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Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis
and numerical convergence investigation
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We present a comprehensive study of single-point kinetic energy density functionals (KEDFs) to be used
in orbital-free density functional theory (DFT) calculations. We first propose a form of KEDFs based on a
pointwise Kohn-Sham (KS) kinetic energy density (KED) and electron localization function (ELF) analysis.
We find that the ELF and modified enhancement factor have a very strong and transferable correlation with
the reduced density in various bulk metals. The non-self-consistent kinetic energy errors predicted by our
KEDF models are decreased greatly compared to previously reported generalized gradient approximation (GGA)
KEDFs. Second, we perform self-consistent calculations with various single-point KEDFs and investigate their
numerical convergence behavior. We find striking numerical instabilities for previous GGA KEDFs; most of the
GGA KEDFs fail to converge and show unphysical densities during the optimization. In contrast, our KEDFs
demonstrate stable convergence, and their self-consistent results of various bulk properties agree reasonably well
with KSDFT. A further detailed KED analysis reveals an interesting bifurcation phenomenon in defective metals
and alloys, which may shed light on directions for future KEDF development.
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I. INTRODUCTION

An excellent balance between accuracy and efficiency has
made Kohn-Sham (KS) density functional theory (DFT) [1]
the most powerful and commonly used first principles quan-
tum mechanical method in science and engineering today.
KSDFT introduces one-electron wave functions to precisely
calculate the noninteracting electron kinetic energy Ts . It
leaves only a small portion of the total energy, namely
the exchange-correlation (XC) energy, to be approximated
by density functionals. In so doing, the KSDFT formalism
generally produces reliable predictions for a wide range of
systems, particularly with simple local density approximations
or generalized gradient approximations (GGAs) for the XC
energy. However, the computational cost of standard KSDFT
typically scales cubically with system size (N) due to the
introduction of orbitals, which prevents its application to many
large-scale (>103 atoms) systems and phenomena.

Consistent with the original Hohenberg-Kohn formal-
ism [2], orbital-free (OF) DFT [3] instead uses the electron
density as the sole variable to calculate total energies, including
Ts . Consequently, the variational degrees of freedom are
reduced from 3N to only 3 in OFDFT, and the computational
cost can be made to scale quasilinearly with N, i.e., O(N logN ),
with a small prefactor. This extraordinary numerical efficiency
is one of its most attractive features; OFDFT simulation of
over a million atoms was already feasible more than five years
ago [4]. However, a tradeoff exists between efficiency and
accuracy. Approximating Ts using density functionals is more
difficult than approximating XC energies. The magnitude of
the kinetic energy is on the same order as the total energy,
which can be hundreds of times larger than XC energies.

*Corresponding author: eac@princeton.edu; http://www.princeton.
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The major source of error in OFDFT therefore originates
from the error in kinetic energy density functionals (KEDFs).
In recent decades, numerous KEDFs have been proposed,
which can be roughly categorized into two general types:
two-point (nonlocal) KEDFs, featuring a double-integral form;
and single-point (local/semilocal) KEDFs, which only contain
a single integral.

Two-point KEDFs (e.g., the Chacón-Alvarellos-Tarazona
[5], Garcı́a-González–Alvarellos–Chacón [6,7], Wang-Teter
[8], and Wang-Govind-Carter (WGC) [9,10] KEDFs) are
generally based on Lindhard linear response theory [11,12].
Because this theory reflects the response of a perturbed
uniform electron gas, these KEDFs can achieve accuracy
comparable to KSDFT for nearly-free-electron-like systems,
such as main group metals. A number of studies have
demonstrated their promising ability to simulate large-scale
scientific problems [13–26]. Advanced two-point KEDFs
have recently enabled OFDFT to describe systems with
localized electrons as well, such as covalent [27–31] and
transition metal systems [32–34].

Despite the success of two-point KEDFs, researchers have
continued to study single-point KEDFs for two major reasons:
first, two-point KEDFs are mostly confined to describing
condensed matter, and thus we need different KEDFs for other
systems, such as isolated atoms and molecules; and second,
single-point KEDFs are usually numerically more efficient
than two-point KEDFs, which is potentially advantageous for
large-scale and molecular dynamics simulations. The history
of single-point KEDFs can be traced back to the earliest KEDF
approximation derived by Thomas and Fermi (TF) [35–37] as
well as the well-known von Weizsäcker (vW) KEDF [38].
A large number of single-point KEDFs were subsequently
proposed during the many decades of KEDF development
[39–41].

However, the development of single-point KEDFs is
still rather limited. In contrast to two-point KEDF studies
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where self-consistent calculations are usually conducted, most
single-point KEDF investigations report non-self-consistent
results (i.e., KSDFT ground-state densities are input to
OFDFT, and one-shot kinetic energies are calculated). Some
recent studies, such as Refs. [42,43], are notable exceptions
for including some self-consistent results. Although self-
consistent calculations are more demanding, they are also es-
sential for practical applications (computation of forces, etc.).
Additionally, single-point KEDF studies are usually confined
to isolated systems. Development of accurate single-point
KEDFs for condensed matter is still limited, although some
recent studies [42–44] have investigated their performance for
bulk metals (vide infra).

Most single-point KEDFs adopt a gradient-corrected form
similar to GGA XC functionals. Enforcing certain limits,
satisfying scaling requirements, and conjecturing conjointness
are widely used strategies to design the enhancement factors
for these GGA KEDFs [39–41]. However, we note that most
single-point KEDF studies (as well as two-point KEDF ones)
focus exclusively on reproducing the total (kinetic) energy
as an integrated value or derived bulk properties. Although
some investigations [45,46] have analyzed the pointwise
kinetic energy density (KED or τ ) and computed average
KED errors, very few [47,48] have attempted to analyze the
KED distribution for the purpose of designing new KEDFs.
While studying pointwise quantities is more difficult than
calculating Ts as an integrated value, it can reveal interesting
problems. As an example, the sole variable in the enhance-
ment factor of many GGA KEDFs is the reduced gradient
(s(r) = |∇ρ|/ρ4/3, where ρ is the total electron density).
However, the KSDFT KED is not a single-valued function of s

(vide infra), which calls into question the use of enhancement
factors dependent on s alone. Their integrated total energy
thus may involve considerable error cancellation to achieve
accuracy comparable to KSDFT.

The aim of this paper is consequently twofold. First, we
propose a form of single-point KEDFs based on a point-
wise quantity analysis. In addition to the most fundamental
pointwise quantity KED, we also investigate other closely
related quantities, such as the electron localization function
(ELF) [49,50]. The ELF also contains a key quantity (noted as
G in this paper), which is defined as the difference between
the KED and local vW KED normalized by the local TF KED
(see Eq. (7) in Sec. II). Note that this quantity is used in
recently proposed meta-GGA XC functionals [51]. Since the
local TF and vW KEDs can easily be computed, calculating the
ELF/G using density functionals is equivalent to calculating
the KED. However, compared to the total kinetic energy or
KED, G provides more information, such as bond types [51].
Similarly, the ELF (solely dependent on G) can also give
more physical meaning in terms of electron localization or
delocalization; its distribution is largely determined by the
system type and crystal structure. We will therefore focus
on studying KED/ELF/G distributions, aiming to find a
strong and transferable correlation between these distributions
and electron density variables, and construct accordingly OF
KED/ELF/G and thus corresponding KEDFs. We will show
that our KEDFs can produce reasonable non-self-consistent as
well as self-consistent results for various materials, indicating
great improvement over previous single-point GGA KEDFs.

Second, we provide a systematic test of single-point
KEDFs’ performance for condensed matter within pseudopo-
tential schemes (only containing valence electrons), which to
our knowledge has not been addressed in the literature. We test
various previous GGA KEDFs and our single-point KEDFs by
comparing both non-self-consistent kinetic energies and self-
consistent bulk properties against KSDFT benchmarks. As
mentioned above, most GGA KEDF studies have only reported
non-self-consistent results; the difficulty in performing self-
consistent GGA KEDF calculations is related to singularities
near nuclear positions in all-electron calculations [40,44] (to
be fair, some successful self-consistent calculations for several
GGA KEDFs with pseudopotentials have been reported [44]).
However, we will show that most GGA KEDFs cannot obtain
stable and physically reasonable self-consistent results, even
within the pseuodopotential approximation.

