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We present a general frame to extend functional renormalization group (fRG) based computational schemes
by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic
expansion around this solution accounts for a nonperturbative inclusion of correlations. Introducing auxiliary
fermionic fields by means of a Hubbard-Stratonovich transformation, we derive the flow equations for the
auxiliary fields and determine the relation to the conventional weak-coupling truncation of the hierarchy of flow
equations. As a specific example we consider the dynamical mean field theory (DMFT) solution as reference
system, and discuss the relation to the recently introduced DMF’RG and the dual-fermion formalism.
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I. INTRODUCTION

One of the main challenges in nonrelativistic quantum
many-body theory is the development of powerful tools for
treating correlations between fermionic particles, not limited
to specific parameter regimes. These would provide the keys
for understanding and controlling many of the most exciting
experiments currently performed in solid-state, nanoscopic,
and cold-atom physics. In fact, the state-of-the-art theoretical
tools allow for an accurate treatment of quantum many-body
correlations in specific cases, but their reliability is not
guaranteed in general.

A very powerful method, among those currently available
and widely used for performing model and realistic cal-
culations of correlated fermions, is arguably the functional
renormalization group (fRG) [1-4]. The starting point of the
fRG is an exact functional flow equation, which parametrizes
the gradual evolution from an exactly solvable initial action
Sini (typically of an uncorrelated problem) to the full final
action Sg,, of the many-body problem of interest. Expanding
the functional flow equation yields an exact infinite hierarchy
of flow equations for the n-particle one-particle irreducible
(1PI) vertex functions. However, for most calculations, the
hierarchy of equations is truncated at the two-particle level.
Because of this approximation, the validity of the conventional
fRG is limited to the perturbative weak-coupling regime,
except for situations in which phase space restrictions suppress
higher order contributions [1,5,6]. For the same reason, the
accuracy of the final results depends on the choice of the
initial conditions.

In spite of the limitation to the weak-coupling regime, the
fRG has led to powerful new approximation schemes: In fRG,
infrared singularities can be dealt with much more efficiently
than within the traditional resummations of perturbation
theory, due to the built-in RG structure. Moreover—differently
from other perturbative approaches, such as RPA—fRG is
“channel unbiased”: The fRG flow equations include the
contributions of all scattering channels (e.g., spin, charge,
particle-particle) and their reciprocal interplay.
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The development of novel computation schemes for extend-
ing the advantages of an fRG treatment to the strong-coupling
regime, where, e.g., Mott-Hubbard metal-insulator transitions
can occur, represents a very challenging but highly rewarding
task. In fact, the potential of extending the fRG to the strong-
coupling (SC) regime in order to overcome the main restriction
of the conventional implementations has already motivated
the first pioneering studies [7-9]. The underlying idea is to
access the SC regime by changing the initial conditions of the
fRG flow: If these are extracted from the exact solution of
a suitably chosen interacting reference problem, a significant
part of the correlation effects are included nonperturbatively
already from the very beginning, while the remaining ones
will be generated, in all scattering channels, by the fRG flow.
Formally, this corresponds to taking a SC “reference” system
S as an initial action Sy, provided that it allows for a reliable
(numerical or analytical) solution. In the case of the Anderson
impurity model (AIM), for example, the atomic limit and
extensions thereof have recently been used as a reference
system to define a SC starting point for the fRG flow [8,9].
For the Hubbard model on the other hand, the effective AIM
determined self-consistently by dynamical mean field theory
(DMFT) was chosen to define the initial conditions of the fRG
flow [7]. This approach, coined DMF?RG, aims at a systematic
and channel-unbiased inclusion of correlations [7], beyond the
purely local ones described, nonperturbatively, by the DMFT.
We note that the idea of choosing a SC (or nonperturbative)
reference system for the fRG flow has been recently introduced
also in the context of spin models [10,11] or for systems of
correlated bosons [12,13].

Irrespective of the performance in specific cases, all exten-
sions of the conventional fRG face the challenge of proving
the validity of the truncation procedures in the nonperturbative
SC regime. This subject has never been explicitly addressed
and calls for a systematic derivation.

