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Prediction of phonon-mediated high-temperature superconductivity in Li3B4C2
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Based on the first-principles density functional theory calculations for the electronic band structure and
lattice dynamics of Li3B4C2, we predict that this material is a strong electron-phonon coupled superconductor
with a superconducting transition temperature higher than that for MgB2. Li3B4C2 is a layered material which is
formed by substituting one-third carbon atoms in the semiconducting compound LiBC with boron atoms, with the
remaining carbon atoms forming a regular hexagonal lattice in each boron-carbon layer. Similar to MgB2, Li3B4C2

is inherently metallic and possesses two σ -bonding bands around the Fermi energy. The superconductivity in this
material arises from the coupling of these two σ -bonding bands with the intralayer bond-stretching E′ modes.
From the phonon spectrum and the formation energy, we find that Li3B4C2 is dynamically stable and has a high
probability to be synthesized in laboratory.
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I. INTRODUCTION

A σ bond in graphite or other materials is a strong covalent
bond of a spin singlet pair formed by two electrons with
opposite spins. In most materials, a σ bond is a stable bound
state whose energy sinks well below the Fermi level, making
no contribution to conductivity. However, if the energy of a σ

bond is lifted up to the Fermi level by hole doping or other
effects, the binding force of the bond is released and electrons
become itinerant. The characteristic feature of the σ bond
can nevertheless be retained if its hybridization with other
conducting electrons is small. Since the coupling between
σ -bonding electrons and lattice vibrations is generally very
large, this may generate a strong attractive interaction to pair
electrons into a high-Tc superconducting state.

This is just the physics underlying the 39 K superconduc-
tivity in MgB2, discovered by Akimitsu and co-workers in
2001 [1]. This picture was supported by the density functional
theory and lattice dynamics calculations, which show that
the electron-phonon coupling (EPC) between the σ -bonding
bands and the bond-stretching optical E2g phonon modes [2–6]
plays a central role in the superconducting pairing in MgB2,
and was further confirmed by isotope effect measurements [7].
Stimulated by the discovery of superconductivity in MgB2,
great efforts have been made in recent decades to find
new phonon-mediated superconductors among sp3- or sp2-
hybridized σ -bonding compounds by lifting the σ -bonding
bands up to the Fermi level through hole doping or other
effects [8].

Superconductivity in sp3-hybridized σ -bonding com-
pounds was first discovered at about 4 K in diamond with 2.8%
boron substitution [9], and then at 11 K in thin diamond films
with 5% boron substitution [10]. If the boron concentration
is further increased to 20%–30%, it was predicted from
first-principles density functional calculations that diamond
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may become superconducting at about 55 K [11]. However,
such high doping concentrations have never been achieved
experimentally [12].

For sp2-hybridized σ -bonding compounds, the EPC studies
focus more on calcium intercalated graphite, CaC6, and
lithium deficient LixBC. Superconductivity in CaC6 was
found at 11.4 K [13], and then raised up to 15.1 K under
8 GPa hydrostatic pressure [14]. But unlike in MgB2, the
strong covalent σ -bonding band lies well below the Fermi
level and the superconducting pairing is caused by the EPC
between electrons and soft phonon modes of calcium in this
material [15,16]. LiBC is a large-gap semiconductor with
a boron-carbon σ -bonding band at the top of the valence
bands [17–19]. It was suggested that the σ -bonding band can
be rigidly lifted up to the Fermi level by removing some lithium
atoms, leading to a phonon-mediated superconductor with a Tc

about 100 K [19]. However, superconductivity has never been
observed in hole-doped LixBC [20–22]. The reason for this is
that hole doping by creating Li deficiencies introduces strong
lattice distortion in both Li and boron-carbon layers. This
changes the band structure of LiBC entirely and suppress the
effects lifting the σ -bonding band up to the Fermi level [23].
Li0.5BC remains in the semiconducting phase.