The paper is organized as follows. We present our single-
point KEDF formalism in Sec. II and provide computational
details in Sec. III. We then test our models in Sec. IV
against representative single-point and two-point KEDFs on
metallic systems. Non-self-consistent results, instability issues
with GGA KEDFs, self-consistent results, a detailed KED
distribution analysis, and possible future improvements are
discussed. Finally, conclusions are given in Sec. V.

II. THEORY AND FORMALISM

GGA KEDFs have the general form

Ts[ρ] =
∫

τTFF (s)dr, (1)

where τTF = CTFρ
5/3 is the TF KED with CTF = 3

10 (3π2)2/3,
s is the reduced gradient, and F (s) is the enhancement factor.
Here, we take an alternative point of view to propose a slightly
different KEDF form. To begin, recall that the total kinetic
energy is by definition an integral of the KED

Ts[ρ] =
∫

τ (r)[ρ]dr, (2)

where the local KED (τ ) is in general a functional of the total
electron density, such as the orbital-based KED within the KS
method. We can further write the KED as

τ (r) = τvW(r) + τTF(r)G[ρ], (3)

where τvW = 1
8

|∇ρ(r)|2
ρ(r) is the vW KED. As a result, we write

the general form of KEDF as

Ts[ρ] = TvW +
∫

τTFG[ρ]dr. (4)

This form is very similar to the GGA form; we simply
subtract the vW term out and note that F = FvW + G, where
FvW = s2

8CTF
is the enhancement factor of the vW KEDF. There

are some subtleties and advantages of this form. First, up to
this point, Eq. (4) is exact: G should be a functional of the
electron density instead of a function of s. Although s is a
very important quantity, it does not provide all the information
necessary to build an accurate KEDF. In KSDFT, the KED
or G is calculated with orbitals that can be considered as a
functional of the electron density. Furthermore, one can think
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of two-point functionals as having a functional form of G. For
example,

Gα

WGC
[ρ] = 1 +

∫
ρα(r)

τTF(r)
ωρβ(r′)dr′, (5)

or

Gβ

WGC
[ρ] = 1 +

∫
ρ

β

(r)

τTF(r)
ωρα(r′)dr′, (6)

or normalized linear combinations of these two (KS KED or G

also has multiple definitions, as discussed below), where ω is
the kernel function and α and β are constants. Second, the form
of Eq. (4) is closely related to the idea of the Pauli term (given
by the total kinetic energy minus the vW term), as discussed in
several previous papers [40,52]. Since TvW is separated out, the
positive-definite property of the remaining term (namely the
Pauli term), as well as its pointwise Pauli potential [40,52], can
be relatively easily checked and guaranteed when constructing
G. Finally and most importantly, we note that G by definition
is naturally connected to the ELF as

G[ρ] = τ − τvW

τTF
, (7)

ELF(r) = 1

1 + (
τ−τvW

τTF

)2 = 1

1 + G2
, (8)

and thus,

G =
√

1

ELF
− 1. (9)

By substituting Eq. (9) into Eq. (4), we have

Ts[ρ] = TvW +
∫

τTF

√
1

ELF[ρ]
− 1dr, (10)

which can connect some studies of OF-ELF [53] to KEDF
development. However, no approximation has been made up
to this point, and the fundamental problem still exists: can we
approximate G using solely the electron density?

We next employ a different approach from many previously
proposed KEDFs to determine G. Instead of designing our
KEDF to match integrated quantities, such as KSDFT total
energies or bulk properties, we construct KEDFs based on
pointwise quantities (e.g., the KED). In the following, we
investigate pointwise local KED/ELF/G distributions from
KSDFT, and their dependence on different density variables
(e.g., the electron density, s, and the reduced Laplacian).
Clearly, if we can obtain accurate KED values at every point
in space, then the total kinetic energy (an integrated quantity)
will be inherently accurate.

We employ KSDFT data as our benchmark because KSDFT
gives the exact noninteracting KED values needed. The
G value can be easily computed for each point in space
using Eq. (7). However, an issue may arise from the
ambiguous definition of the KSDFT τ . Two definitions,
τKSDFT = ∑

k fk|∇φk|2/2 and τKSDFT = − 1
2

∑
k fkφk∇2φk =∑

k fk|∇φk|2/2 − 1
4∇2ρ [54], are commonly used in the

literature, where k refers to the index of the KS orbitals and fk

is the occupation number. Moreover, one can prove that any

FIG. 1. (Color online) ELF vs the reduced density (d) in fcc Al,
hcp Mg, and bcc Li at equilibrium volumes calculated by KSDFT.
Data points are taken only along the bond axis, i.e., 〈110〉 for fcc Al,
〈1120〉 for hcp Mg, and 〈111〉 for bcc Li.

divergence of periodic functions (e.g., ∇ · ∇ρ) can be added
and has no contribution to the total kinetic energy. For example,

τ =
∑

k

fk|∇φk|2/2 + x · ∇2ρ, (11)

has also been used [45,46], where x can be an arbitrary
number. We will however mainly adopt τ = ∑

k fk|∇φk|2/2
in this paper (all results shown use this definition unless stated
otherwise) due to its positive-definite property. Moreover, this
definition of τ enforces the pointwise version of the vW lower
bound criterion for the kinetic energy and is consistent with
the ELF definition.

We next aim to investigate the relation between
KSDFT KED/ELF/G and various density variables. We first
examine the dependence of the ELF on the reduced density d

(ρ/ρ0, where ρ0 is the average density in the unit cell) in several
bulk metals. Figure 1 shows the ELF vs d along the bond axis
in face-centered-cubic (fcc) Al, hexagonal close-packed (hcp)
Mg, and body-centered-cubic (bcc) Li at their equilibrium
volumes. Remarkably, we see a nearly single-valued function
relating the ELF and d. Furthermore, when d = ρ/ρ0 = 1, the
ELF is approximately 0.5, which is the correct limit for the
uniform electron gas. The use of the reduced density in KEDFs
is uncommon, especially in single-point KEDFs. However, the
positive correlation between the ELF and d does make physical
sense. Qualitatively, the electron density will be large when
electrons are localized, and thus, larger d will correspond to
higher ELF values. For sure, this correlation is not exact; a very
simple counterexample is any single-orbital system (e.g., Li2
in a pseudopotential formalism) where the ELF is constantly 1
but the reduced density cannot be flat (for isolated systems, ρ0

is actually ill defined, but the dimensionless quantity ρ/ρmax

may be used instead). However, this approximate correlation
between the ELF and d generally works well for condensed
matter. Our earlier paper [29] also supports the use of d to
determine the level of electron localization in covalent systems
(see Fig. 1 in Ref. [29]).

According to Eq. (9), the ELF has a one-to-one mapping to
G. Since the ELF features a nice correlation with d, we expect

045124-3



JUNCHAO XIA AND EMILY A. CARTER PHYSICAL REVIEW B 91, 045124 (2015)

FIG. 2. G vs d in bcc Li at the equilibrium volume calculated by
KSDFT. Data points are taken from all spatial points (on a numerical
grid) in the unit cell.

d to be a good descriptor for G as well. Moreover, predicting G

directly would be more convenient and straightforward for use
in a KEDF. Figure 2 therefore shows G vs d from all spatial
points (on a numerical grid) in the unit cell of bcc Li (the curves
are very similar for other phases). Figure 3 then displays G vs
d data along the bond axis in different phases of Al, Mg, and
Li at equilibrium volumes and under deformations. Several
appealing properties emerge: (1) The data from all systems
collapse onto the same curve, indicating good transferability
on a pointwise level for the KED within these metallic phases.
(2) The data form a well-defined single-valued function of d.
This is important because approximating G as a function of any
independent variable would make sense only if G is a well-
defined, single-valued function of the independent variable.
We will later see that G vs s does not share this behavior.
(3) G is approximately 1 (ELF ≈ 0.5) when d = 1. For the
uniform electron gas (ρ ≡ ρ0, d ≡ 1, and τvW ≡ 0), G ≡ 1
then leads to the pure TF KEDF, which is the correct limit we
hope to preserve.

FIG. 3. (Color online) G vs d in fcc Al, hcp Al, bcc Al, hcp Mg,
and bcc Li at equilibrium volumes, as well as fcc Al, hcp Mg, and bcc
Li at volumes changed ±2% around equilibrium volumes calculated
by KSDFT. Data points are taken only along the bond axis, similar
to Fig. 1.

FIG. 4. (Color online) ln(G) vs ln(d) in fcc Al, hcp Mg, and
bcc Li at equilibrium volumes calculated by KSDFT and the linear
model. Data points are taken only along the bond axis, similar
to Fig. 1.