The main goal of this paper is to define the properties of
the fRG schemes with a nonperturbative starting point within
arigorous framework and a unified formalism. To this aim, we
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consider a general starting point for the perturbative expansion:
performing a Hubbard-Stratonovich transformation for the
fermionic degrees of freedom not associated with the chosen
(SC) reference system, we derive an action in terms of the
auxiliary Hubbard-Stratonovich fermionic fields (referred to
as “dual” fermions [14-22] in the context of the diagrammatic
extensions [14-29] of DMFT). The resulting equations are
compared to those derived by directly working at the level
of the physical fermions, and finally, the physical contents
underlying the approximations made in the different schemes
are critically analyzed.

The paper is organized as follows. In Sec. II we briefly
review the general procedure for decoupling the fermionic
degrees of freedom associated with a given reference system
with the introduction of auxiliary fermions. The formulation
in terms of auxiliary fields and its physical interpretation is
presented in Sec. III. In Sec. VI we derive the flow equations
in the auxiliary space and in Sec. V we discuss the relation to
other methods. Finally, in Sec. VI, we summarize our results
and draw conclusions.

II. INTERACTING REFERENCE SYSTEM

In the following, we present a general formalism that allows
for an expansion around an interacting reference system. It was
first introduced to set up an expansion of the d-dimensional
Hubbard model around the atomic limit [30], and has recently
been used in the dual-fermion (DF) formalism [14-22] to
include nonlocal correlations beyond DMFT.

Let us start with a system of fermionic particles described
by a general action of the form

S@.9) = —(@.87"'9) + Sin(@.9). (1

Here we use the compact notation (@,¥) := ZE Pee. 8
denotes the noninteracting Green’s function, and S;,, contains
quartic interaction terms in the Grassmann fields ¢, @¢. The
multi-index & = (w,,s) consists of a fermionic Matsubara
frequency w, and a general quantum number s including,
e.g., momentum, spin, and orbital index. We introduce an
interacting reference system described by the action

Sr(@,0) = —(7.8%'¢) + Sin(@.0) )

written in terms of the same Grassmann fields as action (1). It
differs from the latter only in the quadratic part g,;l , which is
chosen such that the system is exactly solvable.

In order to expand the action

1 1

in the difference A = g7 — g, of the quadratic parts, we
cannot apply Wick’s theorem to the many-particle reference
Green’s functions because the reference action Sk contains
the quartic terms in the fields. Instead, we perform a fermionic
Hubbard-Stratonovich transformation

D,v)
—e

— (0, Dv)+(V,n@)+(g,nv) 4)
det D

(@,nD™'ng) = ln/

introducing a set of auxiliary fermionic fields v, . We require
that the matrices n¢ ¢ and Dg ¢ fulfill the condition nD~'n =
A, which implies freedom in the choice of n. At this point, we
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can perform the integration with respect to the physical fields
@, to yield an action

Sa(@,v) = —(v,g, ') + V(@,v) (5)

that depends on the auxiliary fields only (see Appendix A 2 for
more details), with an inverse Gaussian propagator

g = -nlGr+ A" In (©6)

that contains correlation effects already through the one-
particle Green’s function of the reference system Gg. The
interaction of the auxiliary fields reads

V@) = G G+ @.Grml y=m (7
f=np
where Gg corresponds to the generating functional of the
reference system Green’s functions,

1 _ _ _
Gr(ii,n) = Z_/ID(@’(p)e—[SR(ww)Hn,w)-s-(w.n)]’ 8)
R

with source fields n, 7. While the freedom in the choice of n
can be maintained in all following considerations, we focus on
the conventional choice [14]

n=Gg' ©))

for the sake of simplicity [50].

Before providing more details about the treatment of the
SC problem in auxiliary space, let us briefly sketch in Fig. 1
the idea motivating the formulation of an fRG flow from a
SC starting point. In contrast to the case of the conventional
fRG, the initial uncorrelated generating functional Giy; is
replaced by the one of the (solvable) interacting system, Gg.
A suitable choice reduces the effects of the truncation of the
flow equations on the final result, which is therefore closer to
the desired Gg,.

A gl?.\\*\\
.
.gﬁn
/ﬁ
RG flow -~
e

‘/
gini

parameter space

FIG. 1. (Color online) Schematic representation of the fRG flow
in a general “parameter space.” In conventional schemes the fRG
flow starts from the generating functional of an uncorrelated problem
Gini- The approximations due to the truncation lead to deviations
of the result at the end of the flow from the exact final generating
functional Gg,. This truncation error can be reduced by using a
correlated reference system (provided its generating functional Gg
is exactly known) as a starting point for the flow.
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III. THE AUXILIARY PROBLEM

Now that we have reformulated our initial problem in
terms of the auxiliary fields, we derive the expansion around
the reference system solution. By definition the reference
system solution is contained completely in the noninteracting
theory (V = 0) of the auxiliary fields, while any treatment of
the auxiliary interaction introduces corrections that take into
account the solution of the physical system. In the following,
we discuss the physical interpretation of the propagator and
of the interaction of the auxiliary fields, before introducing
the relations between the physical quantities in auxiliary and
physical space.

