approach on the 8 × 2 cluster [27].
In CDMFT, the range of AF spin fluctuations is restricted to the
cluster size. Therefore, the evolution of the electronic structure
is governed by dominant umklapp process: a finite t⊥ shifts
the zero of Re G(kkk,ω) away from the (±π/2,0) points giving
way to a finite-frequency pole from the conduction band; see
Fig. 5(a) in Ref. [27]. At a critical value of t⊥, the latter crosses
the Fermi level which opens up elongated electron pockets
centered around thekkk = (±π/2,0) momenta. At the same time,
hole pockets open up at the kkk = (±π/2,π ) points and thus a
broken FS emerges with the 1D nesting wave vectorkkk = (π,0).
Hence, in the absence of finite-range AF spin fluctuations, this
particular evolution of Re G(kkk,ω) ensures the relevance of
umklapp scattering and extends the stability of the Mott phase
away from the 1D regime. Let us however point out that a larger
next-nearest-neighbor hopping t ′ in the lattice calculations will
frustrate the AF spin correlations and could bring our findings
in line with the CDMFT results. Unfortunately, this leads to a
sign problem which renders QMC simulations very expensive.

D. Dynamical spin and charge structure factors

Competing effects in strongly correlated systems often
result in various energy scales which govern the population
of excited states. This also holds for weakly coupled 1D
Hubbard chains with a half-filled band: in the regime where
the interaction between spin and electronic degrees of freedom
becomes relevant, both single- and two-particle processes
contribute to the excited state dynamics. The energy- and
momentum-resolved spin and charge structure factors help
to separate these contributions which is crucial for the
understanding of the low-energy dynamics. In addition, these
quantities allow one to identify momentum-resolved energy
scales above which spin and charge fluctuations lose their 1D
nature.

Thus, to complement the characteristic of the emergent
quasi-1D metallic phase, we consider the spin S(qqq,ω) and

charge C(qqq,ω) dynamical structure factors defined as

S(qqq,ω) = χ ′′
s (qqq,ω)

1 − e−βω
, C(qqq,ω) = χ ′′

c (qqq,ω)

1 − e−βω
. (11)

Here, χc and χs correspond to the generalized charge and spin
susceptibilities. The susceptibilities can be obtained from the
imaginary-time displaced two-particle correlation functions,

〈Sz(qqq,τ )Sz(−qqq,0)〉 = 1

π

∫
dw

e−ωτ

1 − e−βω
χ ′′

s (qqq,ω), (12)

〈N (qqq,τ )N (−qqq,0)〉 = 1

π

∫
dw

e−ωτ

1 − e−βω
χ ′′

c (qqq,ω), (13)

where

Sz(qqq) = 1√
N

∑
rrr

eiqqq·rrr (nrrr↑ − nrrr↓), (14)

N (qqq) = 1√
N

∑
rrr

eiqqq·rrr (nrrr↑ + nrrr↓ − n), (15)

with n = ∑
σ 〈nrrr,σ 〉 being the average filling level.

1. 1D Mott insulator

The elementary excitations of the 1D Hubbard model are
bosonic collective spin and charge density oscillations with
a linear dispersion in the long-wavelength limit qqq → 0 [84].
The relevance of umklapp scattering at half filling opens up
a gap for long-wavelength charge excitations while leaving
the spin sector gapless; see Fig. 9. The dynamical charge
structure factor C(qqq,ω) in Fig. 9(a) shows an overall agreement
with the one obtained at a slightly smaller interaction U/t =
2 using the time-dependent density matrix renormalization
group method in the T = 0 limit; see Fig. 10 in Ref. [85].
Above the charge gap, one finds aspects of the LL dynamics
with low-lying charge excitations located at long wavelengths
as well as at qqq = 2kF = π . As found in Ref. [85], the latter
carry little spectral weight and are thus more difficult to resolve
in our finite-temperature QMC simulations.

Since the charge sector is fully gapped, the spin dynamics
can be understood within a spin-only S = 1/2 Heisenberg
chain. In this case, the spin dynamics is characterized by
the two-spinon continuum of states bounded from below and
above by [86]

π

2
J | sin(qqq)| � ω(qqq) � πJ | sin(qqq/2)|, (16)

with the lowest-lying excitations carrying dominant spectral
weight at low temperatures [87–92]. As is apparent in Fig. 9(b),
for the considered value of the interaction U/t = 2.3, the
majority of spectral weight is located at the lower bound of the
continuum as in the Heisenberg model.

