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Interaction quench in the Holstein model: Thermalization crossover
from electron- to phonon-dominated relaxation
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We study the relaxation of the Holstein model after a sudden switch-on of the interaction by means of the
nonequilibrium dynamical mean field theory, with the self-consistent Migdal approximation as an impurity solver.
We show that there exists a qualitative change in the thermalization dynamics as the interaction is varied in the
weak-coupling regime. On the weaker interaction side of this crossover, the phonon oscillations are damped more
rapidly than the electron thermalization time scale, as determined from the relaxation of the electron momentum
distribution function. On the stronger interaction side, the relaxation of the electrons becomes faster than the
phonon damping. In this regime, despite long-lived phonon oscillations, a thermalized momentum distribution is
realized temporarily. The origin of the “thermalization crossover” found here is traced back to different behaviors
of the electron and phonon self-energies as a function of the electron-phonon coupling. In addition, the importance
of the phonon dynamics is demonstrated by comparing the self-consistent Migdal results with those obtained
with a simpler Hartree-Fock impurity solver that neglects the phonon self-energy. The latter scheme does not
properly describe the evolution and thermalization of isolated electron-phonon systems.
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I. INTRODUCTION

The nonequilibrium dynamics of correlated lattice systems
has recently been investigated intensively in various contexts
[1]. Interaction-quench studies [2–16] have been motivated by
cold-atom experiments, where the interaction or hopping can
be tuned by the Feshbach resonance or by changing the depth of
the optical lattice potential. In condensed-matter experiments,
on the other hand, one can drive correlated electron systems
with strong lasers [17–25]. These perturbations may induce
phase transitions, e.g., from insulating to metallic states
[17–20] or in some cases metastable phases with interesting
properties [21,22]. In real materials, the electron-phonon
coupling can play a crucial role in the nonequilibrium
dynamics [23,24], and indeed many pump-probe experiments
exhibit clear signatures of phonon oscillations [18,25]. From a
theoretical point of view, the interplay of electronic and lattice
degrees of freedom in out-of-equilibrium situations is still
far from fully understood. Conventionally, the experimental
results are interpreted in terms of a phenomenological two-
temperature model [26], which is based on the Boltzmann
equation and the assumption that the electrons and phonons
are in thermal equilibrium with respective, time-dependent
temperatures. The Boltzmann equation itself has also been
studied numerically [27] and analytically [28].

On the other hand, various techniques have been developed
and used in recent years to study nonequilibrium electron-
phonon systems on microscopic levels beyond the Boltzmann
equation (gradient approximation). In Refs. [29–31], the
nonequilibrium dynamics of one or two polarons in the Hol-
stein model was investigated with a time-dependent exact diag-
onalization method. As for many-electron problems, previous
works have investigated systems with classical phonons [32]
or quantum phonons [33] in one dimension. Many-electron
problems in two-dimensional systems have been studied with
an exact diagonalization method for the Holstein-Hubbard
model [34] or with a weak-coupling perturbation theory for

the Holstein model [35–37]. On the other hand, the dynamical
mean field theory (DMFT) [38], which becomes exact in
infinite spatial dimensions, has been used to study the interplay
of electrons and phonons in the Mott-insulating phase. These
simulations, which employ a strong-coupling impurity solver
[39,40], show that the feedback of the lattice dynamics on
the electrons can lead to significant changes in the spectral
function and to qualitatively different relaxation pathways. We
also notice that this method has recently been applied to the
single-electron problem in the nonequilibrium Holstein model
[41].

Despite these advances, studies treating the dynamics of
quantum phonons are so far mostly limited to systems in or
near the Mott-insulating phase [33,34,39,40]. Hence it remains
to be clarified how an electron-phonon system thermalizes in
weakly or moderately correlated metallic systems and how
the phonon dynamics affects the relaxation process beyond
the conventional analysis based on the Boltzmann equation
[26–28]. In addition, various interesting questions that have
been addressed in purely electronic systems (such as the
Hubbard model) remain to be answered for electron systems
coupled to phonons. For example, one may ask whether or
not the so-called prethermalization phenomena [4,5,7,42] and
dynamical phase transitions [5,7,9,43,44] occur in electron-
phonon systems. Obtaining insights into the effects of the
phonon dynamics is also important for establishing suitable
approximate treatments and their limitations.

To address the above issues, we focus in this paper on
the simplest possible model for an electron-phonon system,
i.e., the Holstein model, which contains the coupling to local
(Einstein) phonons with neither Coulomb interactions nor
a coupling to some phenomenological heat bath. We also
consider the simplest possible kind of perturbation; i.e., we
drive the system out of equilibrium by a sudden quench
of the electron-phonon coupling. Such a quench may be
realized in cold-atom systems in optical lattices [45–48], and
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it is expected to be closely related to the phonon frequency
quench, which has been studied experimentally in bismuth
[25]. Understanding the dynamics in this simple setup will
provide a basis for further studies more complicated or
realistic situations, e.g., photoexcited systems and models with
Coulomb interaction or with acoustic phonons.

The Holstein model is solved with the nonequilibrium
extension of DMFT [1,49], which is exact in the limit of
infinite spatial dimensions. Therefore, our results are relevant
to systems with high spatial dimensions or large coordination
numbers. As an impurity solver for DMFT, we employ the self-
consistent Migdal approximation. While this approximation
neglects the vertex correction in the self-energy and is based
on the assumption that the phonon frequency and the electron-
phonon coupling are small, this type of approximation has been
successfully used to describe conventional superconductors
in the correlated regime, and has also been justified with
numerical studies based on the DMFT framework [50].

An important point to note here is that the term “Migdal ap-
proximation” is used for two distinct types of approximations
in the literature on the Holstein model: One is the unrenor-
malized Migdal approximation [51], where the noninteracting
phonon propagator is used to express the effective interaction
among the electrons. In other words, this approximation does
not consider the phonon dynamics. This type of approximation
has been employed in recent studies of the dynamics of the
Holstein model driven by strong laser fields [35–37]. The other
is the self-consistent Migdal approximation [50,52–56], where
the dressed phonon propagator is used and thus the phonon
dynamics affects the electron self-energy and vice versa. In the
following, we call the former approximation the Hartree-Fock
(HF) approximation and the latter the Migdal approximation;
see Fig. 1. We shall show that the Migdal approximation is
more reliable than HF, by benchmarking equilibrium results
against DMFT data obtained with a continuous-time quantum
Monte Carlo (CT-QMC) impurity solver [57]. This is why we
opt for the self-consistent Migdal approximation to discuss

FIG. 1. (Color online) Schematic pictures of the self-consistent
Migdal approximation (a) and the Hartree-Fock approximation (b).
G denotes the dressed electron Green’s function and D the dressed
phonon Green’s function, while D0 is the bare (equilibrium) phonon
propagator. � and � are the electron and phonon self-energies,
respectively.

the dynamics of the isolated Holstein model after a sudden
switch-on of the electron-phonon coupling.