A. Gaussian propagator

The Gaussian propagator of the auxiliary fields (6) has
interesting properties. We find that as A tends to zero, g,
vanishes linearly [31]:

8a T2 GrAGR. (10)
This means that any expansion in the interaction converges
asymptotically, as higher order diagrams with N internal lines
will be suppressed as AM. For a physical intuition of the
propagation described by g,, we write

1

— G
g7 — X N

8 = (1D
The first term can be interpreted as an approximation to the
physical Green’s function (it actually brings the result of the
Oth-order expansion in ]7), from which we subtract the full
reference propagator. In this sense, g, corresponds to the
difference of the interacting propagators. Therefore it does
not exhibit the typical ~1/w behavior at large frequencies, but

rather ~1/w?.

B. Interaction

By integrating out the physical fields ¢, the interaction of
the auxiliary fields (7) is generated. It contains two- and multi-
particle interactions that are given by the connected reference
Green functions, where G is amputated at each external leg.
We can thus schematically write

163 [(67'9).(6%'9).(G7).(G5'W)]
~ 360°[(GR'9).(Gx'9).(G'D),
(Gr').(Gx'V).(Ge'W)] + -,

where G(Ig")’c (m=2,...,00) denotes the connected m-
particle reference Green’s function. In Eq. (12) we introduced
the notation V,[ay,...,a,,a},....a,] which is a shorthand for

Valay, . T P

= (a)e, - - @)y, Va(Wis oW1,
< (@Dy.g - @)y, g

Y@,v) =—

12)

cGp,ay, .
)
(13)

where we sum over repeated indices. V,, represents a generic
n-particle vertex function (e.g., connected Green’s function,
1PI vertex,...) and a; is a two-dimensional matrix in the multi-
index &;.
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Since the treatment of infinitely many multi-particle inter-
actions poses an impossible task, approximations to the infinite
series defining the interaction have to be devised. We drop the
interaction terms beyond the quartic one and thus

Vv~ —5G[(GR'D).(Gk'D).(Gk'v).(Gx'v)]

= _%7/2R[D71_)7v1v]a (14)

where yzR denotes the one-particle irreducible (1PI) two-
particle vertex of the reference system.

This represents an approximation based on the fundamental
assumption that the effects of (m > 3)-particle scattering
processes beyond the description of the reference system
can be neglected. The impact this has on the resulting flow
equations is discussed in Sec. IV. While previous works
[14-22,27,30] have treated the auxiliary interaction Y by
means of perturbation theory or ladder approaches, we propose
using the fRG [4] to perform a channel-unbiased resummation
of diagrams to all orders in a scale-dependent fashion, thereby
further improving on the physical results.

C. Relation to physical quantities

Once the solution in the auxiliary space is obtained, we need
to translate Green’s and vertex functions from the auxiliary
to the physical space. These relations can be formulated in
a very general way by establishing the connection between
the generating functionals. As shown in Appendix A 3, the
generating functionals of the Green’s functions fulfill

G = Guo(Gp ARG AT ) x @A, (15)
with G,” = (G;")". Further relations for the generating
functional of the connected Green’s functions, or the effective
interaction and the respective derivations, are presented in
Appendix A 3. By taking the derivative of Eq. (15) with respect
to the source fields we find the relation between the physical
and auxiliary Green’s functions,

G=A"+A"1G6'G.GR AT (16)
Translated to the self-energy, this relation reads
Y=%r+ L, an
1+ GrZ,

where the fraction is to be understood as multiplication by the
inverse from the right. The corresponding relation for the 1PI
two-particle vertex reads (see Appendix A 3 for further details)

Y2 = VZ,a[é‘?{’E’E]’ (18)
with¢ = G~'Ggrand £ = GrG~!, where
G=(ex'—3)". (19)

In the following we refer to Eqgs. (11), (17), and (18)
and generalizations thereof for higher order vertices as the
transformation to the auxiliary fields 7.