In spatial dimensions greater than one, the spinons bind
together and form magnons, the Goldstone modes of the
broken continuous SU(2) symmetry group. As a result, the
continuum of excitations in the dynamical spin structure factor
gives way to well-defined spin-wave modes [28]. The low-
frequency magnons in AF insulators and in the T = 0 limit are
well accounted for within the linear spin-wave theory (LSWT)
of the Heisenberg model to leading 1/S order [93–95].
This picture should break down at finite temperatures where
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FIG. 9. (Color online) (a) Dynamical charge structure factor
C(qqq,ω) and (b) dynamical spin structure factor S(qqq,ω) obtained on
a 32-site chain at T = t/20. The transverse momentum is a dummy
label.

cranking up the interchain coupling triggers the crossover to a
metal.

2. Quasi-1D metal in the pseudogap regime

Let us consider first a weakly coupled regime with t⊥/t =
0.15. As shown in Fig. 7, the corresponding single-particle
spectral function A(kkk,ω) exhibits two broadened peaks sepa-
rated by a region with a strongly reduced weight that we refer
to as a pseudogap. As is apparent, the system is at the verge
of localization near the 1D Mott phase.

Figure 10(a) depicts the dynamical charge structure factor
C(qqq,ω). Using the continuity equation one finds that upon
approaching the long-wavelength limit qqq → 0 parallel (per-
pendicular) to the chains, this observable is related to the
intrachain (interchain) real part of the optical conductivity
σα(ω), respectively [96]:

σα(ω) = lim
qα→0

ω

q2
α

(1 − e−βω)C(qα,ω), (17)

where qα is the α component of the momentum transfer
parallel/perpendicular to the chains. Given that the intensity of
charge fluctuations rapidly decreases in the long-wavelength
limit, it is difficult to pin down the metallic vs insulating
nature of the system. This issue is resolved by looking at
the low-frequency part of the optical conductivity σα(ω);
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FIG. 10. (Color online) (a) Dynamical charge structure factor
C(qqq,ω), and (b) dynamical spin structure factor S(qqq,ω) obtained
on a 16 × 16 lattice with t⊥/t = 0.15 at T = t/20. Solid line in
panel (b) gives the LSWT dispersion Eq. (19) with J⊥/J = 0.06
and J ′/J⊥ = 0.2. The chosen exchange couplings are fit parameters
subject to the constraint of a finite magnetic order parameter in LSWT
consistent with the long-range AF order in the system.

see Fig. 3. On the one hand, zero-frequency weight in the
interchain optical conductivity σ⊥(ω) indicates a metallic
phase at t⊥/t = 0.15. On the other hand, the smallness
of this weight reveals a large degree of incoherence in
the interchain transport. Moreover, as shown in Fig. 7, the
imaginary part of the corresponding self-energy −Im (kkk,ωm)
increases at low Matsubara frequency contributing to the
effective mass enhancement and reduced mobility of charge
carriers.

From this standpoint, we can analyze the magnetic excita-
tion spectrum shown in Fig. 10(b). The most striking difference
with respect to the 1D regime is a low-frequency dispersive
feature along the (π,π ) → (π,0) path accompanied by a broad
upward dispersion along the (0,0) → (0,π ) direction. They
are signatures of damped AF spin fluctuations (paramagnons)
which are not strong enough to gap out the FS and develop
long-range AF order but nevertheless can propagate an
appreciable distance.

To get further insight into the spin dynamics, we consider
the spin S = 1/2 Heisenberg model with nearest neighbor
interactions J (J⊥) along the intrachain (interchain) bonds,
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respectively, extended by next-nearest-neighbor interaction J ′:

HJ = J
∑
〈ijijij 〉‖

SSSiii · SSSjjj + J⊥
∑
〈ijijij 〉⊥

SSSiii · SSSjjj + J ′ ∑
〈〈ijijij〉〉

SSSiii · SSSjjj . (18)

As illustrated in Fig. 10(b), the LSWT dispersion relation of
the Heisenberg model (18) [28],

ωqqq = 2S

√
ξ 2
qqq − γ 2

qqq , (19)

with two-dimensional structure factors,

ξqqq = J + J⊥ − 2J ′(1 − cos qx cos qy), (20)

γqqq = J cos qx + J⊥ cos qy, (21)

tracks the low-frequency paramagnon spectrum. Clearly,
the frequency region with depleted single-particle spectral
weight efficiently separates the low-frequency spin-wave-like
excitations from the high-frequency particle-hole excitations
across the pseudogap in A(kkk,ω). Moreover, a reduced mobility
of charge carriers leads to a separation of time scales, a
characteristic feature of correlated systems with complex
dynamics [97]; charge carriers are localized on the spin time
scale and thus a coherent-like precession of individual spins
might still take place. Consequently, despite broadening and
renormalization of the paramagnon dispersion (softening) as
compared to LSWT with localized moments, an approximate
Heisenberg-like picture turns out to still be applicable below
the single-particle pseudogap.