The main finding of this study is that within the weak-
coupling regime there exists a crossover between two different
relaxation processes: in the weaker electron-phonon coupling
regime, the phonon oscillations are damped faster than the
thermalization time of the electrons, which contrasts with
the stronger interaction regime where the relaxation of the
phonons becomes slower than the electron relaxation. We
further demonstrate the importance of treating phonons dy-
namically by comparing the relaxation dynamics in the Migdal
and HF approximations. It is shown that the phonon dynamics
(i.e., the phonon self-energy) leads to qualitative changes in
the relaxation dynamics.

This paper is organized as follows. In Sec. II, we introduce
the Holstein model and discuss the nonequilibrium DMFT
formalism along with the Migdal and HF impurity solvers for
this model. In Sec. III, we first test the reliability of the Migdal
and HF approximations in equilibrium. Then we explore the
dynamics of the Holstein model after an interaction quench
from the noninteracting state at zero temperature. We also
show the difference between the Migdal and HF impurity
solvers to discuss the importance of the phonon dynamics
for a suitable description of isolated electron-phonon systems.
Section IV provides a conclusion and outlook.

II. MODEL AND FORMALISM

A. Nonequilibrium DMFT for the Holstein model

The Hamiltonian for the Holstein model is

H(t) = −v
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) − μ

∑
i

ni + ω0

∑
i

a
†
i ai

+ g(t)
∑

i

(a†
i + ai)(ni,↑ + ni,↓ − α), (1)

where c
†
i,σ is the creation operator for an electron with spin

σ on site i, v is the hopping parameter, a† is the creation
operator for a phonon with frequency ω0, g(t) is the (here
time-dependent) electron-phonon interaction strength, and α

is a constant that can be chosen arbitrarily, for which we take
here α = 〈n↑ + n↓〉 so that the Hartree term in the self-energy
vanishes. We also note that in the antiadiabatic limit (ω0 →
∞ with λ ≡ 2g2/ω0 fixed) the Holstein model becomes the
attractive Hubbard model with a nonretarded interaction −λ.
It is also useful to introduce the position (X) and momentum
(P ) operators for the phonons,

Xi = (a†
i + ai)/

√
2, (2)

Pi = i(a†
i − ai)/

√
2. (3)

Throughout the paper, we assume the absence of long-range
orders and focus on half-filling. We drive the system out
of equilibrium by changing the electron-phonon coupling
constant g from 0 to a nonzero value gf at t = 0+. To solve the
problem, we employ the nonequilibrium DMFT [1,49]. The
DMFT formalism assumes a spatially local self-energy, and
maps the lattice problem onto a quantum impurity model in a
self-consistent manner. In order to describe the time evolution
after a quench, one has to solve the DMFT equations on
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the L-shaped Kadanoff-Baym contour C, which runs from
t = 0 up to the maximum simulation time tmax along the
real-time axis, back to t = 0, and then proceeds to −iβ

along the imaginary-time axis, where β = 1/T is the inverse
temperature of the initial equilibrium state. We define the
electron Green’s function Gi,j,σ (t,t ′) and the local phonon
Green’s function D(t,t ′) on this contour as

Gi,j,σ (t,t ′) = −i〈TCci,σ (t)c†j,σ (t ′)〉, (4)

D(t,t ′) = −2i〈TCXi(t)Xi(t
′)〉, (5)

where TC is the contour-ordering operator.
The effective impurity action for the Holstein model is

Simp = i

∫
C
dtdt ′

∑
σ

d†
σ (t)G−1

0,σ (t,t ′)dσ (t ′)

+ i

∫
C
dta†(t)(i∂t − ω0)a(t)

− i

∫
C
dtg(t)[a†(t) + a(t)][n↑(t) + n↓(t) − α], (6)

where the integrals run along the contour C, d†
σ is the creation

operator for electrons at the impurity site, and G0,σ is the Weiss
Green’s function for the impurity problem, which is related to
the hybridization function 
σ (t,t ′) by

G−1
0,σ (t,t ′) = (i∂t + μ)δC(t,t ′) − 
σ (t,t ′), (7)

where δC is the delta function on C. We can simplify the form
of the action by expressing a and a† in terms of X and P and
then tracing out P . This yields

S ′
imp = i

∫
C
dtdt ′

∑
σ

d†
σ (t)G−1

0,σ (t,t ′)dσ (t ′)

+ i

∫
C
dtdt ′X(t)D−1

0 (t,t ′)X(t ′)

− i
√

2
∫
C
dtg(t)X(t)[n↑(t) + n↓(t) − α], (8)

where

D−1
0 (t,t ′) = −∂2

t − ω2
0

2ω0
δC(t,t ′) (9)

is the inverse of the bare phonon Green’s function. In the
solution of the DMFT equations, it is thus enough to consider
the Green’s function (5) for the phonons.

Since the electrons interact with each other through the
phonons and vice versa, to obtain the interacting Green’s
functions, we introduce the self-energies �σ (t,t ′) and �(t,t ′)
for the electrons and phonons, respectively. These functions
satisfy the Dyson equations,

Gimp,σ (t,t ′) = G0,σ (t,t ′) + [G0,σ ∗ �σ ∗ Gimp,σ ](t,t ′), (10)

D(t,t ′) = D0(t,t ′) + [D0 ∗ � ∗ D](t,t ′), (11)

where ∗ denotes the convolution on the contour
C. Here, the bare phonon Green’s function can be

expressed as

D0(t,t ′) = −i[θC(t,t ′) + fB(ω0)] exp

(
−iω0

∫ t

C,t ′
dt1

)

− i[θC(t ′,t) + fB(ω0)] exp

(
−iω0

∫ t ′

C,t

dt1

)
, (12)

where θC is the Heaviside function on C, and fB(ω0) = (eβω0 −
1)−1 is the Bose distribution function.

The Weiss Green’s function G0 (or hybridization function

) is determined self-consistently in such a way that the
electron Green’s function for the impurity (Gimp) becomes
identical to the local electron Green’s function of the lattice
Gloc ≡ Gi,i,σ , where the self-energy of the lattice system is
identified with that of the effective impurity problem (self-
consistency condition). Here, we omit the site index in Gloc

and also in D, assuming a homogeneous state. In this paper,
we consider the Bethe lattice with infinite coordination number
(z → ∞), where the self-consistency condition simplifies to
[1,38]


σ (t,t ′) = v2
∗Gloc,σ (t,t ′) (13)

with v = v∗/
√

z. In this case, the density of states is semiel-
liptic, 1

2πv2∗

√
4v2∗ − ε2, and we set v∗ = 1 in the following.