Based on the strong and transferable correlation found
between G and d, we propose several simple KEDF models
by approximating G as a function of d. Note that although G

depends on only d, the corresponding traditional enhancement
factor F = FvW + G is a function of both d and s. We can
either directly fit G vs d (Fig. 3) to obtain G(d), or fit ELF vs
d (Fig. 1) and use Eq. (10) to calculate Ts . For our first KEDF
model, we conduct a linear fitting for ln(G) vs ln(d) (Fig. 4)
using data along the bond axis in fcc Al, bcc Li, and hcp Mg
at their respective equilibrium volumes. This leads to

G(d) = a · db, (12)

with a = 0.9892 and b = −1.2994. We refer to this model as
vWGTF1 (τvW plus G times τTF) below. For our second KEDF
model, we propose the following analytical form of ELF(d):

ELF(d) = [1 + tanh(p · dq − p)]/2, (13)

and numerically determine the parameters using a least squares
fitting. The final parameters are p = 5.7001 and q = 0.2563.
Equation (13) guarantees the ELF bound within 1 when d

approaches infinity, and ELF(1) is 0.5 by construction. The
ELF raw data and fitted analytical function are plotted in Fig. 5.
This KEDF is referred to as vWGTF2.

The vWGTF1 and vWGTF2 KEDFs are fundamentally
similar; the former fits G directly, while the latter fits the ELF
first and then uses the exact relation between G and ELF, i.e.,
Eq. (9). Fitting G is more straightforward and naturally forces
the ELF to satisfy the bound between 0 and 1. Furthermore, the
positive-definite property of the Pauli energy and the pointwise
Pauli potential can be more easily guaranteed when directly
fitting G. Simple calculations confirm that the vWGTF1 model
indeed guarantees the positive-definite property for both the
Pauli energy and its potential with any electron density. The
vWGTF2 KEDF guarantees positive definiteness for the Pauli
energy; however, the Pauli potential can be negative with large
d values (d ∼ 2). Nevertheless, we still propose the vWGTF2
model because it highlights the connection between the ELF
and G. We think the ELF contains deeper physical meaning
than G, and it is well established and studied in literature.
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FIG. 5. (Color online) ELF vs d for fcc Al, hcp Mg, and bcc Li at
equilibrium volumes calculated by KSDFT and the analytical model
[Eq. (13)]. Data points are taken only along the bond axis, similar to
Fig. 1.

Fitting the ELF thus connects KEDF development to those
ELF studies.

We have thus far approximated G as a function of d. Strictly
speaking, the resulting vWGTF KEDFs are not single-point
functionals, as ρ0 in d depends nonlocally on the whole system.
This may lead to size-consistency issues for nonhomogenous
systems, such as surfaces and interfaces. Generally, when
deploying KEDFs (such as the WGC) that involve ρ0, we
take ρ0 to be the average of the density but only over the
space where densities are larger than a threshold, such as the
minimum density in the corresponding bulk system (e.g., bulk
fcc Al for fcc Al surface calculations). This method largely
eliminates a potential size-consistency problem for surfaces
modeled in a periodic cell (energies should not depend on
the thickness of the vacuum layer). However, this approach
may not always work for the heterogeneous interface case.
For this reason, it could be more desirable to use purely
local variables. We thus next consider using s (purely local)
as the independent variable instead. Unfortunately, we fail
to observe a well-defined correspondence between G and s,
namely a single-valued function G(s). Figure 6 shows G vs s

in fcc Al calculated with KSDFT. Multiple branches exist with
various possible x values in Eq. (11), i.e., we have multiple
corresponding G values for each s. Consequently, it is not
sensible to predict G using only s. Since G and F are basically
equivalent under the current approximation (the difference
being FvW), this multivalued character calls into question the
validity of the GGA’s F (s). However, this does not mean that s
cannot be included in G or F . A combination with other density
variables, or multivariate G functions/functionals including s,
might very possibly improve the model.

The density Laplacian ∇2ρ is another informative and
important quantity when constructing KEDFs, as it helps
to determine bond types [55] and is a strong indicator of
electron accumulation or depletion. We observe a much
better relationship between G and the reduced Laplacian
(l = ∇2ρ/ρ5/3) than with s, though it is not as good as G vs d.
However, inclusion of l complicates the kinetic potential and
makes self-consistent optimizations unstable (see discussion

FIG. 6. (Color online) KSDFT G vs s with τ calculated accord-
ing to Eq. (11) with multiple x values, (a) at a large scale and (b)
at a fine scale. Data points are taken from all spatial points (on a
numerical grid) in the unit cell of fcc Al at the KSDFT equilibrium
volume.

in Sec. IV). For simplicity, we will consider the G function
using only d. We will however highlight the importance of l

in Sec. IV when discussing cubic diamond (CD) Si.

III. COMPUTATIONAL DETAILS

We study Al, Mg, and Li bulk phases, as well as β ′′ −
Al3Mg, CD Si, and the singlet state of the P2 molecule using
KSDFT and OFDFT. We carry out all KSDFT calculations
with the ABINIT package [56] and OFDFT calculations with
our PROFESS 3.0 code [57–59]. The Perdew-Burke-Ernzerhof
(PBE) GGA XC functional [60] is employed in all calculations.
Bulk-derived local pseudopotentials [28,61,62] are used in
both KSDFT and OFDFT. A 900 eV kinetic energy cutoff
is used in KSDFT calculations for the plane-wave basis
to converge the total energy to within 1 meV/atom. The
20 × 20 × 20 k-point grids are used for all crystals, which are
generated with the Monkhorst-Pack method [63], and 1 k-point
is used for P2. Fermi-Dirac smearing is used for all Al, Mg,
Li, and Al3Mg calculations, with a smearing width equal to
0.1 eV. No smearing is used for CD Si or P2 calculations.

In self-consistent OFDFT calculations, the ground-state
energy is obtained by optimizing the electron density (see
details in Ref. [57]). The optimizations are all derivative based,
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and the kinetic potential can be calculated via functional
derivative calculations. However, we find some analytically
equivalent expressions can lead to different numerical behav-
ior; we discuss this issue in Sec. IV B. In our implementations,
we apply the general analytical formula for all GGA KEDF
potentials

δTs

δρ
= ∂τTF

∂ρ
· F (s) + τTF · ∂F

∂s
· ∂s

∂ρ
− ∇ ·

[
∂F

∂s
· ∂s

∂ (∇ρ)

]
,

(14)

where ∂τTF
∂ρ

= 5
3CTFρ

2/3, ∂s
∂ρ

= − 4
3

s
ρ

, ∂s
∂(∇ρ) = ∇ρ

|∇ρ|ρ4/3 = ∇ρ

s·ρ8/3 ,

and each GGA KEDF has its corresponding ∂F
∂s

. In plane-
wave-based PROFESS, numerical gradient and divergence
operations are all realized via the fast Fourier transform (FFT).
Specifically,

∇f (r) = F̂−1{ig · f̃ }, (15)

and

∇ · f(r) = F̂−1{igxf̃x + igyf̃y + igzf̃z}, (16)

where f̃ is the Fourier transform of any integrable function f ,
g is the reciprocal (momentum space) vector, and F̂−1 is the
inverse Fourier transform operator.

In all OFDFT calculations, the kinetic energy cutoff is set
at 1600 eV. However, many GGA KEDFs are numerically
unstable; they cannot be converged even with very high kinetic
energy cutoffs, as demonstrated by both their total energies
and unphysical densities (see Sec. IV B). The 1600 eV kinetic
energy cutoff converges the total energy to within 1 meV/atom
for the GGA KEDFs that are numerically stable, the WGC99
(hereafter just referred to as WGC) KEDF [10], and the
vWGTF KEDF models proposed in this paper.

We test TF; vW; TFλvW with λ equal to 1/5 [64–68],
1/9 [69], and 1 [68]; Lee-Lee-Parr (LLP) [70]; DePristo-
Kress (DK) [71]; DK87 [72]; Ou-Yang–Levy 1 (OL1) [73];
OL2 [73]; Perdew-Wang 86 (PW86) [74,75]; PW91 [76];
Lembarki and Chermette (LC94) [77]; Tran-Wesolowski
(TW02) [78]; PBE2 [79]; E00 [80]; P92 [81]; Becke
86A (B86A) [82]; Becke 86B (B86B) [83]; and Thakkar
(Thak) [84] GGA functionals, with the parameters proposed in
their original papers. Their corresponding G can be calculated
simply as G = F − FvW.