3. Quasi-1D metal with quasiparticles

We now examine the spin and charge responses at our
largest interchain coupling t⊥/t = 0.3. A closure of the pseu-
dogap in the single-particle spectral function A(kkk,ω) illustrated
in Fig. 7 gives rise to a more pronounced gapless charge mode
in the long-wavelength limit qqq → 0; see Fig. 11(a). As follows
from Eq. (17), this is in turn reflected in a marked increase
in the Drude-like weight shown in Fig. 3 thus providing
the evidence of an increased mobility of charge carriers.
Consequently, the low-frequency part of the dynamical spin
structure factor S(qqq,ω) cannot anymore be interpreted solely
in terms of spin-wave-like excitations assuming localized
spins [98,99]. Our next goal is to identify these various
components in the spin excitation spectrum.

Figure 11(b) reveals featureless continua in S(qqq,ω) near
qqq = (0,π ) and qqq = (π,0) momenta. It is natural to assign
these incoherent excitations to the continuum of independent
particle-hole pairs, a hallmark of an electron system with
mobile charge carriers. Indeed, in the presence of electronic
QPs, a single spin-flip excitation can be made at arbitrary low
energy. Hence, the paramagnons cannot propagate without
exciting unbound particle-hole pairs. The latter contribute to
the charge excitation spectrum C(qqq,ω) which features a similar
continuum around qqq = (0,π ); cf. Fig. 11(a). This similarity
confirms that these features stem from the particle-hole bubble
of dressed single-particle Green’s functions [100].

Less clear evidence of the particle-hole excitations in
C(qqq,ω) is found at qqq = (π,0): since most of the spectral
weight is exhausted by a high-frequency ω/t � 4 charge
mode [101], it is more difficult to resolve the expected
particle-hole continuum. However, we believe that a faint
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FIG. 11. (Color online) Same as in Fig. 10 but for t⊥/t = 0.3.

low-frequency mode corresponds to a lower bound of the
particle-hole continuum.

In contrast, the particle-hole interaction vertex remains
finite near the AF wave vector qqq = (π,π ). Consequently, an
excited particle and a hole are bound together in this part of
the Brillouin zone. This leads to low-frequency paramagnon
excitations; see Fig. 11(b). As compared to the weakly coupled
regime shown in Fig. 10(b), these paramagnons are broadened
by scattering off mobile charge carriers and dissolve into a
FL-like particle-hole continuum on moving away from the
AF wave vector. Such a localized nature of spin fluctuations
in momentum space restricted to a narrow range around
qqq = (π,π ) arises from spatial AF spin correlations rather than
from a set of mutually interacting local moments [40].

4. Thermal crossover

Independently of the intrinsic interest in finding fingerprints
of the LL behavior at elevated temperatures, quasi-1D materi-
als often exhibit low-T broken-symmetry ground states. These
instabilities occur at a temperature scale at which the system
effectively becomes three-dimensional and long-range order
can occur at low but finite temperatures.

The physics associated with a thermal crossover can be
studied in weakly coupled Hubbard chains: for a weak
interchain superexchange coupling J⊥/J � 1, the energy
difference between the broken-symmetry AF ground state
and excited states is small, thus facilitating their ther-
mal population. This offers the opportunity to analyze the
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FIG. 12. (Color online) Temperature dependence of the dynam-
ical spin structure factor S(qqq,ω) obtained on a 16 × 16 lattice with
fixed t⊥/t = 0.2: (a) T = t/10, (b) T = t/20, and (c) T = t/30.
Insets show the single-particle spectral function at kkk = (π/2,π/2)
(left) and low-frequency dependence of the imaginary part of the
corresponding self-energy (right).

interaction of low-energy electronic QPs with finite-range AF
spin fluctuations in a thermally disordered quasi-1D metal
and to probe transient changes in the spin excitation spectrum
intimately connected to the onset of the long-range AF order
in the T → 0 regime.

Figure 12 tracks the temperature dependence of the dy-
namical spin structure factor S(qqq,ω) at a fixed t⊥/t = 0.2. For
this value of the interchain coupling, optical spectra in Fig. 4
provide evidence of a thermal crossover from a FL-like regime

at T = t/10 to the broken-symmetry SDW ground state in the
effective zero-temperature limit.

At elevated temperature T = t/10, see Fig. 12(a), S(qqq,ω)
features solely broad continua associated with single-particle
spin-flip excitations—prominent features of the FL dynamics.
The validity of the FL-like picture is further supported
by a well-defined QP peak in the single-particle spectral
function A(kkk,ω) resolved at the nodal kkk = (π/2,π/2) point;
see Fig. 12(a). These QP excitations are responsible for a
Drude-like feature in the corresponding optical conductivity
shown in Fig. 4.