Especially, the bandwidth W is 4.

B. Observables

Kinetic energy. By comparing the Dyson equations for the
lattice and for the effective impurity problem, we obtain the
expression for the electron kinetic energy,

Ekin(t) ≡ −v

N

∑
〈i,j〉,σ

[〈c†i,σ (t)cj,σ (t)〉 + H.c.]

= −i

N

∑
i,σ

[
i,σ ∗ Gi,i,σ ]<(t,t), (14)

where N is the number of lattice sites, and < denotes lesser
components.

Electron-phonon correlation. From the equation of motion,
∂tci,σ (t) = i[H(t),ci,σ (t)], we obtain

i∂tGi,i,σ (t,t ′)|t ′=t+0+
C

= iv
∑
j nn i

〈c†i,σ (t)cj,σ (t)〉 − iμ〈c†i,σ (t)ci,σ (t)〉

+ i
√

2g(t)〈X(t)c†i,σ (t)ci,σ (t)〉, (15)

where
∑

j nn i is the summation over the nearest neighbors of
site i. We now compare Eq. (15) with the Dyson equation (10)
for the impurity problem and use the expression (14) for the
kinetic energy to obtain

i
√

2g(t)〈X(t)c†i,σ (t)ci,σ (t)〉 = [�i,σ ∗ Gi,i,σ ]<(t,t). (16)

Phonon density. The density of phonons can be expressed
in terms of the X and P as

〈a†(t)a(t)〉 = 1
2 [〈X(t)X(t)〉 + 〈P (t)P (t)〉] − 1

2 , (17)
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Φ[G, D] =

Π =

Σ = +

(a)

(b)

FIG. 2. (a) The electron self-energy (�) and phonon self-energy
(�) diagrams in the self-consistent Migdal approximation. Here,
bold straight lines represent the dressed electron Green’s functions,
and bold wiggly lines the dressed phonon Green’s functions. The
tadpole diagram should be evaluated as −iGimp(t,t+0+

C ) − α/2.
(b) The Luttinger-Ward functional � for the self-consistent Migdal
approximation.

where 〈X(t)X(t)〉 is obtained from D(t,t), while 〈P (t)P (t)〉
is calculated from a second derivative of D(t,t ′), as explained
in the Appendix.

Total energy. The total energy per site is given by

Etot(t) = Ekin(t) − μ
1

N

∑
i

〈ni〉 + 1

N
ω0

∑
i

〈a†
i (t)ai(t)〉

+
√

2

N

∑
i

g(t)

[∑
σ

〈Xi(t)c
†
i,σ (t)ci,σ (t)〉 − α〈Xi(t)〉

]
.

(18)

C. Impurity solvers

The most demanding step in the DMFT self-consistency
loop is the solution of the effective impurity problem, Eq. (8).
A numerically exact solution could in principle be obtained
with the real-time CT-QMC method, as in the Hubbard model
[5,7,58]. However, QMC suffers from a sign (phase) problem
when implemented on the real axis, which will make it very
difficult to reach the relatively long times required to simulate
phonon dynamics. Therefore, we employ here two different
approximate diagrammatic impurity solvers (weak-coupling
approximations):

(1) (Self-consistent) Migdal approximation. The Feynman
diagrams for the electron and phonon self-energies in the (self-
consistent) Migdal approximation are shown in Fig. 2(a). The
corresponding formulas read

�(t,t ′) = −δC(t,t ′)g(t)
∫
C
dt1[α + 2iGimp(t1,t1+0+

C )]

×D0(t1,t)g(t1) + iD(t,t ′)Gimp(t,t ′)g(t)g(t ′), (19)

�(t,t ′) = −i2g(t)g(t ′)Gimp(t,t ′)Gimp(t ′,t). (20)

This approximation has been used to study the Holstein model
in equilibrium, and its accuracy has been discussed in a number
of papers [50,52–56]. As long as g is not close to the critical
value gc for the transition to the bipolaronic insulating phase
and ω0 is small compared to the electron bandwidth, it provides
a qualitatively good description [50,55]. Since the self-energies
of the electrons and phonons involve dressed propagators [as
sketched in Fig. 1(a)], we can take account of the interplay
between the electrons and phonons in the dynamics. With the
choice of α = 〈n↑ + n↓〉 in Eq. (1) the Hartree term vanishes,
and we can define a Luttinger-Ward functional �[G,D] in this
approximation as displayed in Fig. 2(b). Hence the Migdal
approximation is a conserving one.

(2) Hartree-Fock approximation. As we mentioned in the
introduction, the Hartree-Fock (HF) approximation is also
sometimes called the (unrenormalized) Migdal approximation
[51]. In this approximation, the electron self-energy is given by

�(t,t ′) = −δc(t,t ′)g(t)
∫

c

dt1[α + 2iGimp(t1,t1+0+
c )]

×D0(t1,t)g(t1) + iD0(t,t ′)Gimp(t,t ′)g(t)g(t ′). (21)

The Feynman diagrams for the self-energy have the same
structure as in Fig. 2(a), but the dressed phonon propagator
is replaced with the bare equilibrium propagator. Thus, in the
HF approximation, we ignore the phonon self-energy, which
means there is no feedback from the electrons to the phonons
[Fig. 1(b)]. Hence we cannot extract the dynamics for the
phonons from this scheme. Also, the HF approximation
cannot be derived from a Luttinger-Ward functional, and is
thus not conserving.

The HF approximation has been used to study the equi-
librium states [51] and nonequilibrium dynamics [37] of the
Holstein model. In addition, the HF self-energy for small g

has been added in some DMFT studies to describe the effect
of a bosonic heat bath on the electrons [59,60]. The results in
Sec. III C will confirm that the phonon effectively acts as a
heat bath within the HF approximation.

III. RESULTS

In what follows, we focus on the case of ω0 = 0.7 (<W =
4) and half filling. We have checked that our discussion and
the results are also applicable to smaller phonon frequencies
such as ω0 = 0.4. We consider the weak-coupling regime,
i.e., systems with coupling g smaller enough than the critical
coupling gc for the bipolaronic transition (for which CT-QMC
calculations give values 0.8 � gc � 0.85 for 10 < β < 40),
but still with significant electron correlations.