The two-point WGC KEDF contains, in addition to TF and
vW terms, a double-integral nonlocal term

EWGC
NL =

∫ ∫
ρα(r)ω[ξ (r,r′)|r − r′|]ρβ(r′)drdr′, (17)

where the kernel ω is determined by recovering the exact
Lindhard linear response for the perturbed uniform electron
gas, and ξ is a two-point Fermi wave vector that is thus double-

density dependent: ξ (r,r′) = [ k
γ

F (r)+k
γ

F (r′)
2 ]1/γ with k

γ

F (r) =
[3π2ρ(r)]1/3. Furthermore, to achieve quasilinear scaling
using FFTs, the density-dependent kernel is Taylor-expanded
around the center ρ∗. In this paper, the optimal parameters
α = (5 − √

5)/6, β = 5/3 − α, ρ∗ = ρ0, and γ = 2.7 are
used in all WGC KEDF calculations [9,10], except for CD
Si for which γ = 3.6 is used in order to guarantee numerical
convergence with large density fluctuations present [85].

Parameters of vWGTF1 and vWGTF2 KEDFs are given in
Sec. II above.

Non-self-consistent kinetic energy errors are simply calcu-
lated using converged KSDFT densities output from ABINIT.
For self-consistent results, we calculate equilibrium volumes
(V0) and bulk moduli (B) for fcc, hcp, bcc, and simple
cubic (sc) Al, Mg, Li, and β ′′ − Al3Mg. The equilibrium
structures are obtained by relaxing ion positions and cell
lattice vectors with default force and stress thresholds in
ABINIT. In OFDFT calculations, the equilibrium volume is
found by expanding and compressing unit cells and finding
the total energy minimum. The c/a ratio in hcp structure is
obtained by manually scanning the ratio; there are no degrees
of freedom in atom positions or cell lattice vectors in other
structures. The bulk modulus is calculated with Murnaghan’s
equation [86] to fit total energy vs volume data within a ±2%
range around the equilibrium volume. In addition, the phase
energy differences are calculated for various Al, Mg, and Li
phases as the total energy differences between phases at their
equilibrium volumes.

We also calculate vacancy formation energies in fcc Al, hcp
Mg, and bcc Li. A 2 × 2 × 2 supercell (31 atoms), 3 × 3 × 2
supercell (35 atoms), and 2 × 2 × 2 supercell (15 atoms) with
one atom removed at the origin are used for fcc Al, hcp Mg,
and bcc Li vacancy calculations, respectively. The structures
are not relaxed in either KSDFT or OFDFT calculations, since
we only aim to compare KSDFT and OFDFT under identical
situations; in our experience, relaxation will not lead to large
differences for these simple metals. The vacancy formation
energies are then calculated using Gillan’s expression [87]

Evf = E

(
N − 1,1,

N − 1

N
�

)
− N − 1

N
E(N,0,�), (18)

where E(N,m,�) is the total energy for a cell with volume �,
N atoms, and m defects.

The primitive unit cell of β ′′ − Al3Mg is employed to model
the bulk alloy. The alloy formation energy per atom is then
calculated as

Efm = (
EAl3Mg − 3EAl − EMg

)/
4, (19)

where EAl3Mg is the total energy per primitive cell of β ′′ −
Al3Mg, while EMg and EAl are total energies per atom in hcp
Mg and fcc Al at their respective equilibrium volumes.

Finally, only the nonmagnetic (MS = 0) state is examined
in P2 KSDFT calculations. Two atoms are set up in the center

of a 20 × 10 × 10 Å
3

cell, aligned along the longest direction.
The equilibrium bond length (re) is obtained by varying the
bond length in a wide range and finding the total energy
minimum. All data shown in Sec. IV are computed at re.

IV. RESULTS AND DISCUSSION

A. Non-self-consistent results

Here, we discuss non-self-consistent OFDFT results, i.e.,
using the KSDFT density directly in OFDFT calculations
to calculate the kinetic energy without further density opti-
mization. This is considered the standard test in most of the
earlier GGA KEDF studies. Although the focus of this paper
is on single-point KEDFs, we include two-point WGC KEDF
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TABLE I. KEDF non-self-consistent total kinetic energy errors and MAEs (in %) with respect to KSDFT benchmarks for bulk Al, Mg,
and Li in the fcc, bcc, hcp, and sc structures at KSDFT equilibrium volumes.

KEDF fcc Al hcp Al bcc Al sc Al hcp Mg fcc Mg bcc Mg sc Mg bcc Li fcc Li hcp Li sc Li MAE

vW −91.75 −91.96 −92.02 −85.52 −90.30 −90.57 −90.87 −88.08 −93.39 −93.34 −93.34 −93.47 91.22
Thak −5.77 −5.92 −6.18 −7.19 −6.14 −6.26 −6.04 −8.28 −5.16 −5.22 −5.23 −5.15 6.05
TF −5.24 −5.35 −5.57 −7.47 −5.89 −6.05 −5.89 −8.13 −4.79 −4.84 −4.85 −4.80 5.74
DK −4.44 −4.57 −4.79 −5.92 −5.04 −5.22 −5.10 −6.98 −4.12 −4.16 −4.17 −4.14 4.89
PW86 −4.39 −4.53 −4.76 −5.98 −4.87 −5.06 −4.91 −6.96 −4.13 −4.18 −4.18 −4.15 4.84
TF1/9vW −4.32 −4.46 −4.69 −5.86 −4.81 −5.00 −4.87 −6.81 −4.05 −4.10 −4.10 −4.07 4.76
P92 −4.32 −4.46 −4.68 −5.86 −4.81 −5.00 −4.87 −6.80 −4.05 −4.10 −4.10 −4.07 4.76
TW02 −4.27 −4.40 −4.63 −5.66 −4.83 −5.02 −4.90 −6.72 −4.02 −4.06 −4.07 −4.05 4.72
PW91 −4.25 −4.39 −4.62 −5.55 −4.84 −5.02 −4.91 −6.66 −3.99 −4.04 −4.04 −4.02 4.69
B86B −4.24 −4.37 −4.60 −5.59 −4.80 −4.99 −4.87 −6.67 −3.99 −4.04 −4.04 −4.02 4.69
LC94 −4.24 −4.38 −4.60 −5.58 −4.80 −4.99 −4.87 −6.66 −3.99 −4.03 −4.04 −4.02 4.68
LLP −4.23 −4.37 −4.59 −5.57 −4.81 −5.00 −4.89 −6.66 −3.98 −4.03 −4.03 −4.01 4.68
B86A −4.23 −4.37 −4.59 −5.60 −4.78 −4.97 −4.85 −6.67 −3.99 −4.04 −4.04 −4.02 4.68
E00 −4.20 −4.34 −4.57 −5.72 −4.59 −4.78 −4.65 −6.63 −3.92 −3.97 −3.97 −3.94 4.61
OL1 −4.12 −4.25 −4.47 −5.52 −4.62 −4.82 −4.71 −6.52 −3.89 −3.94 −3.95 −3.92 4.56
DK87 −4.12 −4.26 −4.50 −5.32 −4.62 −4.81 −4.69 −6.51 −3.88 −3.92 −3.93 −3.90 4.54
OL2 −3.72 −3.85 −4.06 −5.15 −4.27 −4.49 −4.40 −6.13 −3.58 −3.63 −3.63 −3.62 4.21
TF1/5vW −3.59 −3.74 −3.98 −4.58 −3.95 −4.16 −4.06 −5.75 −3.46 −3.51 −3.51 −3.49 3.98
PBE2 3.20 2.88 2.63 8.31 3.30 2.88 2.67 4.13 1.89 1.89 1.88 1.73 3.12
TF1vW 3.01 2.69 2.41 7.01 3.82 3.38 3.25 3.79 1.83 1.83 1.82 1.73 3.05
vWGTF1 −0.05 −0.25 −0.30 0.68 0.42 0.18 0.11 0.09 −0.52 −0.53 −0.54 −0.52 0.35
vWGTF2 0.35 0.19 0.21 0.24 0.66 0.46 0.41 0.32 0.11 0.10 0.09 0.14 0.27
WGC 0.01 −0.02 −0.02 −0.03 0.20 0.10 0.07 −0.03 −0.07 −0.08 −0.06 −0.05 0.06

results for comparison because it is thus far the most successful
KEDF for the systems studied here.