Doping holes in LiBC by partially substituting carbon
atoms with boron atoms is experimentally more feasible.
This will not introduce any lattice distortion. In this paper,
we present a first-principles density functional theory study
for two boron-substituted LiBC-type compounds, namely
Li3B4C2 and Li2B3C. On both materials, we find that partial
substitution of carbon by boron atoms can lift the σ -bonding
bands up to the Fermi level and lead to a strong EPC.
Based on the EPC, the other parameters obtained, and the
Allen-Dynes formula, we predict that these materials are
strong phonon-mediated high-temperature superconductors,
with Tc higher than that of MgB2. From the formation energies
(see Appendix B), we find that Li3B4C2 is energetically more
stable than Li2B3C. Thus in the main text, we will focus the
discussion on Li3B4C2. A detailed discussion of the band
structure and lattice dynamics of Li2B3C is presented in
Appendix A.
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II. COMPUTATIONAL DETAILS

In our first-principles electronic structure calculations,
the plane wave basis method is used [24]. We adopt the
generalized gradient approximation (GGA) with Perdew-
Burke-Ernzerhof formula [25] for the exchange-correlation
potentials. The Rappe-Rabe-Kaxiras-Joannopoulos ultrasoft
pseudopotentials [26] are used to model the electron-ion
interactions. After the full convergence test, the kinetic energy
cutoff and the charge density cutoff of the plane wave basis
are chosen to be 40 Ry and 480 Ry, respectively. We use the
Marzari-Vanderbilt smearing technique [27] of width 0.02 Ry
with a 18 × 18 × 18 k-point grid to evaluate the self-consistent
electron density, and a 36 × 36 × 36 k-point grid to determine
the Fermi-surface contours. Phonon wave vectors are sampled
on a 6 × 6 × 6 mesh. The lattice constants after full relaxation
are adopted.

The phonon properties and EPC are calculated based on
density functional perturbation theory [28] and Eliashberg
equations [29]. The electron-phonon interaction matrix el-
ement g

ij

k,qν , which describes the probability amplitude for
scattering of an electron with a transfer of crystal momentum
q, is determined by [30,31]

g
ij

k,qν =
(

�

2Mωqν

)1/2

〈ψi,k|dVSCF

dûqν

· êqν |ψj,k+q〉, (1)

where M is the atomic mass, q and k are wave vectors, and
ij and ν denote indices of energy bands and phonon modes,
respectively. ωqν and êqν stand for the phonon frequency and
eigenvector of the νth phonon mode with wave vector q.
dVSCF/dûqν measures the change of self-consistent potential
induced by atomic displacement. ψi,k and ψj,k+q are Kohn-
Sham orbitals.

The phonon linewidth γqν is defined by the integra-
tion [30,31],

γqν = 2πωqν

�BZ

∑
ij

∫
d3k

∣∣gij

k,qν

∣∣2
δ(εq,i − εF )δ(εk+q,j − εF ),

(2)

where εq,i and εk+q,j are eigenvalues of Kohn-Sham orbitals
at given bands and wave vectors. The spectral function can be
expressed as [30,31]

α2F (ω) = 1

2πN (εF )

∑
qν

δ(ω − ωqν)
γqν

�ωqν

, (3)

where N (εF ) is the density of states at the Fermi level. The
EPC constant λ can be determined through summation over
the first Brillouin zone or integration of the spectral function
in frequency space [30,31],

λ =
∑
qν

λqν = 2
∫

α2F (ω)

ω
dω, (4)

where the EPC constant λqν for mode ν at wave vector q is
defined by [30,31]

λqν = γqν

π�N (eF )ω2
qν

. (5)

Finally, the superconducting transition temperature Tc is
determined by the Allen-Dynes formula [30,31],

Tc = ωlog

1.2
exp

[ −1.04(1 + λ)

λ(1 − 0.62μ∗) − μ∗

]
, (6)

where μ∗ is the effective screened Coulomb repulsion constant
whose value is generally between 0.1 and 0.15 [32,33], and
ωlog is the logarithmic average frequency