Although a Drude-like weight signals that the system
remains metallic upon cooling down to T = t/20, the single-
particle dynamics becomes incoherent; a single QP peak in
A(kkk,ω) at the kkk = (π/2,π/2) point is replaced by two broad-
ened peaks separated by a shallow pseudogap; see Fig. 12(b).
This double-peak structure yields a finite-frequency hump
in the optical spectra due to particle-hole excitations across
the pseudogap; cf. Fig. 4. Further evidence of the growing
incoherence in the system is brought by the enhancement
of the QP scattering rate �kkk = −Im (kkk,iω0); cf. insets in
Figs. 12(a) and 12(b). As is apparent from the low-T growth
of the staggered spin structure factor S(π,π ) depicted in
Fig. 2(b), the change in the QP damping rate should be traced
to the increase in the magnetic correlation length. This has
a pronounced effect on the spin excitation spectrum which
develops a paramagnon branch near the AF wave vector; see
Fig. 12(b). As indicated by their broad spectral width, these
paramagnons have a short lifetime due to scattering off mobile
charge carriers and merge into a particle-hole continuum on
moving away from the qqq = (π,π ) momentum.

Finally, at our lowest temperature T = t/30, a further
increase in the QP damping rate �kkk leads to a strong depletion
of single-particle spectral weight; see the inset in Fig. 12(c).
Despite some thermally excited QP states at the Fermi level, a
complete suppression of the Drude weight in the corresponding
optical conductivity shown in Fig. 4 provides clear evidence
of charge localization. Hence, the formation of the insulating
state appears here as the outcome of a divergent QP mass rather
than the disappearance of charge carriers.

This insulating phase features rich spin dynamics with a
pronounced frequency-dependent damping; see Fig. 12(c). On
the one hand, we resolve at our lowest temperature T = t/30
the increase in both the magnetic intensity and stiffness
of the spin-wave-like dispersion near the AF wave vector.
The latter effect is similar to spin-wave stiffening found in
the weakly doped two-dimensional t-J model on reducing
the hole doping and approaching the long-range AF phase
[102–104]. Moreover, a correlation-induced gap for spin
excitations becomes discernible at the qqq = (π,0) momentum.
The size of this gap might be considered as a measure of
the vertex correction, i.e., binding energy between an excited
particle and a hole, a precursor of collective spin excitations.
On the other hand, the interaction of electronic single-particle
excitations with magnetic modes results in the overdamped
spin dynamics at energies above the pseudogap in A(kkk,ω).

Figure 13 summarizes the corresponding temperature
evolution of the dynamical charge structure factor C(qqq,ω). The
intensity of the low-frequency weight in the long-wavelength
limit qqq → 0 progressively decreases with decreasing
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FIG. 13. (Color online) Temperature dependence of the dynami-
cal charge structure factor C(qqq,ω) obtained on a 16 × 16 lattice with
fixed t⊥/t = 0.2: (a) T = t/10, (b) T = t/20, and (c) T = t/30.

temperature and is completely washed out below the
crossover scale marking the onset of the SDW phase. This
agrees with a small gap in the optical conductivity resolved at
T = t/30; cf. Fig. 4.

E. Discussion: Experimental relevance

Let us now discuss the relevance of our results to quasi-1D
organic Bechgaard-Fabre salts [105]. At ambient pressure, the
Fabre (TMTTF)2X salts are typically Mott insulators due to a
combined effect of umklapp process and dimerization leading
effectively to a half-filled band. Upon increasing pressure,
the 1D Mott phase is replaced by a higher-dimensional metal

when the interchain hopping reaches the order of the Mott
gap [12,13]. In contrast, the Bechgaard (TMTSF)2X salts are
quasi-1D metals due to larger interchain hopping. It effectively
warps the FS thus introducing deviation from ideal nesting
properties of the 1D limit. The optical conductivity spectra
of the Bechgaard salts are markedly different from those of
a simple metal: a narrow Drude-like weight is accompanied
by a finite-frequency feature exhausting most of the spectral
weight [106]. The latter is usually interpreted in terms of the
remnant 1D Mott gap [107]. The Drude feature survives up
to arbitrarily low temperatures before being disrupted by the
onset of a small SDW gap driven by the FS nesting [108].

On the one hand, recent CDMFT studies capturing only
short-range AF spin correlations have shown evidence of a
quasi-1D metallic phase with a FS broken into pockets [27].
As the interchain coupling was increased, a continuous FS
was restored although with a substantial variation of the QP
weight in the Brillouin zone. A strong momentum dependence
of the self-energy offers a simple framework accounting for the
unusual frequency dependence of the optical conductivity in
(TMTSF)2X salts. Indeed, it is natural to associate a Drude-like
feature (finite-frequency absorption) to the FS pockets (gapped
regions of the Brillouin zone), respectively.