In Table I, kinetic energy errors (in percent) compared to
KSDFT benchmarks, computed with various KEDFs, are given
for different bulk main group metal phases. First, using the
vW KEDF alone produces extremely inaccurate results. Since
these particular metals have density distributions close to the
uniform-electron-gas limit, the TF performs much better than
the vW, but the former still significantly underestimates the
kinetic energy. Most of the GGA KEDFs produce rather poor
results, with mean absolute errors (MAEs) around 3–6%. The
parameters in those KEDFs were fit to data from isolated atoms
or molecules, so their unsatisfactory performance in these bulk
metals is somewhat expected. A large group of KEDFs behave
very similarly in their underestimation of the kinetic energy,
e.g., the TF1/9vW, PW91, TW02. Those functionals feature
similar asymptotic behavior around s = 0 (e.g., see table I in
Ref. [79]); they consequently behave quite similarly with the
metals considered here, where s is relatively small.

On the other hand, the PBE2 and TF1vW are different
from other GGA KEDFs, as they both overestimate the kinetic
energy compared to KSDFT benchmarks. This can also be
attributed to their similar small s behavior [79]. Their vW
parts have much larger coefficients than other GGA KEDFs
when expanding around s = 0, which tends to overcorrect the
kinetic energy. Moreover, among all the GGA KEDFs, TF1vW
is the best based on these kinetic energy errors. Theoretically,
this form does not have strong physical justification as a
simple combination of two best-known functionals. However,
its accuracy for these systems is not surprising, since the TF
and vW KEDFs are the leading terms in the WGC KEDF,
which is known to be accurate for such systems (as also

shown in Table I), and also the nonlocal term is usually
not large. In contrast to GGA KEDFs, our vWGTF KEDFs
exhibit considerably improved accuracy for all test cases.
The MAEs of vWGTF KEDFs are much smaller than 1%
and just a bit larger than the WGC KEDF, which is the best
for all metals, as expected. Given that the parameters in the
vWGTF KEDFs are fit using only ground-state phases and
data points strictly along the bond axis, the results here show
quite reasonable transferability, at least in the metallic phases
considered.

We also test vacancy structures for fcc Al, hcp Mg, and bcc
Li and for one alloy Al3Mg (Table II). The mean absolute errors
incurred when describing vacancies decrease slightly for most
of the GGA KEDFs, while the WGC KEDF error increases
modestly, which nevertheless is still very accurate (with errors
much less than 1%). The vWGTF models still exhibit errors
within 1%, much smaller than all the GGA KEDFs (mostly
above 4%).

B. Numerical convergence in self-consistent calculations

Self-consistently solving the Euler equation is required to
use OFDFT in real applications [57], which is more demanding
both physically and numerically than non-self-consistent
calculations. Only simultaneously guaranteeing correct kinetic
energies and potentials can lead to accurate energetics, as
well as correct ground-state densities. Many GGA KEDFs
have unphysical kinetic potentials [40], and consequently
suffer from either numerical instabilities or produce unphys-
ical results after self-consistent density optimization. In this
section, we provide a systematic test of convergence stability
in self-consistent calculations for different KEDFs.
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TABLE II. KEDF non-self-consistent total kinetic energy errors
and MAEs (in %) with respect to KSDFT benchmarks for fcc Al,
hcp Mg, and bcc Li vacancy structures, as well as Al3Mg, at KSDFT
geometries.

KEDF Al3Mg Al Vac Mg Vac Li Vac MAE

vW −89.46 −91.09 −89.58 −92.49 90.66
Thak −6.07 −5.70 −6.19 −5.52 5.87
TF −5.74 −5.28 −6.02 −5.04 5.52
DK −4.69 −4.40 −5.09 −4.27 4.61
PW86 −4.69 −4.35 −4.93 −4.31 4.57
TF1/9vW −4.57 −4.29 −4.87 −4.21 4.49
P92 −4.57 −4.29 −4.86 −4.21 4.48
TW02 −4.47 −4.22 −4.87 −4.15 4.43
PW91 −4.42 −4.20 −4.87 −4.12 4.40
B86B −4.43 −4.19 −4.84 −4.12 4.40
LC94 −4.42 −4.19 −4.85 −4.10 4.39
LLP −4.42 −4.19 −4.84 −4.11 4.39
B86A −4.43 −4.18 −4.82 −4.12 4.39
E00 −4.42 −4.16 −4.64 −4.08 4.33
OL1 −4.30 −4.07 −4.67 −4.01 4.26
DK87 −4.29 −4.05 −4.64 −4.01 4.25
OL2 −3.90 −3.68 −4.31 −3.65 3.89
TF1/5vW −3.63 −3.50 −3.94 −3.54 3.65
PBE2 5.25 3.88 3.97 2.69 3.95
TF1vW 4.80 3.63 4.40 2.47 3.83
vWGTF1 −0.61 −0.63 0.06 −0.96 0.57
vWGTF2 −0.87 −0.65 −0.01 −0.62 0.54
WGC 0.05 0.03 0.22 −0.09 0.10

We first find significant numerical difficulties when solving
self-consistently for almost all GGA KEDFs, except for
TFλvW, E00, and P92. The difficulties of self-consistent
OFDFT calculations with GGA KEDFs for all-electron calcu-
lations are discussed in Ref. [44]. The singular and unphysical
behavior of the kinetic potential around the nucleus makes self-
consistent calculations unstable and hard to solve [40,44]. The
pseudopotential approximation should remove the singularity
issue, and one may expect better stability. In fact, in Ref. [44],
self-consistent results were reported for bulk Li and Al phases
calculated with a modified version of PROFESS. However, we
find that the pseudopotential approximation does not ensure
convergence with GGA KEDFs; most of the GGA KEDFs
continue to be extremely numerically unstable, although the
simple metallic systems investigated here feature rather small
density fluctuations. For the PW91, TW02, PBE2, LC94,
PW86, B86A, and B86B KEDFs, we can obtain energy minima
after density optimizations, but their total energies cannot be
converged with respect to the plane-wave basis kinetic energy
cutoff (they change greatly as the energy cutoff increases).
Consequently, the resulting energy vs volume curves are not
smooth at all. For example, Fig. 7 shows fcc Al energy vs
volume curves calculated with the PBE2 KEDF with different
kinetic energy cutoffs. When the kinetic energy cutoff is
500 eV, the curve looks smooth, the same as shown in Ref. [44].
However, when the kinetic energy cutoff increases, we can no
longer obtain meaningful energy vs volume curves, and the
energies are clearly not converged with respect to the kinetic
energy cutoff (even up to 20 000 eV, a huge kinetic energy

FIG. 7. (Color online) Total energies vs volume per atom for fcc
Al calculated by OFDFT with the PBE2 KEDF with (a) 500 eV
kinetic energy cutoff and (b) 500, 1600, and 3000 eV kinetic energy
cutoffs for the plane-wave basis.

cutoff, as we tested but not shown here). Other GGA KEDFs,
including the OL1, OL2, LLP, Thak, DK, and DK87, feature
even worse behavior during self-consistent optimizations;
optimizers usually cannot find any energy minima, as their
energies diverge to unphysical, extremely negative values
during the optimization.

Analyzing electron densities during the optimization illu-
minates the instability issue further. In Fig. 8, the density
distributions of fcc Al after self-consistent optimization are
plotted for many different KEDFs. For those GGA KEDFs
that can achieve robust self-consistent results, such as the
TF1vW, TF1/5vW, and E00 KEDFs, their final densities are
smooth and physical, although some of them are not close to
the KSDFT benchmark. However, for the other GGA KEDFs,
we find that their densities are frequently trapped in unphysical
states, which may be the origin of the convergence problem.
Specifically, for the likes of PBE2 and TW02, their densities
around nuclei become unphysically small. With increasing
kinetic energy cutoffs, the local density can decrease to less
than 10−100 Bohr−3, which should not appear in fcc Al. The
densities then abruptly increase to large values around 2 Bohr
from the nuclei (around 0.2 in normalized units in Fig. 8).
We also observe sharp density oscillations for the PW91
and PBE2 KEDFs. Those step-function-like extremely rapidly
changing densities cannot be described accurately using a
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FIG. 8. (Color online) Self-consistent electron densities of fcc Al
(at the KSDFT equilibrium volume) plotted along the 〈110〉 bond
direction between two neighboring atoms (horizontal axis normalized
to 1, and two Al atoms are at 0 and 1). KSDFT and OFDFT
with the WGC and vWGTF models, as well as TF1vW, TF1/5vW,
E00, TW02, PBE2, B86A, and PW91 results are displayed. OFDFT
calculations employ an increased energy cutoff (6000 eV) to achieve
denser grids.

plane wave basis, so convergence and stability issues during
self-consistent calculations should be anticipated.