ωlog = exp

[
2

λ

∫
dω

ω
α2F (ω) log ω

]
. (7)

We further use a recently developed Wannier interpolation
technique to reevaluate the EPC of Li3B4C2. In the Wan-
nier interpolation calculation, we first use the local density
approximation (LDA), combining with the norm-conserving
pseudopotentials [34,35] to calculate the Bloch states and the
phonon perturbation potentials [36]. The kinetic energy cutoff
and the charge density cutoff of the plane wave basis are chosen
to be 60 Ry and 240 Ry, respectively. The charge density of
Li3B4C2 is calculated on a 
-centered Brillouin-zone mesh of
16 × 16 × 24 points, and a Methfessel-Paxton smearing [37]
of 0.02 Ry. The phonons are calculated on a 
-centered
4 × 4 × 6 mesh, within the framework of density-functional
perturbation theory [28]. Maximally localized Wannier func-
tions [38,39] are constructed on a 4 × 4 × 6 grid of the
Brillouin zone, using the pz and hybridized σ -like orbitals
of boron and carbon atoms. Fine electron (40 × 40 × 60) and
phonon (20 × 20 × 30) grids are used to interpolate the EPC
constant with the Wannier90 and EPW codes [40,41]. Dirac δ

functions for electrons and phonons are replaced by smearing
functions with widths of 100 and 0.5 meV, respectively. The
fully relaxed lattice constants along the a and c axes, i.e.,
4.8492 Å and 3.5475 Å for Li3B4C2, are used in the Wannier
interpolation calculation.

III. RESULTS AND ANALYSIS

Li3B4C2 is a layered compound which is formed by
substituting one-third carbon with boron atoms from the semi-
conducting compound LiBC, with the remaining carbon atoms
forming a regular hexagonal lattice in each boron-carbon layer.
Figure 1 shows the crystal structure of this compound. From
the first-principles density functional calculations, we find
that the lattice constants of Li3B4C2 after full relaxation are
4.8669 Å and 3.5092 Å along the a and c axes, respectively.
The bond lengths of boron-carbon and boron-boron bonds

FIG. 1. (Color online) Crystal structure of Li3B4C2. (a) Three-
dimensional view (two unit cells). (b) Top view. The cyan, red, and
yellow balls represent lithium, boron, and carbon, respectively. The
thick black line denotes the unit cell.
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FIG. 2. (Color online) Electronic structure of Li3B4C2. (a) Band
structure. The Fermi level is set to zero. (b1)–(b4) Fermi surfaces
corresponding to the four bands labeled in (a). (b1) also contains the
high-symmetry points in the Brillouin zone in fractional coordinates,
M ( 1

2 ,0,0), K ( 1
3 , 1

3 ,0), A (0,0, 1
2 ), L ( 1

2 ,0, 1
2 ), and H ( 1

3 , 1
3 , 1

2 ). (c)
Isosurface of integrated local density of states from the Fermi level
up to 750 meV (isovalue: 3.5 e/bohr3 × 10−3).

are 1.5902 Å and 1.6887 Å, respectively. Using subscripts
b and c to represent boron and carbon atoms, we find that
the bond angles are θbcb = θbbb = 120◦, θcbc = 124.14◦, and
θcbb = 117.93◦.

Figure 2 shows the electronic band structure, Fermi surface,
and spatial distribution of integrated local density of states for
Li3B4C2. There are four energy bands crossing the Fermi level.
They form four Fermi surfaces: a small hole pocket [Fig. 2(b1)]
and a spindle-shaped hole Fermi surface [Fig. 2(b2)] around

, a hole cylinder along the 
-A direction [Fig. 2(b3)], and
a multiterminal tubelike electron Fermi surface [Fig. 2(b4)].
The integrated local density of states [Fig. 2(c)] from the Fermi
level up to 750 meV is distributed mainly around boron and
carbon atoms. This suggests that there are two-dimensional
sp2-hybridized σ -bonding bands crossing the Fermi level.