On the other hand, our QMC simulations yield a continuous
FS in the quasi-1D metallic phase. As a result, a two-
component optical response follows from the depletion of
single-particle spectral weight at the Fermi level with a finite-
frequency contribution assigned to particle-hole excitations
across the pseudogap. One possible reason behind the contin-
uous FS is that the formation of the FS pockets requires simula-
tions in the thermodynamic limit. Alternatively, it is known that
the breakup of the FS into pockets appears only at sufficiently
low temperatures [27], i.e., possibly below the onset of the
intervening SDW phase. In this respect, a larger deviation from
the FS nesting, e.g., a larger next-nearest-neighbor hopping
−t ′, would be required to extend the region of stability of the
quasi-1D metallic phase to lower temperatures.

Finally, we point out a strong renormalization of the
QMC Drude-like weight with respect to the one found
in the chain-DMFT studies [22]. It stems from dressing
of mobile charge carriers with a cloud of finite-range AF
spin fluctuations beyond the chain-DMFT approximation.
Interestingly, a reduced QMC Drude response is reminiscent
of the experimental data on the (TMTSF)2X salts with the
zero-frequency mode containing a tiny ∼1% fraction of the
total optical weight [106].

IV. CONCLUSIONS

We have presented a thorough auxiliary-field QMC study of
a dimensional crossover in weakly coupled 1D Hubbard chains
with a half-filled band. As a function of the interchain coupling
t⊥, we interpret our finite-temperature results in terms of the
crossover from the 1D Mott phase which exhibits spin-charge
separation to a higher-dimensional AF metal. We have placed
emphasis on clarifying the nature of this metallic phase and its
low-energy excitations. To this aim, we have examined both
the single- and two-particle excitation spectra.

On the one hand, the simultaneous emergence of the
zero-frequency Drude-like response in both intra- σ‖(ω) and
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interchain σ⊥(ω) optical conductivities implies the onset of
a quasi-1D metal at t⊥/t = 0.15. This should be contrasted
with the anisotropic localization in coupled spinless LL chains
leading to metallic transport in some directions and not
along the others (smectic metal) [109]. On the other hand,
most of the optical weight does not form a coherent Drude
peak as in a FL metal, but accumulates at finite frequency.
This signals unconventional charge dynamics attributed to
enhanced QP scattering off finite-range AF spin fluctuations.
Our study reveals a rich structure of the corresponding
magnetic excitation spectrum: signatures of the FL dynamics
(particle-hole continua) and a paramagnon branch near the
qqq = (π,π ) momentum are apparent.

The temperature dependence of the single- and two-particle
excitation spectra in the quasi-1D regime with t⊥/t = 0.2 is
equally rich. At elevated temperatures, they are suggestive of
the formation of a FL-like metal. In contrast, at our lowest
temperatures, the disappearance of the Drude weight indicates
the onset of an insulating ground state gapped out by AF spin
correlations. As a result, we resolved a spin-wave-like mode
in the dynamical spin structure factor S(qqq,ω) spreading out
nearly through the entire Brillouin zone.

Finally, we have discussed a possible relationship of our
findings to the experiments. On the one hand, the Drude
weight in quasi-1D organic Bechgaard-Fabre salts arises from
deviations from the strictly 1D half-filled band which lead to
warping of the FS [10]. Moreover, there is strong experimental
evidence of the importance of higher-dimensional AF spin

correlations. Thus, the extension of the model Hamiltonian
from 1D to quasi-1D is essential to account for the metallic
behavior in these compounds. On the other hand, finite-energy
absorption in the optical conductivity spectrum indicates that
the interchain coupling becomes ineffective above a certain
frequency threshold. In this regime, one recovers the 1D
physics with remnant umklapp scattering.

Instead, our QMC data indicate that the high-frequency
1D Mott feature in the optical response is quickly replaced
upon coupling the chains by a low-frequency mode associated
with the onset of finite-range higher-dimensional AF spin
correlations. We conclude that the low-temperature optical
spectra in quasi-1D correlated metals with a half-filled band
and a nearly nested FS are intimately related to dominant AF
spin fluctuations. However, we expect that the importance of
longer-range interchain hopping in the actual electronic band
structure of Bechgaard-Fabre salts [110,111] will enhance
the frustration effects and thus could have the potential of
reproducing the experimentally observed optical spectra in
lattice simulations.
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(2002).
[96] F. F. Assaad, Phys. Rev. B 78, 155124 (2008).