We find that a similar problem exists, not only for those
GGA KEDFs with complicated F , but even for the simple vW
KEDF. Analytically equivalent expressions may exhibit differ-
ent numerical behavior. For example, as mentioned earlier, two
commonly used definitions exist for the vW KEDF: EvW =∫ |∇ρ|2

8ρ
dr and EvW = − 1

2

∫ √
ρ∇2√ρdr. Analytically, these

two definitions are exactly the same, since they simply differ
by a term proportional to the Laplacian of the density (they
have identical kinetic potentials). However, they are not
identical numerically. In most calculations where densities
stay physically reasonable, these two definitions indeed behave
similarly. When using the first definition, however, densities
occasionally are unphysical (extremely small density regions
or sharp changes) and energies can no longer converge. In
contrast, the latter implementation generally guarantees a
physical solution in our tests. Further testing shows that, even
when unphysical densities are provided for the initial guess, the
second expression can recover from divergences and converge
to a physically reasonable answer. Moreover, with unphysical
densities, two theoretically identical total energies are vastly
different from each other. These observations imply that at
least one of the definitions is not calculating the quantity
correctly (presumably the first one). They also indicate that we
may need to use different analytically equivalent expressions
for the other GGA kinetic potentials. Unfortunately, it is hard
to systematically find equivalent and more numerically stable
expressions than Eq. (14) for various GGA KEDFs, especially
for those with complicated enhancement factors. We have tried
several alternatives for the PBE2 and TW02, but all lead to
similar convergence problems.

With these unphysical densities, we believe that the nu-
merical evaluation is not calculating the real functionals, just
as we confirmed in the vW case. We therefore tested some
other methods, such as adding penalty terms and providing

exact KSDFT or WGC KEDF self-consistent densities as
initial guesses, aiming to prevent densities from going into
unphysical states during the optimization. However, none of
these attempts worked, and hence it is still unknown how the
“correct” self-consistent results can be obtained for these GGA
KEDFs. Thus, another obstacle to developing KEDFs arises,
in that one has to consider if the KEDF is numerically stable in
self-consistent calculations. Indeed, this numerical instability
exhibited by many of the GGA KEDFs may be the reason why
so few self-consistent calculations were reported in previous
papers.

By contrast, the vWGTF KEDFs can be converged self-
consistently. The difference in numerical stability should not
be due to using G instead of F , since fundamentally any KEDF
using F can be rearranged to the form with G. Instead, we
think the convergence issue of many GGA KEDFs is related
to use of the reduced gradient or Laplacian. As mentioned
above, even the vW KEDF can show numerical instability
when using a different implementation. The E00 and P92
KEDFs do converge, but usually require much more iterations.
Furthermore, when we include the Laplacian in the vWGTF
models, the numerical convergence also becomes unstable.

C. Self-consistent results

We compare material properties from self-consistent calcu-
lations in this section. In Tables III –V, equilibrium volumes,
bulk moduli, and phase ordering energies for different bulk
phases of Al, Mg, and Li are listed, respectively. Only those
convergeable GGA KEDF (TFλvW, E00, and P92) results
are included due to the issue discussed above. Among said
GGA KEDFs, the TF1vW model again appears to be the
best, though large errors still exist compared to KSDFT.
The E00 and P92 share the same conjointness form, which
may be the reason why both KEDFs can converge. The
P92 has the second-order gradient expansion approximation
asymptotic behavior (TF plus 1/9vW) when s is around 0,
and it consequently leads to very similar results as TF1/9vW.
Overall, these GGA KEDFs give rather unsatisfactory results,
greatly overestimating equilibrium volumes, underestimating
bulk moduli, and producing inaccurate energy differences.

On the other hand, our vWGTF KEDFs show very good
agreement with KSDFT benchmarks for both electron den-
sities (Fig. 8) and energetics. The vWGTF densities almost
overlap with the KSDFT benchmark. Furthermore, almost all
equilibrium volumes have less than 3% error, corresponding
to <1% errors for lattice constants. In addition, their bulk
modulus predictions are very accurate for Mg and Li phases,
while the vWGTF1 KEDF overestimates (by ∼10 GPa) the
bulk moduli of most Al phases. The phase orderings are correct
overall, and energy differences are fairly close to KSDFT
benchmarks, except for the Al hcp structures where the energy
difference from fcc is within just tens of meV per atom.
Considering the relative accuracy of OFDFT and the simple
model used here, all the bulk properties of the vWGTF models
agree quite well with KSDFT results and are the best among
all single-point KEDFs. The results further demonstrate the
transferability of the vWGTF KEDFs from the perspective of
total energies and bulk properties, in addition to the pointwise
KED perspective (Fig. 3).
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TABLE III. Equilibrium volumes (V0), bulk moduli (B), and
equilibrium total energies (Emin) for various Al phases calculated
by self-consistent KSDFT and OFDFT. Only OFDFT results for
numerically stable KEDFs are reported (see Sec. IV B for details);
same for Tables IV and V.

fcc hcp bcc sc

KSDFT 16.575 16.733 17.025 19.937
WGC 16.590 16.657 16.839 20.368

vWGTF1 16.859 16.859 16.882 20.715
vWGTF2 16.872 16.871 16.876 23.486

V0(Å
3
) TF1vW 17.452 17.418 17.464 19.258

TF1/5vW 19.024 18.884 19.234 22.112
TF1/9vW 21.951 22.420 22.311 26.569

E00 21.291 21.511 21.553 24.935
P92 21.928 22.377 22.283 26.144

KSDFT 77 75 70 57
WGC 75 73 70 57

vWGTF1 85 84 83 50
vWGTF2 76 76 75 26

B(GPa) TF1vW 106 115 106 88
TF1/5vW 46 44 44 32
TF1/9vW 23 16 23 13

E00 29 24 29 20
P92 23 17 23 15

KSDFT −57.202 0.024 0.081 0.334
WGC −57.188 0.016 0.074 0.324

vWGTF1 −57.231 −0.004 0.042 0.472
vWGTF2 −57.119 −0.006 0.053 0.232

Emin(eV/atom) TF1vW −56.716 −0.004 0.021 0.799
TF1/5vW −59.036 0.001 0.015 0.250
TF1/9vW −59.983 0.000 0.003 0.106

E00 −59.487 0.000 0.006 0.133
P92 −59.979 −0.002 0.003 0.107

The WGC KEDF is not surprisingly the best among
all KEDFs, producing almost identical results as KSDFT.
However, the accuracy shown by vWGTF KEDFs is still
impressive, and their computation time is 3 to 4 times faster
than WGC KEDF calculations. When performing large-scale
molecular dynamics simulations that may take weeks or
months, this efficiency increase is considerable. To put these
comparisons in context, the simple TFλvW KEDF is only
∼5 times faster than the WGC KEDF; the bare TF can be
∼15 times faster (for each energy and potential calculation),
but it is highly inaccurate and requires many more iterations
to converge due to its unphysical description of the system.
Other convergable single-point KEDFs (like E00 and P92)
usually take much longer than the WGC KEDF due to a large
number of iterations needed. We thus consider the efficiency
of the vWGTF KEDFs to be fairly reasonable, being only ∼1.5
times slower than the TFλvW KEDFs. Thus, switching from
TFλvW to vWGTF KEDFs can offer much better accuracy
while sacrificing little in efficiency.