D. DMFT as reference system

To make the procedure described above more concrete,
let us focus on the example of a reference system obtained
by DMFT. This allows for a direct comparison with the DF
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approach and the recently introduced DMF’RG [7], which is
summarized in Sec. V.

DMEFT can be considered the quantum extension of classi-
cal mean field theory [32,33] as it can be formally derived
as the exact solution of a quantum lattice Hamiltonian in
the limit of infinite spatial dimensions (d — oco) [34]. In
DMET all nonlocal spatial correlations are averaged out, and
one can reduce the study of a quantum lattice problem to
a self-consistently determined local impurity problem. For
instance, one can consider the action of a one-band Hubbard
model [35] given by

Slattice =T Z/dk (/_Jk,(r(a)n)glzl(a)n)(pk,o(a)n)

+U Y [ g = 1200 - 1721,
' 20)

with T being the temperature, g, 1(a),,) = (lw, — L — €k), €k
the energy dispersion of the lattice, i the lattice site index,
U the Hubbard interaction, and n; ,(7) = @; - (7)@;.+(0). The
on-site (local) properties of this action are studied in DMFT
by singling out a lattice site and embedding it in an effective
bath which accounts for the presence of all the other sites,
i.e., an Anderson impurity model (AIM) in an effective bath.
To guarantee that the AIM approximates the local physics
of the lattice, the effective bath (or hybridization function)
I'(w,) has to be computed self-consistently, and the resulting
frequency dependence of the effective bath accounts for
all purely local quantum correlations. The self-consistency
condition that determines the effective bath and the propagator
g;nlp(wn) = iw, — I'(w,) (often referred to as dynamical Weiss
field in the DMFT literature) of the AIM reads

Gpwmrr = /dk (&' - EDMFT)71 = (gi:nlp - EDMFT)ila
2D
where Xyt is the self-energy of the self-consistent impurity
problem defined by gimp, and Gpwmrr represents the DMFT
approximation to the local interacting lattice Green’s function.
The self-consistency equation (21) follows directly from the
DMFT assumption of locality of the lattice self-energy, which
is clearly an approximation in finite-dimensional systems.
Since the AIM can be solved exactly, the action of a
collection of disconnected self-consistent AIMs, one for each
lattice site, is well suited as reference action to approximate
the physical action (1)

Se=T Y §.0(@n)8imp @)t 0 (@n)

i,wp,0

+UZ/dr [ni4(0) — 1/2][n; () — 1/2]. (22)

This way, the local physics of the system, computed at the
DMEFT level, is already included in the reference action. Note
that assuming the action (22) as reference action is what is
typically [51] done in the DF [14-22] approaches. In some
cases, also the solution of a cellular DMFT [36] or a dynamical
cluster approximation [37,38] calculation has been taken as a
reference system [18,39]. This way one is able to include
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nonperturbatively in the initial conditions also the short-range
spatial correlations, providing a complementary multiscale
[39] framework to treat correlations beyond DMFT over all
length scales. Hence, the DF reference system is defined by the
momentum-independent propagator giyp, While its interacting
Green’s function is the local DMFT one,

El = g;nlp — XDMFT- (23)

Performing the Hubbard-Stratonovich transformation to intro-
duce the auxiliary fermions relative to this reference system,
one obtains for the noninteracting propagator

1

- _Gp 24
iwn_ek_zimp . ( )

8a =
which explicitly depends on the momentum k through the
lattice dispersion €. The first term in Eq. (24) represents the
DMFT approximation to the lattice Green’s function under
the assumption of a local self-energy. g, is also referred to as
the purely nonlocal propagator, as the local impurity Green’s
function is subtracted, and therefore it vanishes by summing
over the momenta. As for the interaction between the auxiliary
fields, this is, according to Eq. (14), given by the 1PI two-
particle vertex of the AIM [14]. This input can be calculated
[40,41] to high accuracy within the current numerical solvers
for the AIM.

IV. FLOW EQUATIONS

After having reformulated the initial problem by means of
the auxiliary action (5) we now address the issue of solving
this problem using the fRG. This procedure is sketched on
the right-hand side of Fig. 2. Integrating the flow equations
in auxiliary space (which are derived in the following) results
in an approximated solution for the auxiliary problem that we
can eventually translate back to acquire a physical solution.
This scheme is then compared to the one obtained by deriving
fRG flow equations directly in the physical space.