045137-13

http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.67.075110
http://dx.doi.org/10.1103/PhysRevB.67.075110
http://dx.doi.org/10.1103/PhysRevB.67.075110
http://dx.doi.org/10.1103/PhysRevB.67.075110
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevLett.97.136401
http://dx.doi.org/10.1103/PhysRevLett.97.136401
http://dx.doi.org/10.1103/PhysRevLett.97.136401
http://dx.doi.org/10.1103/PhysRevLett.97.136401
http://dx.doi.org/10.1103/PhysRevLett.77.2790
http://dx.doi.org/10.1103/PhysRevLett.77.2790
http://dx.doi.org/10.1103/PhysRevLett.77.2790
http://dx.doi.org/10.1103/PhysRevLett.77.2790
http://dx.doi.org/10.1103/PhysRevB.56.11001
http://dx.doi.org/10.1103/PhysRevB.56.11001
http://dx.doi.org/10.1103/PhysRevB.56.11001
http://dx.doi.org/10.1103/PhysRevB.56.11001
http://dx.doi.org/10.1103/PhysRevLett.85.4799
http://dx.doi.org/10.1103/PhysRevLett.85.4799
http://dx.doi.org/10.1103/PhysRevLett.85.4799
http://dx.doi.org/10.1103/PhysRevLett.85.4799
http://dx.doi.org/10.1103/PhysRevB.64.054422
http://dx.doi.org/10.1103/PhysRevB.64.054422
http://dx.doi.org/10.1103/PhysRevB.64.054422
http://dx.doi.org/10.1103/PhysRevB.64.054422
http://dx.doi.org/10.1038/nmat1327
http://dx.doi.org/10.1038/nmat1327
http://dx.doi.org/10.1038/nmat1327
http://dx.doi.org/10.1038/nmat1327
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1103/PhysRevB.48.7183
http://dx.doi.org/10.1103/PhysRevB.48.7183
http://dx.doi.org/10.1103/PhysRevB.48.7183
http://dx.doi.org/10.1103/PhysRevB.48.7183
http://dx.doi.org/10.1103/PhysRevB.41.6399
http://dx.doi.org/10.1103/PhysRevB.41.6399
http://dx.doi.org/10.1103/PhysRevB.41.6399
http://dx.doi.org/10.1103/PhysRevB.41.6399
http://dx.doi.org/10.1103/PhysRevB.42.7967
http://dx.doi.org/10.1103/PhysRevB.42.7967
http://dx.doi.org/10.1103/PhysRevB.42.7967
http://dx.doi.org/10.1103/PhysRevB.42.7967
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1080/0001873021000057123
http://dx.doi.org/10.1088/0034-4885/66/8/202
http://dx.doi.org/10.1088/0034-4885/66/8/202
http://dx.doi.org/10.1088/0034-4885/66/8/202
http://dx.doi.org/10.1088/0034-4885/66/8/202
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1088/0034-4885/71/2/026501
http://dx.doi.org/10.1080/00018732.2014.940227
http://dx.doi.org/10.1080/00018732.2014.940227
http://dx.doi.org/10.1080/00018732.2014.940227
http://dx.doi.org/10.1080/00018732.2014.940227
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1088/0305-4470/27/22/009
http://dx.doi.org/10.1088/0305-4470/27/22/009
http://dx.doi.org/10.1088/0305-4470/27/22/009
http://dx.doi.org/10.1088/0305-4470/27/22/009
http://dx.doi.org/10.1088/0305-4470/29/11/003
http://dx.doi.org/10.1088/0305-4470/29/11/003
http://dx.doi.org/10.1088/0305-4470/29/11/003
http://dx.doi.org/10.1088/0305-4470/29/11/003
http://dx.doi.org/10.1103/PhysRevLett.83.3069
http://dx.doi.org/10.1103/PhysRevLett.83.3069
http://dx.doi.org/10.1103/PhysRevLett.83.3069
http://dx.doi.org/10.1103/PhysRevLett.83.3069
http://dx.doi.org/10.1103/PhysRevB.62.6378
http://dx.doi.org/10.1103/PhysRevB.62.6378
http://dx.doi.org/10.1103/PhysRevB.62.6378
http://dx.doi.org/10.1103/PhysRevB.62.6378
http://arxiv.org/abs/arXiv:cond-mat/0403055
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/RevModPhys.83.471
http://dx.doi.org/10.1103/PhysRevB.72.045113
http://dx.doi.org/10.1103/PhysRevB.72.045113
http://dx.doi.org/10.1103/PhysRevB.72.045113
http://dx.doi.org/10.1103/PhysRevB.72.045113
http://dx.doi.org/10.1103/PhysRevB.80.161105
http://dx.doi.org/10.1103/PhysRevB.80.161105
http://dx.doi.org/10.1103/PhysRevB.80.161105
http://dx.doi.org/10.1103/PhysRevB.80.161105
http://dx.doi.org/10.1103/PhysRevB.81.174536
http://dx.doi.org/10.1103/PhysRevB.81.174536
http://dx.doi.org/10.1103/PhysRevB.81.174536
http://dx.doi.org/10.1103/PhysRevB.81.174536
http://dx.doi.org/10.1103/PhysRevB.83.125108
http://dx.doi.org/10.1103/PhysRevB.83.125108
http://dx.doi.org/10.1103/PhysRevB.83.125108
http://dx.doi.org/10.1103/PhysRevB.83.125108
http://dx.doi.org/10.1103/PhysRevB.84.125115
http://dx.doi.org/10.1103/PhysRevB.84.125115
http://dx.doi.org/10.1103/PhysRevB.84.125115
http://dx.doi.org/10.1103/PhysRevB.84.125115
http://dx.doi.org/10.1103/PhysRevB.84.085128
http://dx.doi.org/10.1103/PhysRevB.84.085128
http://dx.doi.org/10.1103/PhysRevB.84.085128
http://dx.doi.org/10.1103/PhysRevB.84.085128
http://dx.doi.org/10.1103/PhysRevB.89.155126
http://dx.doi.org/10.1103/PhysRevB.89.155126
http://dx.doi.org/10.1103/PhysRevB.89.155126
http://dx.doi.org/10.1103/PhysRevB.89.155126
http://dx.doi.org/10.1103/PhysRevLett.85.3910
http://dx.doi.org/10.1103/PhysRevLett.85.3910
http://dx.doi.org/10.1103/PhysRevLett.85.3910
http://dx.doi.org/10.1103/PhysRevLett.85.3910
http://dx.doi.org/10.1103/PhysRevLett.86.680