To further test single-point KEDFs, we consider less
uniform cases, such as vacancies in fcc Al, hcp Mg, and bcc
Li (Table VI), as well as a simple alloy Al3Mg (Table VII).
For these systems, we only show KSDFT, WGC, and vWGTF
results, since all other KEDFs either produce very poor results

TABLE IV. Equilibrium volumes (V0), bulk moduli (B), and
equilibrium total energies (Emin) for various Mg phases calculated
by self-consistent KSDFT and OFDFT.

hcp fcc bcc sc

KSDFT 22.899 23.073 22.839 27.107
WGC 23.083 23.082 22.967 27.278

vWGTF1 23.875 23.877 23.773 26.819
vWGTF2 23.570 23.472 23.469 26.896

V0(Å
3
) TF1vW 25.172 25.221 25.121 27.189

TF1/5vW 23.870 23.874 23.656 27.017
TF1/9vW 24.806 24.813 24.465 29.113

E00 24.955 24.958 24.633 28.772
P92 24.802 24.809 24.453 29.096

KSDFT 38 38 38 24
WGC 37 37 37 23

vWGTF1 38 38 38 27
vWGTF2 37 37 37 24

B(GPa) TF1vW 38 37 38 31
TF1/5vW 28 28 28 18
TF1/9vW 22 22 21 11

E00 23 23 22 13
P92 22 22 21 11

KSDFT −24.246 0.013 0.029 0.408
WGC −24.217 0.007 0.020 0.391

vWGTF1 −24.221 0.001 0.011 0.396
vWGTF2 −24.184 0.002 0.013 0.387

Emin(eV/atom) TF1vW −24.006 −0.001 0.006 0.414
TF1/5vW −25.069 −0.001 0.010 0.249
TF1/9vW −25.473 −0.001 0.012 0.185

E00 −25.187 −0.001 0.011 0.193
P92 −25.471 −0.001 0.012 0.185

or fail to converge. The WGC KEDF again predicts very ac-
curate results compared to KSDFT benchmarks. The vWGTF
models still give fairly reasonable but larger errors for Al3Mg
bulk properties and the bcc Li vacancy formation energy,
respectively. However, the vWGTF KEDFs fail to reasonably
describe vacancies in fcc Al and hcp Mg, giving rise to negative
vacancy formation energies. Furthermore, they greatly over-
estimate the magnitude of the Al3Mg alloy formation energy,
although they give the correct negative sign. The failure of
vWGTF models on these defective and alloy materials show
their insufficient transferability beyond perfect, single-element
bulk metals. In the next section, we further analyze the reason
of their failure from a pointwise KED point of view.

D. Pointwise analysis

All results shown above are based on total (kinetic) ener-
gies. As mentioned in previous sections, pointwise quantities,
such as the KED, ELF, or G provide more rigorous and
illuminating information than total energies. In this section,
we will compare different KEDFs on a pointwise level, with a
particular focus on G vs d distributions.

We have already shown that the WGC KEDF can accurately
describe various metals on an integrated level (Secs. IV A
and IV C, respectively). We next want to investigate how it
performs for more demanding pointwise quantities. However,
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TABLE V. Equilibrium volumes (V0), bulk moduli (B), and
equilibrium total energies (Emin) for various Li phases calculated
by self-consistent KSDFT and OFDFT.

bcc fcc hcp sc

KSDFT 19.397 19.308 19.324 19.932
WGC 19.402 16.658 19.328 19.978

vWGTF1 19.490 19.400 19.416 20.082
vWGTF2 19.515 19.423 19.439 20.120

V0(Å
3
) TF1vW 20.197 20.109 20.119 20.906

TF1/5vW 17.644 17.460 17.488 18.684
TF1/9vW 16.947 16.708 16.757 18.176

E00 17.251 17.024 17.071 18.410
P92 16.952 16.713 16.759 18.178

KSDFT 16 17 17 17
WGC 16 17 17 17

vWGTF1 16 17 17 17
vWGTF2 16 17 17 17

B(GPa) TF1vW 16 16 16 29
TF1/5vW 18 18 18 18
TF1/9vW 18 19 19 19

E00 18 18 18 19
P92 18 19 19 19

KSDFT −7.550 −0.001 0.000 0.136
WGC −7.543 −0.001 0.000 0.137

vWGTF1 −7.559 −0.001 −0.001 0.136
vWGTF2 −7.537 −0.001 −0.001 0.137

Emin(eV/atom) TF1vW −7.499 0.000 0.000 0.132
TF1/5vW −7.748 −0.004 −0.004 0.125
TF1/9vW −7.836 −0.006 −0.005 0.117

E00 −7.778 −0.005 −0.004 0.119
P92 −7.836 −0.006 −0.005 0.117

as mentioned in Sec. II, the definition of GWGC is not
unique, since it is a two-point KEDF. Two natural ways to
define GWGC are Eqs. (5) and (6), depending on which local
coordinates are chosen, while the linear combination of these
two definitions, GWGC = c · Gβ

WGC
[ρ] + (1 − c) · Gα

WGC
[ρ]), is

also a valid definition. In the following, we employ a simple
average definition with c = 1/2, i.e., GWGC = (Gβ

WGC
[ρ] +

Gα
WGC

[ρ])/2. We find that, while each of these definitions pro-
duces somewhat different G values, the general characteristics
of the corresponding G vs d distributions are similar. As a
result, we emphasize qualitative behavior rather than absolute
values in the following G vs d analysis.

In Fig. 9, we plot G vs d data for fcc Al calculated
by KSDFT and OFDFT with the WGC, vWGTF, and some

TABLE VI. Vacancy formation energies (Evf) for fcc Al, hcp Mg,
and bcc Li calculated by self-consistent KSDFT and OFDFT with the
WGC and vWGTF KEDFs.

Evf(eV) fcc Al hcp Mg bcc Li

KSDFT 0.722 0.945 1.028
OFDFT-WGC 0.808 0.983 1.019
OFDFT-vWGTF1 −4.886 −0.811 0.753
OFDFT-vWGTF2 −10.426 −2.539 0.509

TABLE VII. Equilibrium volume (V0), bulk modulus (B), and
alloy formation energy (Efm) for Al3Mg calculated by self-consistent
KSDFT and OFDFT, with the WGC and vWGTF KEDFs.

B(GPa) V0(Å
3
) Efm(eV/atom)

KSDFT 63 71.828 −0.019
OFDFT-WGC 64 71.812 −0.016
OFDFT-vWGTF1 67 74.292 −0.174
OFDFT-vWGTF2 57 75.078 −0.384

representative GGA KEDFs. The WGC curve is very close
to the KSDFT data. The absolute errors are a bit larger in
the small d region, but here they have smaller contributions
to the total kinetic energy (τTF is small). These results may
not be surprising, since the WGC KEDF is designed to
describe such a metal; the results are, however, still amazing
because previous results showed only accurate total energies
without examining anything on a pointwise level. Turning to
single-point KEDFs, all vWGTF data are very close to those of
KSDFT. The accuracy here is expected because our vWGTF
models were fit to generate accurate G values, and we have
confirmed their transferability already. The G distributions of
other GGA KEDFs are generally very different from KSDFT,
indicating that they will predict rather poor local quantities,
such as the KED. Furthermore, one can expect them to demon-
strate inaccurate pointwise kinetic potentials from Sec. IV B
because, during a self-consistent optimization, the density
changes greatly starting from the KSDFT density initial guess
and finally falls into an unphysical state. By contrast, both
WGC and vWGTF OFDFT calculations converge in just a few
iterations, with final densities very close to KSDFT (Fig. 8).
This also suggests the pointwise kinetic potentials of the WGC
and vWGTF models are accurate.

FIG. 9. (Color online) G [Eq. (7)] vs d (ρ/ρ0) in fcc Al (at the
KSDFT equilibrium volume) calculated by KSDFT and OFDFT
with the WGC, vWGTF1, vWGTF2, PW91, and PBE2 KEDFs. The
following conditions are applied in Fig. 9 through Fig. 12: OFDFT G

values are non-self-consistently calculated using the self-consistently
optimized KSDFT density; data points are taken from all spatial points
(on a numerical grid) in the unit cell.
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FIG. 10. (Color online) G vs d in the Mg vacancy structure (at
the KSDFT geometry) calculated by KSDFT and OFDFT with the
WGC and vWGTF1 KEDFs.

Thus far, we have excellent agreement of the WGC and
vWGTF KEDFs compared with KSDFT on an integrated and
a pointwise level for bulk metals. We next inspect defective
and alloyed metals for which we observed failures in the
previous section for the vWGTF KEDFs while the WGC
KEDF remained accurate. In Fig. 10, we first plot G vs d

curves for the hcp Mg vacancy structure. In the benchmark
KSDFT data, the original single-valued curve (in perfect hcp
Mg) bifurcates into two branches, and the width of each branch
is slightly wider than in the hcp Mg case. Notice that the
upper branch corresponds to the original curve in hcp Mg
and contains the majority of the data. The lower branch thus
corresponds to the local vacancy region. The results for both
fcc Al and bcc Li vacancy structures (not shown) are very
similar to the results for hcp Mg. We test Al3Mg and again find
a similar two-branch feature (Fig. 11): G vs d curve bifurcates,
with neither of the two branches corresponding to the ones
in pure fcc Al and hcp Mg, respectively. The bifurcation
phenomenon explains the failure of vWGTF models, which
have a one-to-one mapping between d and G. By contrast, the

FIG. 11. (Color online) G vs d in Al3Mg (at the KSDFT equilib-
rium volume) calculated by KSDFT and OFDFT with the WGC and
vWGTF1 KEDFs.