A. General formulation

We recall that the first step to determine the fRG flow
equations [4] is to substitute the noninteracting propagator
g of the system in question by a scale-dependent g”. This
allows for the derivation of an exact functional flow equation

Physical Auxiliary
Cutoft gAzgR...g—T>g;’}=0...gtl

Hierarchy A — 'y,/,‘l’ o
flow
Results Ym <——7T  Jma

FIG. 2. Overview of the relation between the flow in physical and
auxiliary space; 7 denotes the transformation to the auxiliary fields.
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that describes the gradual evolution of the effective action as
the cutoff scale A is changed. Expanding the flow equation in
the 1PI vertex functions results in an infinite hierarchy of the
form

e = vt @

For practical implementations this hierarchy is typically

truncated at the two-particle level by assuming that y;* ~

yiim = 0, reducing the hierarchy to a set of coupled flow

eiluations for the self-energy and the 1PI two-particle vertex
function

EA = —§h o ph,

=9 0 (Sh oG+ G o SM oy

(26)
27

In Eqgs. (26) and (27) the o stands for summation over
internal momenta and quantum numbers according to standard
diagrammatic rules as shown explicitly in Appendix A 1, while

Sh = —G oa(g™) TG = 04G  [sr i (28)
denotes the single-scale propagator, with
Gt =M -z (29)

The scale dependence of g” has to be chosen such that, at the
initial scale A, X2 and )/ZA“" can be determined exactly,
while the physical propagator g is recovered at the final scale
Aﬁnal,

gAlina] =g. (30)

In conventional fRG approaches the bare propagator vanishes
at the beginning of flow. We introduce the notation

(€29

to describe this scale-dependence. While this choice results
in trivial initial conditions that can be read off from the
microscopic model action directly, recent works [7-9,11,]
introduced the idea of starting the fRG flow from a reference
system solution by choosing

gh=0...g

¢t =gr...g (32)

This approach corresponds to the left-hand side of Fig. 2.

B. Flow in the auxiliary space

In contrast to the derivation in the previous subsection,
we now consider the reformulated problem for the auxiliary
fields, for which we set up an fRG flow in the conventional
sense. For this, we introduce a scale-dependent auxiliary field
propagator glj‘ =0...g,. The resulting flow equations then
read as Egs. (26) and (27), where all physical objects have to be
replaced by their auxiliary equivalents. Note that the relations
(17) and (18) between the scale-dependent physical and
auxiliary quantities remain valid. Even though the auxiliary
self-energy X é\ vanishes at the scale A;y;, the initial conditions
are in general highly nontrivial, since y;’\;‘“ = pf.

As mentioned in Sec. IIIB, we approximate the bare
auxiliary interaction by its quartic term. This corresponds
to neglecting the effect of multiparticle scattering processes
when calculating corrections of the reference system solution
towards the physical one. In the auxiliary fRG flow, this results
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in an initially vanishing scale-dependent three-particle vertex,
ys = yR = 0, which justifies our truncation of the auxiliary
flow equation hierarchy. Note, however, that multiparticle
scattering processes are of course included in the exact solution
of our reference system, and thus in the initial conditions
(yz{\“l"i = pf) of the flow. After solving these flow equations
numerically, results have to be translated back, using the
transformation 7 ~! as described in Sec. 111 C.

This approach is similar in spirit to recent approaches [7—
9,11] following Eq. (32), as depicted on the left-hand side
of Fig. 2. In fact, any cutoff of the form (32) is translated to
g) =0... g, inauxiliary space by means of (11). Without any
approximations the two flow schemes yield identical results.
The approximations due to the truncation of the flow equation
hierarchy however induce important differences, as illustrated
in the following. We compare the two paths in Fig. 2 leading
to a hierarchy of physical flow equations 2. In particular, we
will compare the equations for the one- and two-particle 1PI
vertex functions as relevant to common truncation schemes.
Assuming that the scale dependence g/ translates into g by
(11), we determine the relation between the scale-dependent
Green’s functions. Introducing the scale dependence in Eq.
(16) and solving for G2 yields

Gy = ¢MGH =GN, (33)
where G, defined by Eq. (19), acquires a scale dependence
via 2. For the single-scale propagator we use the definition
S& = 0AG2 5 fix to obtain

SA = ¢AshEh, (34)

Considering that
Via =y 1lEHTLEHTLENHTLEN T,
we find that each diagram contributing to the auxiliary flow

can be translated to its physical counterpart by making the
substitutions

(35)