http://dx.doi.org/10.1103/PhysRevLett.86.680
http://dx.doi.org/10.1103/PhysRevLett.86.680
http://dx.doi.org/10.1103/PhysRevLett.86.680
http://dx.doi.org/10.1016/S0921-4526(96)00768-5
http://dx.doi.org/10.1016/S0921-4526(96)00768-5
http://dx.doi.org/10.1016/S0921-4526(96)00768-5
http://dx.doi.org/10.1016/S0921-4526(96)00768-5
http://dx.doi.org/10.1103/PhysRevLett.84.4673
http://dx.doi.org/10.1103/PhysRevLett.84.4673
http://dx.doi.org/10.1103/PhysRevLett.84.4673
http://dx.doi.org/10.1103/PhysRevLett.84.4673
http://dx.doi.org/10.1103/PhysRevLett.108.076401
http://dx.doi.org/10.1103/PhysRevLett.108.076401
http://dx.doi.org/10.1103/PhysRevLett.108.076401
http://dx.doi.org/10.1103/PhysRevLett.108.076401
http://dx.doi.org/10.1103/PhysRevB.90.035111
http://dx.doi.org/10.1103/PhysRevB.90.035111
http://dx.doi.org/10.1103/PhysRevB.90.035111
http://dx.doi.org/10.1103/PhysRevB.90.035111
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevB.73.165119
http://dx.doi.org/10.1103/PhysRevB.73.165119
http://dx.doi.org/10.1103/PhysRevB.73.165119
http://dx.doi.org/10.1103/PhysRevB.73.165119
http://dx.doi.org/10.1103/PhysRevLett.73.732
http://dx.doi.org/10.1103/PhysRevLett.73.732
http://dx.doi.org/10.1103/PhysRevLett.73.732
http://dx.doi.org/10.1103/PhysRevLett.73.732
http://dx.doi.org/10.1103/PhysRevLett.84.522
http://dx.doi.org/10.1103/PhysRevLett.84.522
http://dx.doi.org/10.1103/PhysRevLett.84.522
http://dx.doi.org/10.1103/PhysRevLett.84.522
http://dx.doi.org/10.1103/PhysRevB.70.235107
http://dx.doi.org/10.1103/PhysRevB.70.235107
http://dx.doi.org/10.1103/PhysRevB.70.235107
http://dx.doi.org/10.1103/PhysRevB.70.235107
http://dx.doi.org/10.1103/PhysRevB.72.075136
http://dx.doi.org/10.1103/PhysRevB.72.075136
http://dx.doi.org/10.1103/PhysRevB.72.075136
http://dx.doi.org/10.1103/PhysRevB.72.075136
http://dx.doi.org/10.1103/PhysRevB.74.125110
http://dx.doi.org/10.1103/PhysRevB.74.125110
http://dx.doi.org/10.1103/PhysRevB.74.125110
http://dx.doi.org/10.1103/PhysRevB.74.125110
http://dx.doi.org/10.1103/PhysRevB.75.104503
http://dx.doi.org/10.1103/PhysRevB.75.104503
http://dx.doi.org/10.1103/PhysRevB.75.104503
http://dx.doi.org/10.1103/PhysRevB.75.104503
http://dx.doi.org/10.1103/PhysRevLett.102.056404
http://dx.doi.org/10.1103/PhysRevLett.102.056404
http://dx.doi.org/10.1103/PhysRevLett.102.056404
http://dx.doi.org/10.1103/PhysRevLett.102.056404
http://dx.doi.org/10.1103/PhysRevB.86.035102
http://dx.doi.org/10.1103/PhysRevB.86.035102
http://dx.doi.org/10.1103/PhysRevB.86.035102
http://dx.doi.org/10.1103/PhysRevB.86.035102
http://dx.doi.org/10.1103/PhysRevB.67.205111
http://dx.doi.org/10.1103/PhysRevB.67.205111
http://dx.doi.org/10.1103/PhysRevB.67.205111
http://dx.doi.org/10.1103/PhysRevB.67.205111
http://dx.doi.org/10.1103/PhysRevB.86.155109
http://dx.doi.org/10.1103/PhysRevB.86.155109
http://dx.doi.org/10.1103/PhysRevB.86.155109
http://dx.doi.org/10.1103/PhysRevB.86.155109
http://dx.doi.org/10.1103/PhysRevB.80.245102
http://dx.doi.org/10.1103/PhysRevB.80.245102
http://dx.doi.org/10.1103/PhysRevB.80.245102
http://dx.doi.org/10.1103/PhysRevB.80.245102
http://dx.doi.org/10.1103/PhysRevB.85.165132
http://dx.doi.org/10.1103/PhysRevB.85.165132
http://dx.doi.org/10.1103/PhysRevB.85.165132
http://dx.doi.org/10.1103/PhysRevB.85.165132
http://dx.doi.org/10.1103/PhysRev.128.2131
http://dx.doi.org/10.1103/PhysRev.128.2131
http://dx.doi.org/10.1103/PhysRev.128.2131
http://dx.doi.org/10.1103/PhysRev.128.2131
http://dx.doi.org/10.1103/PhysRevB.48.10227
http://dx.doi.org/10.1103/PhysRevB.48.10227
http://dx.doi.org/10.1103/PhysRevB.48.10227
http://dx.doi.org/10.1103/PhysRevB.48.10227
http://dx.doi.org/10.1103/PhysRevB.55.14953
http://dx.doi.org/10.1103/PhysRevB.55.14953
http://dx.doi.org/10.1103/PhysRevB.55.14953
http://dx.doi.org/10.1103/PhysRevB.55.14953
http://dx.doi.org/10.1103/PhysRevB.75.205128
http://dx.doi.org/10.1103/PhysRevB.75.205128
http://dx.doi.org/10.1103/PhysRevB.75.205128
http://dx.doi.org/10.1103/PhysRevB.75.205128
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1103/PhysRevLett.111.137205
http://dx.doi.org/10.1038/nphys2652
http://dx.doi.org/10.1038/nphys2652
http://dx.doi.org/10.1038/nphys2652
http://dx.doi.org/10.1038/nphys2652
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.87.568
http://dx.doi.org/10.1103/PhysRev.87.568
http://dx.doi.org/10.1103/PhysRev.87.568
http://dx.doi.org/10.1103/PhysRev.87.568
http://dx.doi.org/10.1103/PhysRevB.66.094431
http://dx.doi.org/10.1103/PhysRevB.66.094431
http://dx.doi.org/10.1103/PhysRevB.66.094431
http://dx.doi.org/10.1103/PhysRevB.66.094431
http://dx.doi.org/10.1103/PhysRevB.78.155124
http://dx.doi.org/10.1103/PhysRevB.78.155124
http://dx.doi.org/10.1103/PhysRevB.78.155124
http://dx.doi.org/10.1103/PhysRevB.78.155124