A. Equilibrium

In this section, we benchmark the reliability of the Migdal
and HF approximations as impurity solvers for DMFT, and
clarify which properties are correctly captured by these
methods. To this end, we consider equilibrium properties and
first discuss the spectral functions computed with the two
approximations. The spectral functions are defined by

ρph(ω) = −ImDR(ω)/π, (22)

ρe(ω) = −ImGR
loc(ω)/π (23)
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FIG. 3. (Color online) (a), (c) The phonon spectral functions
ρph(ω) and (b), (d) the electron spectral functions ρe(ω) computed
with the self-consistent Migdal approximation at half filling with
ω0 = 0.7 for various values of g and T = 1/β. (e), (f) are corre-
sponding results in the HF approximation at half filling with g =
0.65. Vertical lines in each panel show the bare phonon frequency,
|ω| = ω0.

for phonons and electrons, respectively, and the superscript
R denotes retarded components. We obtain these spectral
functions by calculating the equilibrium propagators on the
real-time axis and performing Fourier transformations.

In Figs. 3(a) and 3(c), we plot the phonon spectral
functions ρph(ω) calculated with the Migdal approximation
at half filling for ω0 = 0.7 and indicated values of T = 1/β

and g. We find a single peak at a renormalized phonon
frequency, which we call ωr

0, which shifts from ω = ω0

(vertical lines) with increasing electron-phonon coupling g.
This result is consistent with previous T = 0 calculations
based on the numerical renormalization group [53,55] and
the Migdal theory [56]. As the temperature is increased, the
phonon frequency becomes less renormalized, which indicates
that the electron-phonon correlations are weaker at higher
temperatures. The temperature dependence becomes more
significant for larger g. In the HF approximation, by contrast,
ρph(ω) has a delta-function peak at ω = ±ω0 [Fig. 3(d)], since
the phonons are assumed to have no self-energy.

The electron spectral functions ρe(ω) are shown in
Figs. 3(b) and 3(d) for the Migdal approximation and in
Fig. 3(f) for the HF approximation. In both cases, there
emerges a peak in the spectrum in the energy interval
|ω| � ω0 as the temperature is lowered. This peak represents
quasiparticles (polarons) and becomes more pronounced for
stronger g. In the Migdal approximation, the peak becomes
narrower with increasing g, which reflects the renormalization
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FIG. 4. (Color online) The electron self-energies on the Matsub-
ara axis calculated in DMFT with the Migdal approximation, HF
approximation, and CT-QMC impurity solvers for ω0 = 0.7 and
indicated values of g and β.

of the phonon frequency (ωr
0), while in the HF approximation

the width is determined by the bare phonon frequency ω0.
In order to estimate the reliability of the Migdal and

HF approximations, we show the corresponding self-energies
on the Matsubara axis in Fig. 4. We compare them with
the result computed using CT-QMC [57], which, being
exact within statistical errors, serves as a reference. Clearly,
the Migdal approximation is much closer to the CT-QMC
results in the parameter regime considered here, where the
HF approximation underestimates the electron self-energy,
while the Migdal approximation slightly overestimates it. The
quantitative difference becomes clearer as the interaction g is
increased. We conclude from these tests that the self-consistent
Migdal approximation is more reliable and accurate than HF
in a wide parameter regime when we are not too close to
the bipolaronic phase boundary. We therefore expect that the
Migdal approximation also provides a better description of the
nonequilibrium dynamics than the HF approximation.

B. Interaction quench: Results of DMFT+Migdal
approximation

In this section, we study the time evolution of the Holstein
model after an interaction quench of the electron-phonon
coupling g = 0 → gf at t = 0+ using the self-consistent
Migdal approximation as an impurity solver. The system is
initially noninteracting and at equilibrium with temperature
T = 0. Although the length of the imaginary branch of the
contour C is infinite in this case (β = ∞), we can still treat the
noninteracting initial state numerically, since the retarded (R)
and lesser (<) components are decoupled from the Matsubara
(M) and left-mixing (¬) components in the Dyson equations
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because �M,�¬,�M,�¬ = 0. Similar quench problems have
been studied for the Hubbard model with DMFT+QMC
[5,7]. With this initial condition, the momentum distribution
n(εk,t) = −iG<

k (t,t) exhibits a discontinuous jump at ε = 0
(i.e., the Fermi surface) for short times, while it is expected
to become a smooth function once the system has thermalized
at some nonzero temperature. The height of the jump 
n(t)
is thus a useful quantity that allows one to keep track of
the thermalization process and to measure how much n(ε,t)
deviates from the thermal distribution. In the following, we
compare the relaxation of local observables to that of n(ε,t).

1. Local observables

In Fig. 5, we show the time evolution of the kinetic energy,
the correlation between the phonon displacement and the
density of electrons

√
2〈X(n↑ + n↓)〉, the phonon density

〈a†a〉, and the variance of the phonon displacement 2〈XX〉.
All these local observables show coherent oscillations with
twice the renormalized phonon frequency, 2ωr

0. This can be
explained as follows. First, let us suppose that each local
phonon oscillates as X(t) ∼ cos(ωr

0t). Since the interaction
quench does not discriminate the direction of the lattice
distortion (X > 0 or X < 0), the statistical distribution for
the lattice displacement, F (X,t), should be even in X, and
oscillating with a period π/ωr

0. Due to the particle-hole
symmetry (c ↔ c†,X ↔ −X), this in fact exactly holds in
our case and explains the oscillation of 2〈XX〉 with frequency
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FIG. 5. (Color online) Temporal evolution of local quantities
after an interaction quench from g = 0 to indicated values of gf

at T = 0 with ω0 = 0.7: (a) Ekin, (b)
√

2〈X(n↑ + n↓)〉, (c) 〈a†a〉, and
(d) 2〈XX〉. Dashed lines in each panel indicate the expected thermal
values for each value of gf .

2ωr
0. Provided that the phonon dynamics affects the electronic

states through F (X), it is natural to also expect oscillations of
the other quantities with frequency 2ωr

0.
As time evolves, the oscillations are damped and the

amplitude of the oscillations becomes very small after t = 60
in all the cases shown here. On the other hand, one expects
that the system thermalizes, in the long-time limit, in an
equilibrium state with temperature Tth, which is defined by
the relation

Etot(t > 0) = Tre−Hf /TthHf

Tre−Hf /Tth
, (24)

where Hf = H(t > 0). We note that the total energy is
conserved after the quench, since the Hamiltonian is time-
independent. The resultant Tth, which increases with gf , is
shown in the inset of Fig. 6(d). If the system thermalizes,
expectation values of observables should approach those of
the equilibrium state with Tth. For example, the thermal kinetic
energy should approach

Ekin,th = −v

N

∑
〈i,j〉,σ

Tre−Hf /Tth (c†i,σ cj,σ + H.c.)

Tre−Hf /Tth
. (25)

The dashed lines in Fig. 5 indicate the estimated thermal values
at Tth for each observable. It turns out that once the oscillations
are well damped (t � 60), the local observables are already
very close to the thermal values. However, we have to note
that this does not necessarily mean that the system is fully
thermalized, as we will discuss in the next section.