Viu = 73y Sp— 8% G- GP-G" (306

To relate the flow equations for the self-energy in the physical
and auxiliary space we take the A derivative of the scale-
dependent Eq. (17),

A =hyhet, 37)
Applying the translation rules above, the corresponding flow
equation in physical space remains unchanged, and is thus
given by Eq. (26). The flow equations for the two-particle
vertex, instead, can be obtained by taking the A derivative of
Eq. (35). Besides the contribution arising by a direct translation
of the diagrams in auxiliary space through Eq. (36), additional
terms arise due to the derivative of the ¢ factors attached at
each leg:

R IS S S BN DR W ey
— P Ie A BAGR I TN =y 1N N GREA T
— et e e GRrEM. (38)

Finally, by truncating the auxiliary flow equation at the one-
loop level, we get the following flow equations in physical
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-

\GTA

FIG. 3. Diagrammatic representation of the physical flow equations for £ and y,* that correspond to solving the conventional flow

equations for the auxiliary fields using the second-order truncation.

space:
)'/ZA = yZA o(SAoGA+G 0850 yzA
1o (8* 0 GM+ G o Moy
—yLEAG 1,1,1] — L2 G 1,1

—pML1L,GAEA 1] - A 1L1,1,GA 21 (39)
for a detailed derivation we refer to Appendix A 4. The
corresponding diagrams are shown in Fig. 3. The first term
of Eq. (39) is identical to the flow equation Eq. (27) for the
two-particle vertex in physical space, while the other terms
are not present in the conventional scheme. In particular, we
note that the last four terms of Eq. (39) are reducible in G*.
However, this “reducibility” does not necessarily coincide
with the reducibility in G* and could be attributed to the
specific approximation performed here. This can also be
understood by considering the relation between the physical
and auxiliary scale-dependent three-particle vertices, depicted
in Fig. 4. Assuming that the effect of y;%, on the flow
is negligible, we find that the effect of the physical 1PI
three-particle vertex can be described by the effect of the
rightmost term in Fig. 4. By connecting two of the six
external (amputated) legs of this diagram with a single-scale
propagator, one obtains the one-loop correction [second term
in Eq. (39)] as well as the “reducible” corrections [last four
terms in Eq. (39)] to the conventional flow equation. In
particular, 1PI three-particle vertex corrections are included
under the assumption that the auxiliary 1PI three-particle
vertex vanishes. In conventional fRG, where it is assumed
that both sides of the equation depicted diagrammatically in
Fig. 4 do not contribute, three-particle vertex effects are fully
neglected, unless they are explicitly accounted for, e.g., by two-
loop diagrams [42,43]. Let us note that a similar diagrammatic
structure of the flow equations has been determined in a recent
two-band fRG approach [44], where a high-energy band was

o 5o

FIG. 4. Relation between the physical and auxiliary scale-
dependent three-particle vertex functions.

included perturbatively, resulting in an effective one-particle
reducible three-particle interaction of the low-energy band.
The corresponding contribution to the two-particle vertex flow
was subsequently considered explicitly. We emphasize that in
the present approach the one-particle “reducible” (in the sense
explained above) corrections to the physical self-energy [19]
inferred by (17) appear at the two-particle level (as the last
term in the flow equation for the vertex in Fig. 3). On the
other hand, comparing the auxiliary flow equations to the ones
obtained in the recently introduced 1PI approach [27] allows
us to attribute the one-particle “irreducible” correction of the
two-particle vertex to the the first two terms. Translated to
the self-energy, for the Hubbard model with the DMFT as a
starting point, these terms produce the analog of the purely
nonlocal contribution to the self-energy, which contains the
Green’s function difference G — G in the diagrammatic series.
In contrast, the contribution containing “irreducible” diagrams
with at least one internal G line of the 1PI approach is absent
here, since the auxiliary three-particle vertex is neglected.
For the half-filled 2d Hubbard model with the DMFT as
a starting point, this approximation is justified at relatively
strong coupling, where the respective contribution was found
to be largely compensated by the contribution of the other
channels [27,45].