MARCIN RACZKOWSKI, FAKHER F. ASSAAD, AND LODE POLLET PHYSICAL REVIEW B 91, 045137 (2015)

[97] M. Raczkowski, P. Zhang, F. F. Assaad, T. Pruschke, and
M. Jarrell, Phys. Rev. B 81, 054444 (2010).

[98] R. Eder, Y. Ohta, and S. Maekawa, Phys. Rev. Lett. 74, 5124
(1995).

[99] D. Benjamin, I. Klich, and E. Demler, Phys. Rev. Lett. 112,
247002 (2014).

[100] S. Schmitt, N. Grewe, and T. Jabben, Phys. Rev. B 85, 024404
(2012).

[101] Comparison of Figs. 9 and 11 supports the point of view that the
high-frequency features of S(qqq,ω) and C(qqq,ω) at t⊥/t = 0.3
are reminiscent of the 1D isolated-chain limit.

[102] J. I. Igarashi and P. Fulde, Phys. Rev. B 45, 12357
(1992).

[103] G. Khaliullin and P. Horsch, Phys. Rev. B 47, 463
(1993).

[104] M. Vojta and K. W. Becker, Phys. Rev. B 54, 15483 (1996).

[105] The building blocks of this family of compounds are nearly
planar organic molecules: the selenium-based tetramethylse-
lenofulvalene (TMTSF) or its sulfur analog tetramethyltetrathi-
afulvalene (TMTTF).

[106] M. Dressel, A. Schwartz, G. Grüner, and L. Degiorgi,
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