FIG. 12. (Color online) G vs d in CD Si (at the KSDFT equilib-
rium volume) calculated by KSDFT and OFDFT with the WGC and
vWGTF1 KEDFs.

WGC KEDF successfully reproduces the bifurcation feature
in all cases, which we find rather amazing and inspiring. Based
on its well-known outstanding performance for simple metals,
one may have conjectured its accurate KED as well. However,
after many tests and applications of the WGC KEDF, studies
of the KED on a pointwise level were lacking. The results
here confirm that the WGC KEDF is accurate both on a
pointwise level and an integrated level. This also highlights
the importance of studying local quantities rather than just
total kinetic energies.

We next explore other systems for which the WGC KEDF
is insufficient, such as CD Si. In Fig. 12, similar curves are
plotted for CD Si. We again observe two main branches in
the G vs d distribution in KSDFT, and the WGC KEDF
surprisingly preserves this feature. However, we notice a bit
larger discrepancy of absolute G values in this system. This
may be one of the reasons why the WGC KEDF is not accurate
for Si, when compared to KSDFT. Furthermore, the similar
bifurcation structure in Si also indicates that the pointwise
approach may be general and promising for materials other
than simple metals, such as CD Si here. Analyzing and
reproducing the bifurcation feature should be a key to make
new KEDFs more accurate and transferable.

Finally, we expect isolated systems to possess a completely
different character from extended systems. As an example, we
examine the singlet state of the P2 molecule. Since the WGC
KEDF cannot converge in this case, only KSDFT data are
presented. Moreover, the average density in the definition of d

is not well defined. Here, we use ρmax instead of ρ0; this will
not change any key properties since both are just constants.
In Fig. 13, we observe that the G values are more scattered,
and it is hard to sort out any structures or patterns. We also
tried plotting G vs other density variables, but found no further
insight.

E. Discussion and future work

In this section, we discuss possible improvements, which
we hope this current paper will inspire. In the previous section,
we displayed the bifurcation feature in G vs d distributions in
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FIG. 13. G vs ρ/ρmax in singlet P2 at the KSDFT equilibrium
bond length and using the density calculated by KSDFT. Data points
are taken from all spatial points (on a numerical grid) where density
is larger than 0.005 Bohr−3.

various systems. We concluded that it is impossible to use
only d to predict G in such situations. Our simple vWGTF
models fail because they are all based on a one-to-one mapping
between G and d. We questioned GGA KEDFs in an earlier
section for a similar failure, but for the independent variable
s instead of d. We have oversimplified when approximating
G, which ought to be a functional of the electron density.
Even when simplifying G to a function, more density variables
(such as s and l) should be included in G. We find that G vs
l distributions feature relatively well-defined distributions (by
contrast, G vs s distributions generally have more complicated
structures; see Fig. 6 for example). For instance, the bifurcation
occurs in l vs d (Fig. 14) and in G vs l (Fig. 15) distributions for
CD Si and the Mg vacancy structure, respectively. Moreover,
we found that branches correspond perfectly: data points in the
upper branch of G vs d plot also lie in the upper branch of the
l vs d plot. This strongly suggests using both d and l to predict
G. One way to do this is to combine d and l to form a new
density variable, which can uniquely determine corresponding
G values, i.e., two branches can be unified if plotting G against
this new density variable. Unfortunately, after several attempts,
we were still unable to find such a variable, even after trying
to include s, as well.

Another way is to define a multivariate function, such as
G(d,l). For this, we try to average two branches of G(d) with
the weights depending on l. More specifically, we design G =
G(d,l) = Gu(d) · Wu + Gl(d) · Wl , where Gu(d) and Gl(d)
are determined by the upper and lower branches, respectively.
Wu and Wl take the form as Wu = wu/(wu + wl) and Wl =
wl/(wu + wl), where wu and wl are rapidly decaying functions
such as wu = e−[l−Lu(d)]2

and wl = e−[l−Ll (d)]2
, with Lu(d)

and Ll(d) defined similarly as Gu(d) and Gl(d), respectively.
Using this function, G is determined with the correct function
of d by making use of the local l value. We tested this
model on CD Si, metal vacancies, and the Al3Mg alloy,
and found that non-self-consistent kinetic energy errors are
greatly reduced to within 0.5%. However, the G(d) and L(d)
branch functions are not transferable for different systems.

FIG. 14. Reduced Laplacian l vs d in (a) CD Si (at the equilibrium
volume) and (b) Mg vacancy structure, calculated by KSDFT. Data
points are taken from all spatial points (on a numerical grid) in the
unit cell.

Furthermore, we again encountered convergence issues when
carrying out self-consistent calculations with this multivariate
G function. Adding s or l into KEDFs generally leads to

FIG. 15. G vs l in CD Si at the equilibrium volume calculated by
KSDFT. Data points are taken from all spatial points (on a numerical
grid) in the unit cell.
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numerical difficulties in self-consistent optimizations, which
makes developing accurate single-point KEDFs more difficult.

This paper is also closely related to the recently proposed
density decomposition method [29]. On one hand, the quality
of the density decomposition depends on the scale function,
which aims to distinguish and separate localized and delocal-
ized electron densities. An accurate pointwise-based KEDF
and its corresponding OF-ELF [Eq. (8)] may help to construct
a better scale function. On the other hand, accurate single-point
KEDFs are needed for the localized KEDF and the KEDF
interaction terms (see Ref. [29] for details). We are now
testing different GGA KEDFs, as well as our vWGTF models,
for these terms as a means of further improving the density
decomposition method for KEDF development.

V. CONCLUSIONS

Previous KEDF assessments of quality have mostly focused
on the integrated total (kinetic) energy or resultant physical
properties. Here, we argued that accurate pointwise quantities
are important and useful criteria for constructing KEDFs.
We first proposed a KEDF development scheme based on
a pointwise KED analysis. We investigated the relationship
between G and the reduced density d, reduced gradient s, and
reduced Laplacian l in KSDFT. For various simple metals, in
particular bulk Al, Mg, and Li, we found a strong correspon-
dence between G and d; data points from different phases
formed a well-defined single-valued function. In contrast, G

vs s was usually multivalued, which calls into question the
validity of using s as the sole variable when constructing
enhancement factors. Through fitting a small set of data for G

vs d or ELF vs d, the resulting models significantly improved
non-self-consistent kinetic energies with MAEs within 1%.
The WGC KEDF produced the best results (<0.1%), while
previously proposed GGA KEDFs generally led to errors of
about 3–6%.

We also performed a thorough test of self-consistent
optimizations with our models and various GGA KEDFs.
Unfortunately, most GGA KEDFs had serious convergence
problems. The optimized densities showed unphysical dis-

tributions: extremely small densities around the nuclei, as
well as sharp density changes. The numerical evaluation of
gradients or Laplacians using FFTs was no longer reasonable
for these unphysical densities. Consequently, we believe that
the self-consistent results obtained could not be considered
as the real physical outcomes of these GGA KEDFs. We
therefore concluded that self-consistent optimizations are
rather cumbersome when density gradients are involved. In
contrast, our vWGTF models converged readily and gave
reasonable self-consistent results for all perfect bulk systems.
Errors for equilibrium volumes and bulk moduli were within
5%, and phase ordering energies also agreed well with KSDFT
benchmarks.

However, the vWGTF models showed unfortunate fail-
ures when calculating defective or alloyed systems. Plotting
KSDFT G vs d distributions in these samples showed a
clear two-branch bifurcation feature. This feature therefore
demonstrated the inadequacy of the current vWGTF models
which approximated G as a simple function of d. The WGC
KEDF, however, accurately reproduced the bifurcation feature,
which also explained its accurate total energies and bulk
properties for these types of materials. We thus expect a
single-point KEDF that can predict this bifurcation feature
will provide more accurate kinetic energies and material
properties than the current vWGTF models. We hope this
study inspires more ideas for developing new KEDFs and thus
further advance OFDFT, both theoretically and practically.
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