2. Momentum distribution function

In order to examine whether the system is really close to
a thermalized state after the damping of the oscillations in
the above local quantities, let us look at the evolution of the
momentum distribution function for the electrons n(εk,t) =
−iG<

k (t,t) [Figs. 6(a)–6(c)] and its jump 
n(t) at ε = 0
[Fig. 6(d)]. We start from T = 0, g = 0, so that 
n(0) = 1.
The jump does not immediately disappear after the quench,
but decreases gradually. As we increase the interaction, 
n(t)
vanishes faster, as in the case of the Hubbard model [5,7].
The main qualitative difference is that 
n(t) oscillates in the
present case of the Holstein model.

Now we are in a position to focus on the relation between
the dynamics of 
n(t) and that of the local observables. A key
finding is that one can distinguish two qualitatively different
types of relaxation behavior in the Holstein model in the
weak-coupling regime. The first type of relaxation dynamics
is observed for couplings gf � 0.5, where the long-time
relaxation process is controlled by the electrons. At gf = 0.35,
for instance, the phonon oscillation is damped and the local
(momentum-integrated) quantities are essentially thermalized
at t = 60 (Fig. 5), while momentum-resolved observables for
the electrons, exemplified by 
n(t), are not thermalized [see
Fig. 6(d)]. In fact, n(ε,t) is still far from a thermal distribution
at the longest accessible times. While the height of the jump
does not exhibit a plateau-like structure, as is the case in
the Hubbard model [5,7], the observed behavior may still
be regarded as a kind of prethermalization phenomenon in
that local (momentum-integrated) quantities thermalize fast,
while momentum-dependent quantities, such as n(ε,t), remain

045128-6



INTERACTION QUENCH IN THE HOLSTEIN MODEL: . . . PHYSICAL REVIEW B 91, 045128 (2015)

Δ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60
t

n(
t)

gf=(d)
0.35
0.4
0.5
0.6
0.65
0.7

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0.2  0.4  0.6  0.8
gf

T t
h

 0  5  10  15  20

-2
-1

 0
 1

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) gf=0.35

ε

t

n(
ε,
t)

 0  5  10  15  20

-2
-1

 0
 1

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) gf=0.65

ε

t

n(
ε,
t)

 0  5  10  15  20

-2
-1

 0
 1

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) gf=0.5

ε

t

n(
ε,
t)

FIG. 6. (Color online) (a)–(c) Temporal evolution of the momentum distribution, n(ε,t), for ω0 = 0.7 after quenches to various gf . Blue
regions indicate the jump in the momentum distribution around ε = 0. (d) Temporal evolution of the jump, 
n(t), in the momentum distribution
for various values of gf . The inset shows Tth against gf .

clearly nonthermal. These key observations characterize the
relaxation behavior of the Holstein model in the sufficiently
weak-coupling regime.

In Figs. 7(a) and 7(c), we take a closer look at the relaxation
of the momentum distribution n(ε,t) for gf = 0.35. Figure 7(a)
shows n(ε,t) for various values of t , while Fig. 7(c) shows the
evolution of n(ε,t) for various values of ε. The relaxation time
strongly depends on the energy ε: When ε � ωr

0 the electron
relaxation is fast, while for ε � ωr

0 the relaxation is slow; see
Fig. 7(a). This behavior is similar to the HF results discussed
in Ref. [36].

A second type of relaxation behavior appears for stronger
couplings (gf � 0.5, but still within the weak-coupling
regime), where the phonons turn out to dominate the long-
time dynamics. For example, at gf = 0.65, 
n(t) vanishes
[Fig. 6(d)] before the oscillations of the momentum-integrated
observables are damped (Fig. 5). Once these oscillations are
fully damped, n(ε,t) also becomes equal to the thermal value.
We have to note that the disappearance of the jump in 
n(t)
by no means implies that the distribution n(ε,t) is thermal.
Rather, the distribution away from the Fermi energy continues
to oscillate around its thermal value as shown in Fig. 7(d),
while 
n(t) becomes very small before t = 8 [Fig. 6(d)].
The damping of the oscillations is related to the lifetime of
phonons as will be discussed below in connection with the

phonon self-energy. Hence the phonons, rather than electrons,
govern the long-time relaxation in this regime. Interestingly,
however, we can see in Fig. 7(b) that n(ε,t̃) becomes almost
indistinguishable from the thermalized distribution (dashed
line, almost overlapping) at those times t̃ at which Ekin(t̃) =
Ekin,th [Eq. (25)] holds [after 
n(t) has become negligible].

The change from the electron-dominated to the phonon-
dominated type of thermalization is a crossover, i.e., the change
is smooth and there is no abrupt change in the characteristics of
the thermalization process, so that we can call the phenomenon
a “thermalization crossover.” In the present setup, the crossover
occurs around gf ∼ 0.5, where the oscillations and 
n(t)
vanish on similar time scales.

At this point we can comment on the relation between
the present result and the phenomenological two-temperature
model [26]. We first note that our situation is rather different
from what is assumed in the two-temperature model. In the
latter, the assumption is that the electron degrees of freedom
thermalize fast because of the Coulomb interaction, while
in our case we only consider the electron-phonon coupling
and no electron-electron interaction. Still, it is worthwhile to
discuss the relation between the two models. In the first type
of relaxation (gf � 0.5), in the Holstein model, the relaxation
time strongly depends on ε, and it would not be proper to
describe it by a single decay rate as in the two-temperature
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FIG. 7. (Color online) (a), (b) Electron momentum distribution
function, n(ε,t), at various values of t for gf = 0.35 (a) and 0.65
(b). For (b) we chose special times, t̃ , at which Ekin(t̃) = Ekin,th.
The dashed lines in (a), (b) indicate the momentum distribution in
equilibrium at Tth [which is invisible in (b) due to an almost perfect
overlap with the data for t � 6.4]. Vertical lines indicate |ε| = ωr

0.
(c), (d) Temporal evolution of n(ε,t) for several values of ε with
gf = 0.35 (c) or 0.65 (d).

model. More importantly, it is difficult to define a meaningful
effective temperature for the electrons in this case because
of the ε-dependent relaxation of n(ε,t). In the second type
of relaxation (gf � 0.5), the long-time behavior is dominated
by damped oscillations. However, the two-temperature model
does not predict any oscillations, but rather a monotonic
relaxation to the thermal value [26]. Therefore, we conclude
that neither of the two relaxation behaviors found here are
captured by the conventional two-temperature model.