To quantify the electron-phonon interaction, we calculate
the phonon spectra and the EPC matrix elements for Li3B4C2.
Figure 3(a) shows the phonon spectrum. From our calculations,
we find that there is no imaginary frequency along the high-
symmetry lines in the Brillouin zone. It suggests that Li3B4C2

is dynamically stable [42]. Similar to the E2g mode in MgB2,
the twofold degenerate E′ phonon modes around 73 meV
have a large contribution to the electron-phonon interaction
along the 
-A line. The E′ mode is a two dimensional
bond-stretching optical mode. Its vibrational configuration

FIG. 3. (Color online) Lattice dynamics of Li3B4C2. (a) Calcu-
lated phonon dispersion curves, in which the thickness of the red
curve denotes the strength of the EPC at given wave vectors and
modes. (b),(c) The twofold degenerate E′ phonon modes along
the 
-A line near 73 meV having strong coupling with electrons.
The blue arrows and their lengths represent the directions and relative
amplitudes of these vibration modes, respectively. (d) Band structure
with frozen-in E′ mode (hollow square), compared with that of the
fully relaxed structure (solid line). The contributions of the σ -bonding
and π -bonding bands to the Kohn-Sham states at given k points and
band indices are represented by red and blue colors, respectively.

is shown schematically in Figs. 3(b) and 3(c). Figure 3(d)
shows how the band structure is changed before and after
adding a perturbation to deform the lattice structure with an
atomic displacement of 0.1 Å associated with the E′ phonon
mode. The projected weights of hybridized-sp2 orbitals and pz

orbitals are also shown in Fig. 3(d), represented by red and blue
colors, respectively. Among the four energy bands crossing the
Fermi level, two of them are σ -bonding bands and the others
are π -bonding bands. The orbital-resolved calculation further
shows that each sp2 orbital contributes almost equally to the
σ -bonding states. The E′ phonon mode breaks the degeneracy
and splits the σ bands by 1.22 eV along 
-A line. This indicates
that there is a strong coupling between the E′ phonon modes
and the σ -bonding electrons, consistent with the direct EPC
calculation shown in Fig. 3(a).

From the above results, we calculated the phonon density
of states, F (ω), and the Eliashberg spectral function, α2F (ω),
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FIG. 4. (Color online) (a) Comparison of the density of states
F (ω) of Li3B4C2 with that of MgB2. The regions of frequency for
the E′ mode in Li3B4C2 and the E2g mode in MgB2 along the

-A direction are labeled by red and blue shadows, respectively.
(b) Eliashberg spectral function α2F (ω) for Li3B4C2 and MgB2. (c)
Evaluated Tc as a function of μ∗ for Li3B4C2 and MgB2, respectively.

for Li3B4C2. The results are shown in Figs. 4(a) and 4(b) and
compared with MgB2. Our results for the phonon density of
state and the Eliashberg spectral function for MgB2 agree well
with those published by other groups [3,43], which were used
to describe the specific heat [44], tunneling [45], penetration
depth [46], and other experimental data [47]. In MgB2, the
Eliashberg spectral function is predominantly determined by
the coupling between the σ -bonding band electrons and the
bond-stretching E2g mode. This leads to a dominant single-
peak structure in α2F (ω) [Fig. 4(b)]. For the phonon density of
states of Li3B4C2 [Fig. 4(a)], besides two main peaks around
45 meV and 117 meV, there are two small peaks on the two
sides of 80 meV [see red shading in Fig. 4(a)]. In comparison
with the single-peak behavior of α2F (ω) in MgB2, α2F (ω) of
Li3B4C2 shows two main peaks, resulting from the two-peak
structure of F (ω) around 80 meV.

Knowing the Eliashberg spectral function, one can calculate
the EPC constant λ, the logarithmic average frequency ωlog,
and then the superconducting transition temperature Tc using
the Allen-Dynes equation [31]. For MgB2, we find that
λ = 0.885, in agreement with published data [3,4], but slightly
larger than the results obtained with the Wannier interpolation
technique [48–50]. The logarithmic average frequency ωlog

is 60.82 meV, consistent with the results previously pub-
lished [2,3,5,6,43,49]. The value of the effective screened
Coulomb potential μ∗ in the Allen-Dynes equation cannot be
determined by the first-principles calculations. Empirically, μ∗
takes a value between 0.10 and 0.15 [32,33]. By taking μ∗ =
0.103, we find that the superconducting transition temperature
is 39.5 K for MgB2, in agreement with the experimental
observation.

For Li3B4C2, we find that the EPC constant λ is equal to
1.114, which is about 25% larger than that of MgB2, due to
the two-peak structure in F (ω) around the energy of the E′
phonon mode in Li3B4C2. The value ωlog is found to be
57.74 meV for Li3B4C2, which is slightly lower than the
corresponding value for MgB2. Using the same μ∗, we find
that the superconducting transition temperature of Li3B4C2

is about 53.8 K, higher than the critical temperature of
MgB2. It is also higher than the superconducting transition
temperature of LiB1.1C0.9 predicted by Miao et al. using the
virtual crystal approximation (36 K) [51]. Figure 4(c) shows
the superconducting transition temperature Tc as a function
of μ∗. Tc drops almost linearly with μ∗ for both materials in
the range from 0.10 to 0.15. But for Li3B4C2 the transition
temperature Tc is still above 40 K even for μ∗ = 0.15.

In order to reduce the finite-size effect in the Brillouin zone
sampling, we have also calculated the lattice dynamics and
the EPC using the recently developed Wannier interpolation
technique [36,41] for Li3B4C2. Figure 5 shows the Eliashberg
spectral function α2F (ω) of Li3B4C2 calculated using the
Wannier interpolation. In comparison with the results of
α2F (ω) obtained by the direct calculation in the Bloch
representation, the main peak is slightly red-shifted. The sharp
peaks of α2F (ω) obtained directly in the Bloch representation
are replaced by some fine structures. The EPC constant and
ωlog computed by integration in frequency space are 1.448 and
42.13 meV, respectively. Utilizing the Allen-Dynes formula
and taking μ∗ = 0.1, the superconducting temperature Tc for
Li3B4C2 is found to be 53.9 K, in good agreement with the

FIG. 5. (Color online) Comparison of the Eliashberg spectral
functions α2F (ω) for Li3B4C2 obtained by the direct calculation in
the Bloch representation and the Wannier interpolation technique.
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result directly calculated in the Bloch representation. Thus
both methods, namely the direct calculation in the Bloch
representation and that with the Wannier interpolation, confirm
that Li3B4C2 is a strong phonon-mediated superconductor
whose Tc is higher than that of MgB2.

IV. DISCUSSION AND SUMMARY

The strong EPC in Li3B4C2 may raise the question of
associated lattice instabilities. To examine the stability of this
compound, we calculate the static formation energy and find
that it is 0.631 eV/Li lower than the energy for the correspond-
ing constituent elemental solids (i.e., body-centered cubic
lithium, graphite, and α-B12). This, together with the absence
of imaginary phonon frequency, shows that this compound
is dynamically stable. It suggests that this material can be
synthesized in the laboratory from the constituent elemental
solids. Considering the fact that high-quality single crystals of
LiBC are available, we believe that it is highly feasible to grow
high quality Li3B4C2 films on a LiBC substrate by molecular
beam epitaxy (MBE). The tensile stress between the film and
the substrate can stabilize the crystal structure of Li3B4C2 even
if it has a lattice instability.