3. Damping rates and self-energies

In this section, we show that the different relaxation rates
of physical quantities [Ekin,
n(t), . . .] can be related to the g

dependence of the electron (�) and phonon (�) self-energies.
In Fig. 8, we plot the imaginary parts of the electron self-
energy and the phonon self-energy in equilibrium at T = Tth.
When we look at the electron self-energy, we find that Im� is
relatively small in the energy range |ω| < |ωr

0|, which becomes
more evident at lower temperatures. This is consistent with
the picture that electron-like (hole-like) quasiparticles cannot
emit (absorb) phonons in this energy window, since the states
below (above) the Fermi level are occupied (empty) at low
enough temperatures. As a result, the quasiparticles survive
for a long time in this energy range, since, roughly speaking,
−2Im�(ω = ε) can be regarded as the relaxation rate. We note
that this picture qualitatively explains the different relaxation
time scales of n(ε,t) for different ε, illustrated in Figs. 7(a)
and 7(c).

Now let us consider the lifetime of electron quasiparticles
in more detail. If the quasiparticle picture is valid, the system,
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FIG. 8. (Color online) Imaginary parts of the electron self-energy
(solid lines) and phonon self-energy (dashed lines) in equilibrium at
Tth for various values of gf . The vertical lines indicate |ω| = ω0.

in the small-ω regime, should have an electron self-energy of
the form

�R(ω) = (1 − 1/Z)ω − i� + O(ω2), (26)

where Z is the quasiparticle residue. It follows that quasiparti-
cles with momentum k have a renormalized energy εr

k ≡ Zεk

with a lifetime of (2Z�)−1 at low energies.
The lifetime of phonons can be extracted from the phonon

self-energy in a similar manner. For small enough ω, the
phonon self-energy can be expanded as

�R(ω) = A − iB
ω

ω0
+ C

ω2

ω2
0

+ O(ω3), (27)

and the dressed Green’s function becomes

DR(ω) � 2Z′ω0

(ω − ω′
0 + iZ′B)(ω + ω′

0 + iZ′B) + Z′2B2
,

(28)

where ω′
0 = Z′ω0(1 + A/ω0)1/2 and Z′ = (1 − 2C/ω0)−1.

Here, ω′
0 is an approximation of the renormalized frequency

ωr
0. One can neglect the second term (Z′2B2) in the denomina-

tor of DR(ω) (28) if B � ω′
0, since the absolute value of the

first term in the denominator is at least ∼O(Bω′
0), which is

much larger than the second term ∼O(B2). It thus follows that
DR(t) decays with a damping rate Z′B. We have checked this
relation and found that Z′B indeed explains the damping of
DR(t) in the interaction regime considered. Hence the lifetime
of phonons can be identified with (2Z′B)−1.

Now we come to the key result of the present work.
Figure 9(a) plots the inverse quasiparticle lifetime for electrons
(2Z�) and phonons (2Z′B), extracted from the equilibrium
self-energies, against gf . Around gf = 0.5 the curves cross
each other, so that 2Z� < 2Z′B for gf < 0.5, while 2Z� >

2Z′B for gf > 0.5. This means that the electrons (in the
low-energy regime) decay more slowly than the phonons for
gf < 0.5, while the phonons conversely decay more slowly
than the electrons for gf > 0.5, as long as the quasiparticle
picture is valid.

In Fig. 9(a), we also display the electron decay rate
extracted from 
n(t) by exponential fits, as shown in Fig. 9(b).
Here we use the data from t = 0 up to t = 60 or up to
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FIG. 9. (Color online) (a) Electron and phonon decay rates (∝ inverse relaxation times) against the electron-phonon coupling gf . (b)
Temporal evolution of the jump, 
n(t), in the electron momentum distribution on a logarithmic scale for various values of gf . Dashed lines
are exponential fits. (c) Temporal evolution of the phonon displacement 〈XX〉 − 〈XX〉th. The dashed lines represent exponential fits to the
envelopes of the oscillating curves.


n(t) = 10−4. The decay rate increases with gf , and matches
the value of 2Z� to a good approximation. In the smaller-gf

regime the discrepancy is very small, while 2Z� tends to
overestimate the exponent of 
n(t) in the larger-gf regime.
On the other hand, the phonon decay rate 2Z′B is reflected in
the damping of Ekin,〈Xn〉,〈XX〉, and 〈a†a〉. As an example,
Fig. 9(c) displays the oscillations of 〈XX〉 − 〈XX〉th. We fitted
the envelopes with exponentials, and plot the corresponding
decay rates in Fig. 9(a). The oscillations for other quantities
(Ekin,〈Xn〉 and 〈a†a〉) have almost the same damping rates.
As can be seen in Fig. 9(a), 2Z′B indeed provides a good
explanation for the damping rates of local quantities. To be
more precise, while the agreement with 2Z′B is very good
for gf � 0.5, the quasiparticle lifetime from the phonon self-
energy tends to overestimate the damping rate of the 〈XX〉 −
〈XX〉th oscillations and this tendency becomes clearer as we
increase gf .

The above analysis indicates that the different dependence
of the electron and phonon quasiparticle lifetimes on the
electron-phonon coupling g explains the two different relax-
ation regimes: In the weaker-coupling regime, the lifetime for
phonons is shorter than that for electrons, so that the phonon os-
cillations are damped before the electron’s n(ε,t) thermalizes
(electron-dominated thermalization). In the stronger-coupling
regime, the situation is reversed and the electron lifetime is
shorter than the phonon lifetime [Fig. 9(a)]. Hence 
n(t)
vanishes quickly and the momentum distribution approaches
its thermal value quickly. However, since the phonons are
still in the process of relaxing and oscillating, the electrons are
forced to move with them (phonon-dominated thermalization).

4. Nonequilibrium spectral functions

We next discuss how the two different types of
relaxation manifest themselves in the spectral function and

nonequilibrium distribution function. In nonequilibrium, we
define the electron spectral function AR and occupied spectral
function A< as

AR,<(ω,t) = ∓ 1

π
Im

∫ ∞

t

dt ′eiω(t ′−t)G
R,<
loc (t ′,t), (29)

where − is for R and + is for <. For a slowly varying
state, A<(ω,t) corresponds to the time-resolved photoemission
spectrum and AR to the time-resolved total spectral function.
From these one can define the “nonequilibrium distribution
function” f (ω,t) ≡ A<(ω,t)/AR(ω,t). In Fig. 10, we display
AR(ω,t) and f (ω,t) at different times. The result for gf =
0.35 in the electron-dominated regime is shown in Figs. 10(a)
and 10(b). We first note that even at t = 0, AR shows a peak
structure around ω = 0 and therefore is different from the
spectral function of the free system. This is because AR(ω,t)
includes information on later times than t . AR(ω,t) and f (ω,t)
relax to their thermal value quickly for ω � ωr

0, while for
ω � ωr

0 the relaxation is slow and gradual. This is consistent
with the behavior of the momentum distribution and with a
previous analysis of the photoexcited Holstein model [37].
The small wiggles in Fig. 10(b) are Fourier cutoff artifacts.

The dynamics for a larger gf = 0.65 in the phonon-
dominated regime is shown in Figs. 10(c) and 10(d). Here,
we again choose the special times at which Ekin = Ekin,th.
Both AR(ω,t) and f (ω,t) turn out to be different from the
thermal curves, though the momentum distributions are indis-
tinguishable from the thermal ones at these times [Fig. 7(b)].
This difference is not too surprising, since A< and AR are not
determined by instantaneous temporal information unlike the
momentum distribution function. We also show ∂f (ω,t)

∂ω
|ω=0 in

the inset of the panel (d). The oscillation of this slope indicates
that f (ω,t) near ω = 0 also oscillates around its thermal value.
Therefore, in contrast to the relaxation in the weaker-coupling
regime, AR(ω,t) and f (ω,t) oscillate around their thermal
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FIG. 10. (Color online) Nonequilibrium spectral function,
AR(ω,t), at different t for gf = 0.35 (a) or 0.65 (c), and
nonequilibrium distribution function f (ω,t) for gf = 0.35 (b) or
0.65 (d). The dashed curves represent the thermal AR and distribution
functions. Vertical lines in each panel indicate ωr

0 in equilibrium at
Tth for each value of gf . The inset in (d) plots the time evolution of
∂f (ω,t)

∂ω
|ω=0, where the dotted line shows the thermal value.

values not only in the energy range |ω| � ωr
0 but also for

|ω| � ωr
0. Once this oscillation is fully damped (see t = 40),

they relax to the thermal AR and Fermi distribution function,
respectively.

C. Interaction quench: Results of DMFT+Hartree-Fock
approximation

In order to understand the effect of the phonon dynamics,
let us compare the above results from the self-consistent
Migdal scheme with those from the HF approximation. In the
latter, the phonons are treated as noninteracting equilibrium
phonons, as discussed in Sec. II C. First of all, we note that,
since the phonon is assumed to stay in equilibrium in HF,
the thermalization crossover that we have revealed with the
Migdal approximation does not occur. In Fig. 11(a), we show
the HF result for the kinetic energy for ω0 = 0.7 and several
values of gf . One striking difference from the self-consistent
Migdal results [Fig. 5(a)] is that the oscillations are damped
very quickly within t < 10. After that, the kinetic energy seems
to slowly approach a steady value in the long-time limit. As
discussed in Ref. [59], the HF self-energy is expected to act as
a heat bath, which cools electrons down to the temperature of
the initial equilibrium phonons (i.e., T = 0 here). The results
are indeed consistent with the system approaching the T = 0
state. In Fig. 11(a), we plot the equilibrium values at T = 0 by
dashed lines, and it appears that both Ekin and 〈X(n↑ + n↓)〉
(not shown) gradually relax to the thermal values at T = 0.

The HF results for 
n(t) are shown in Fig. 11(b). After the
quench, 
n(t) starts to decrease, but remains large compared
to the Migdal results [Fig. 6(d)]. The fact that 
n(t) does not
vanish is consistent with the expectation that the phonons in
HF effectively act as a heat bath with T = 0. On the other hand,

n(t) is still far from the expected thermal value for T = 0
even at t = 60, showing that the cooling rate is very low.
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FIG. 11. (Color online) DMFT+HF result for the temporal evo-
lution of (a) the kinetic energy, (b) 
n(t), (c) n(ε,t) with t fixed, and
(d) n(ε,t) with ε fixed, after quenches to the indicated values of g

with ω0 = 0.7. The vertical line in panel (c) indicates |ε| = ω0, while
dashed curves in panels (c) and (d) indicate the thermal values at
T = 0.

This can be understood as follows. In the T = 0 equilibrium
state, we have Im�(ω) ∝ ω2 for the Fermi liquid. Hence, the
decay rate for 
n(t) is expected to become zero as the system
approaches the equilibrium state at T = 0.

Figures 11(c) and 11(d) show n(ε,t) for gf = 0.35. The
distribution at |ε| � ω0 relaxes faster to the equilibrium
value at T = 0 than that at |ε| � ω0. This is similar to the
Migdal result (Fig. 7) and the previous study (Ref. [35]).
In addition, one finds in Fig. 11(d) that n(ε,t) shows more
pronounced oscillations than in the Migdal approximation, and
that the n(ε,t) at different values of ε exhibit oscillations with
different frequencies [35]. The dephasing of the oscillations
in momentum space leads to a complicated structure in n(ε,t)
[Fig. 11(c)] and a fast damping of the oscillations in Ekin

[Fig. 11(a)], which is a scenario different from the relaxation
mechanism in the Migdal approximation.

The comparison of the HF and Migdal results implies that
the feedback of the nonequilibrium phonons to the electrons
leads to a qualitatively very different dynamics, so that the
HF approximation cannot properly describe the evolution of
isolated systems. However, we note that it may be possible to
use the HF approximation as a phenomenological treatment
for electrons coupled to a heat bath (open system), as in
Refs. [59,60].

D. Discussion

We have discussed the relaxation dynamics of the infinite-
dimensional Holstein model based on the nonequilibrium
DMFT. The DMFT analysis is limited because the method
neglects the momentum dependence of the electron and
phonon self-energies, an approximation which is justified
in the limit of infinite spatial dimensions. When we con-
sider a finite-dimensional system, however, we need to take
into account the momentum dependence. It turns out that
the phonon self-energy can have a significant momentum
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dependence, as is clear from an evaluation of the lowest
order phonon self-energy. In particular, the phonon self-energy
vanishes in the zero-wavelength limit. Therefore, in order to
discuss whether phonons or electrons are the bottleneck in the
relaxation process in finite dimensions, we have to consider
the momentum dependence of the self-energies. Nevertheless,
our results can be expected to be applicable to systems in
high dimensions or with large coordination numbers, where
the momentum dependence is expected to be not so essential.
Corrections from short-range spatial correlations can be
captured by extending the nonequilibrium DMFT formalism
to a nonequilibrium dynamical cluster approximation (DCA)
[61]. This route will in principle provide a systematic way to
include the momentum dependence.

Another limitation in our analysis is the use of the self-
consistent Migdal approximation as an impurity solver for the
nonequilibrium DMFT. We have analyzed the ω0 dependence
of the quasiparticle lifetimes (not shown). It turns out that
the crossover point of these energy scales moves to a smaller
λ(= 2g2

ω0
) as we decrease the phonon frequency ω0. In this

regime, the Migdal approximation becomes quantitatively
more reliable. Therefore, the essential nature of phenomena
around the crossover of the quasiparticle lifetimes can be
correctly described by the Migdal approximation at such small
phonon frequency. On the other hand, in the present paper,
because of computational limitations (limited accessible time
scales), we have chosen relatively large g (or λ) and ω0. Nev-
ertheless, we note that these parameters are still significantly
smaller than the electron bandwidth and in the weak-coupling
regime and the usage of the Migdal approximation should
be reasonable to capture qualitative behaviors around the
crossover point. Since we have checked that the characteristic
behaviors in the relaxation processes discussed for ω0 = 0.7
hold down to ω0 = 0.4, it would be natural to expect that they
also hold for cases with smaller frequency where the Migdal
approximation is quantitatively accurate.