In summary, we propose that there is high possibility to find
a strong electron-phonon coupled high-temperature supercon-
ductor if one can lift σ bonding or other strong chemical
bonding band up to the Fermi level. Based on this picture
and first-principles calculations, we predict that stoichiometric
Li3B4C2 is a phonon-mediated high-Tc superconductor with a
Tc above 50 K. The strong electron-phonon coupling in this
material results from the interaction between the σ -bonding
band electrons and the bond-stretching E′ phonons.
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APPENDIX A: ELECTRON-PHONON
COUPLING OF Li2B3C

Li2B3C is a layered material, which is obtained by substi-
tuting half of the boron-carbon layers by pure boron layers
from compound LiBC. The crystal structure of Li2B3C is
shown in Fig. 6. From the first-principles calculations, we find
that Li2B3C is inherently a metal with two σ -bonding bands
crossing the Fermi level. As expected, the coupling of these
σ -bonding bands with optical phonons is very strong, which
can drive this material into a high-Tc superconducting state.

The lattice parameters we obtained from the first-principles
calculations for LiBC along a and c axes are 2.7355 Å
and 7.0173 Å, respectively, which agree accurately with the
experimental data [17]. Since the radius of the boron atom is
larger than that of carbon, the lattice parameters of Li2B3C
are slightly enlarged in comparison with those of LiBC.
The lattice parameters after full relaxation for Li2B3C are
2.8305 Å and 7.1082 Å along the a and c axes, respectively.

FIG. 6. (Color online) Crystal structure of Li2B3C, containing
pure honeycomb boron layers. (a) Three-dimensional view. (b) Top
view. The cyan, red, and yellow balls represent lithium, boron, and
carbon, respectively. The black line denotes the unit cell.

Due to the absence of inversion symmetry between boron-
carbon and boron-boron layers in Li2B3C, lithium atoms move
slightly towards the honeycomb boron-boron layers.

Figure 7 shows the electronic band structure for Li2B3C. In
both boron-carbon and pure boron layers, the hybridization of
atomic orbitals generates two different kinds of bonds, one is
the sp2 hybridized σ bond, and the other is the pz overlapped
π bond. There are four σ -bonding bands around the Fermi
level. These bands, represented by the blue and red lines in
Fig. 7(a), are highly two-dimensional and characterized by
the dispersionless energy-momentum curves along the kz (i.e.,

-A) direction. Two of them cross the Fermi level and each
exhibits a cylindrical-like Fermi surface around the zone center
[Fig. 7(c)]. These two bands are formed mainly by the σ

electrons in the honeycomb boron layers. The other two σ -
bonding bands, which are about 0.4 eV below the Fermi energy,
are mainly contributed by σ electrons in the boron-carbon
layers and confirmed by the result of partial density of states
shown in Fig. 7(d). In comparison with the boron-carbon layer,
the pure boron layer has one less electron in every unit cell
and can be regarded as an intrinsically hole-doped subsystem.
That is the reason why only the σ -bonding band from the pure
boron layer can appear on the Fermi level.

Besides the two σ -bonding bands, there are also two π -
bonding bands crossing the Fermi level. They show strong
dispersion along the kz direction. One of them shows a warped
hole Fermi surface sheet around the zone boundary and a Dirac
conelike band dispersion at H about 1 eV above the Fermi
level. The other π -bonding band shows six hole pocketlike
Fermi surface sheets at the zone corners [Fig. 7(c)]. Similar to
the case of MgB2, the energy overlap between σ -bonding and
π -bonding bands at the Fermi level is caused by the attraction
of cations [2,52]. The decrease in the density of states between
0.5 eV and 1.3 eV [Fig. 7(d)] originates in the linear dispersion
of Dirac conelike bands. In comparison with the σ and π

electrons, the contribution to the density of states near the
Fermi level from Li-2s and Li-2p orbitals is negligibly small.