IV. CONCLUSIONS

In this paper, we have studied the dynamics of the
Holstein model after a quench (sudden switch-on) of the
interaction using the nonequilibrium DMFT in the weak-
coupling regime. As an impurity solver, we have employed
the self-consistent Migdal approximation, which includes the
dynamics of phonons via the phonon self-energy. It turns
out that the local (momentum-summed) quantities exhibit
essentially 2ωr

0 oscillations (with ωr
0 being the renormalized

phonon frequency). A key finding here is that there exists
a thermalization crossover between two distinct regions as
we vary the quenched electron-phonon coupling g within
the weak-coupling region: The smaller-g region shows a fast
damping of the oscillations originating from the phonon dy-
namics, with the momentum-summed quantities approaching
the thermal values quickly, while the momentum distribution
of the electrons exhibits a much slower relaxation (electron-
dominated relaxation). The second region corresponds to
larger g, but still in the weak-coupling regime (well before
the phase transition to the bipolaronic phase). There, the
jump in the momentum distribution quickly vanishes, and
the momentum distribution quickly approaches its thermal

value. Since the phonon oscillations damp more slowly, the
momentum distribution oscillates with the phonons around
the thermal value (phonon-dominated relaxation). We have
revealed that the change in the relaxation behavior originates
from a different g dependence of the electron and phonon
self-energies. Hence, while the quench of the e-ph coupling
assumed here may not be too realistic, the thermalization
crossover itself should be observed in more realistic situations
as long as the electron and phonon quasiparticle lifetimes are
relevant in the nonequilibrium processes. We have further con-
firmed the importance of the phonon dynamics by comparing
the self-consistent Migdal results with the HF results which
do not include the phonon dynamics. It turns out that the latter
approximation describes a totally different type of relaxation
process with phonons effectively acting as a heat bath.

Our work can serve as a benchmark for further studies
of electron-phonon systems. The effect of additional terms
such as the Coulomb interaction and acoustic phonons in the
relaxation process will be important to understand. In addition,
it will be interesting to study the dynamics of ordered phases in
electron-phonon systems [62,63]. This topic will be discussed
in a separate publication.
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APPENDIX

1. Dyson equation

To investigate the dynamics of a certain type of Green’s
function �(t,t ′), one needs to solve the Dyson equation, which
can be expressed in the form

[1 − F ] ∗ � = Q. (A1)

If we explicitly write down this equation for the retarded (R),
lesser (<), and left-mixing (¬) components, it becomes

�R(t,t ′) −
∫ t

t ′
dt̄FR(t,t̄)�R(t̄ ,t ′) = QR(t,t ′), (A2)

�<(t,t ′) −
∫ t

0
dt̄FR(t,t̄)�<(t̄ ,t ′) = Q<(t,t ′) (A3)

+
∫ t ′

0
dt̄F<(t,t̄)�A(t̄ ,t ′) − i

∫ β

0
dτ̄F¬(t,τ̄ )� ¬(τ̄ ,t ′),

�¬(t,τ ′) −
∫ t

0
dt̄FR(t,t̄)�¬(t̄ ,τ ′) = Q¬(t,τ ′)

+
∫ β

0
dτ̄F¬(t,τ̄ )�M (τ̄ ,τ ′). (A4)
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When � corresponds to G or D, the components �A and � ¬
are related to �R and �¬ (although the relation is different for
the fermionic and bosonic Green’s functions), so the above set
of equations is closed, and we only need to solve these three
equations; see Ref. [1] and the following section.

2. Properties of the phonon Green’s function

Here we explicitly state several relations of the phonon
Green’s function D(t,t ′), which are important in the imple-
mentation of the Dyson equation for the phonon propagator.
From Eq. (5), it follows that

D(t,t ′) = D(t ′,t), (A5)

and therefore

DM (τ,τ ′) = DM (τ ′,τ ), (A6)

DA(t ′,t) = DR(t,t ′), (A7)

D ¬(τ ′,t) = D¬(t,τ ′). (A8)

We also note that

D<(t,t ′)∗ = −D<(t ′,t). (A9)

Furthermore, in contrast to G, the retarded part of D has no
jump at t = t ′; i.e.,

DR(t + 0+,t) = DR(t,t + 0+) = 0. (A10)

3. Derivatives of the phonon propagator

Here we discuss the properties of the derivative of the
phonon Green’s function. With Eq. (1),

i∂tX(t) = ω0[−a†(t) + a(t)]/
√

2, (A11)

so we find

Dd1(t,t ′) ≡ ∂tD(t,t ′)
ω0

= −i2〈TcP (t)X(t ′)〉, (A12)

where P = −a†+a

i
√

2
and [X,P ] = i. In the same manner,

Dd2(t,t ′) ≡ ∂t ′D(t,t ′)
ω0

= −i2〈TcX(t)P (t ′)〉.
In addition, we calculate the second derivative of D,

Dd1,d2(t,t ′) ≡ ∂t∂t ′D(t,t ′)
ω2

0

= 2

ω0
δc(t,t ′) − i2〈TcP (t)P (t ′)〉. (A13)

If we know D,Dd1,Dd2, and Dd1,d2 we can recover the usual
boson Green’s function defined as −i〈Tca(t)a†(t ′)〉, and, in
particular, the phonon density 〈a†(t)a(t)〉, Eq. (17). These
quantities can be evaluated with D and � by considering the
following equations,

Dd1(t,t ′) = D0,d1(t,t ′) + [D0,d1 ∗ � ∗ D](t,t ′), (A14)

Dd2(t,t ′) = D0,d2(t,t ′) + [D ∗ � ∗ D0,d2](t,t ′), (A15)

Dd1,d2(t,t ′) = D0,d1,d2(t,t ′) + [D0,d1 ∗ � ∗ Dd2](t,t ′).

(A16)

Since

DR
d1(t,t ′) = DA

d2(t ′,t), (A17)

D<
d1(t,t ′) = −D<

d2(t ′,t)∗, (A18)

D¬
d1(t,τ ′) = D ¬

d2(τ ′,t), (A19)

we can focus on the R, <, and ¬ components in Eqs. (A14),
(A15), and (A16). In particular, to evaluate the phonon density
〈a†a〉, we only need to know D<

d1,d2. In this case we only need
to evaluate Eq. (A14) and solve the < part of Eq. (A16).
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