To quantify the EPC properties, we calculate the phonon
spectra and the Eliashberg spectral function. Figure 8(a) shows
the phonon dispersion curves along the high-symmetry lines
in the Brillouin zone and the phonon density of states. In
comparison with the E2g mode in MgB2, we find that there are
basically four phonon modes, which account for the majority
of the EPC in Li2B3C. They are the A′

1 mode at 
, the E′
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FIG. 7. (Color online) Electronic structures of Li2B3C. (a) Band
structure, where the thicknesses of blue and red lines are proportional
to the weights of the σ bonds from the boron-carbon and pure
boron layers, respectively. (b) High-symmetry points in the Brillouin
zone. (c) Fermi surfaces. (d) Orbital-resolved partial density of states
(PDOS). BB and BC represent pure boron and boron-carbon layers,
respectively.

mode along the 
-A line, the B1 mode at M , and the A1 mode
at L. A graphical representation of these modes is shown in
Figs. 8(b)–8(d). The E′ mode is a twofold degenerate bond-
stretching optical mode, with intralayer movements of boron
atoms in the boron layer, which is analogous to the E2g mode
in MgB2. The A′

1 mode represents an opposite displacement
between two Li layers towards the honeycomb boron-carbon
layer. The B1 and A1 modes are two interlayer vibrations of
boron atoms in the boron layer. The magnitudes of the EPC
constants at the high-symmetry points for these phonon modes
are shown in Fig. 8(a) by the thickness of the red curves.

From the above results, we calculate the Eliashberg spectral
function α2F (ω) for Li2B3C. The multipeak behavior in
α2F (ω) is a natural reflection of the existence of multiple
phonon modes that couple strongly with electrons [Fig. 8(e)].
The two main peaks in α2F (ω) around 55 meV and 115 meV
correspond to the couplings of electrons with the A′

1 and E′
phonon modes, respectively. The EPC constant λ is equal to

(a)

(b)

(e)

(c) (d)

FIG. 8. (Color online) Calculated lattice dynamics and EPC for
Li2B3C. (a) Phonon dispersion curves. The thicknesses of the red lines
denote the strength of EPC constant for a given wave vector and mode
λqν . A′

1, B1, A1, and E′ are the phonon modes which have relatively
large EPC at the high-symmetry points. Vibrational configurations
for the twofold degenerate E′ mode at 
 with ω � 115 meV (b),
the A′

1 mode at 
 with ω � 55 meV (c), the B1 mode at M , or the
A1 mode at L with ω � 15 meV (d), respectively. The blue arrows
represent the directions of vibrations, and their lengths denote the
relative amplitudes. (e) Phonon density of states F (ω) and Eliashberg
spectral function α2F (ω).

1.566, about 77% higher than the corresponding value for
MgB2. But the value of ωlog is 40.26 meV, about 34% smaller
than that of MgB2. Taking μ∗ = 0.103 as in the main text, we
find Tc = 54.9 K for Li2B3C.

APPENDIX B: FORMATION ENERGIES

The EPC constant λ in Li2B3C is larger than that of
Li3B4C2 presented in the main text, but the excess boron
atoms are not uniformly distributed in boron-carbon layers in
Li2B3C. Thus the tensile stress in Li2B3C is not well balanced,
unlike in Li3B4C2. In order to determine which compound is
more stable, we calculate the formation energies for Li2B3C
(abbreviated as E231) and Li3B4C2 (abbreviated as E342).

Here the formation energy is defined as

Etot − (ELi + (1 + x)EB + (1 − x)EC), (B1)
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where ELi, EB, and EC are respectively the energy per
atom for elemental solids of body-centered cubic lithium,
graphite, and α-B12 [53]. Etot is the total energy per lithium of
LiB1+xC1−x , with x equal to 1

2 and 1
3 for Li2B3C and Li3B4C2,

respectively. We find that the formation energy of Li2B3C
is E231 = −0.429 eV/Li and the corresponding energy for
Li3B4C2 is E342 = −0.631 eV/Li. This means that Li3B4C2

is energetically more stable than Li2B3C.

The boron-carbon layers in Li3B4C2 presented in the main
text take AA-stacking patterns along the z axis. We have
also calculated the total energies of various AB-stacking
configurations of boron-carbon layers for Li3B4C2. It is
found that the energy difference between AA stacking and
the most stable AB-stacking patterns is 0.002 eV/Li, which
indicates that the influence of different stacking patterns on
the electronic structures is negligible.
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