V. RELATIONS TO OTHER METHODS

The key idea presented in the previous sections is to
approach the physical problem of treating strongly interacting
fermions in a channel unbiased way in two essential steps: (i)
Setting up an expansion around a reference system solution
by means of auxiliary fermions, and (ii) solving the auxiliary
problem by the fRG. Step (i), first introduced in Ref. [30],
is the basis of all the studies performed in the DF formalism
[14-22] as well as of the 1PI approach [27] and in the study
of impurity systems within superperturbation theory [31]. An
fRG flow from an interacting starting point, that is, step (ii),
has been recently proposed [7—11].

To be more concrete, in the following, we concentrate on the
cases where the DMFT solution is used as a reference system
solution, which corresponds to the DF approaches regarding
step (i) and which has been also taken as direct input for the
DMF’RG flow. This corresponds to taking an action of the
form of Eq. (22) as the initial action and constructing the flow
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to the final action by interpolating the bare propagator from
the AIM one, gimp, to the final (lattice) one, g. Differently
from the auxiliary field method proposed here, however, this
is done directly in physical space. The important question to be
addressed, then, is whether considering the flow in the auxiliary
or in the physical space is more convenient. In DMF’RG, one
is assuming that the effect of the DMFT three-particle 1PI
vertex in correcting the self-energy of the reference system is
small compared to the effect of the two-particle one. In the
case of conventional fRG this can be justified, at least at weak
coupling, by a power counting argument [6] showing that the
leading order contribution to the three-particle vertex is one
order higher in the interaction compared to the leading one
in the two-particle vertex. At intermediate-to-strong coupling,
however, this argument does not apply anymore. Hence, in
DMF?RG one should rely on the fact that the main contribution
of the higher order vertex functions to the truncated fRG
flow is already included in the initial condition as sketched
in Fig. 1. Obviously, there is no guarantee that the effect
of the three-particle 1PI vertex can be neglected in general.
The difference with the approach discussed here in terms of
the auxiliary fields is the following: In the present approach,
the auxiliary three-particle vertex is neglected as discussed in
Sec. IV (see schematic representation in Fig. 5). At the initial
scale this corresponds to neglecting the connected reference
three-particle vertex [52] instead of the corresponding 1PI
one. From the discussion above, it is clear that the crucial
question is whether the physical 1PI three-particle vertex or
the auxiliary one has a stronger effect on the corresponding
flow. This certainly strongly depends on the problem under
consideration and requires further focused investigations.
Away from weak coupling this question is all but trivial,
apart for some special cases, e.g., the Falicov-Kimball model
[22]. Hitherto, due to its intrinsic numerical complexity,
barely any knowledge about the three-particle quantities is
available in the literature [46]. A noticeable exception is the
case of the Falicov-Kimball model, where it has been shown
[22] that the local auxiliary three-particle vertex y3 , exactly
vanishes in the particle-hole symmetric case. Here, in fact,
perturbation theory considerations and the application of the
Furry theorem [47] would suggest a simultaneous vanishing
of the 1PI three-particle vertex for the physical fields. These

Physical flow Auxiliary flow

gr=0...94

Effects of 1PI three-particle
vertex fully neglected

Mimic 1PI three-particle
vertex by means of

o

FIG. 5. (Color online) Effects of the truncation in the physical
and auxiliary flow.
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results, however, cannot be directly extended to the Hubbard
model. Therefore one has to critically analyze the results
obtained with each approach and for each specific case. In
order to compare with DF calculations, one can directly
analyze the diagrammatic contributions in auxiliary space
where the DF approach [14-22] usually exploits perturbation
theory or ladder resummations, as additional approximations.
While one cannot expect to capture diverging fluctuations by
means of simple perturbation theory, ladder approaches are per
definition biased towards a selected channel. On the other hand,
by treating the auxiliary problem by means of the fRG one is
able to treat competing scattering channels in an unbiased way.
In particular, our approach allows for an improved computation
of the solution of the auxiliary problem, including, although
approximately, the parquet-approximation diagrams. Let us
note that, differently from other nonperturbative schemes
[24,25,26,29,39], the calculations are based on the 1PI two-
particle vertex, and do not require the two-particle irreducible
(2PI) vertex at any point of the algorithm. This way one can
circumvent the technical problems arising from the recently
shown [18,48,49] divergencies of the 2PI vertex at low
frequencies, which are not associated with any thermodynamic
transition.

VI. CONCLUSION

We have demonstrated how the theory of an fRG-based
expansion around a SC reference system can be rigorously
formulated in the general framework of auxiliary fermionic
variables. In particular, we have derived the explicit expres-
sions for the fRG flow equations starting from a generic
(exactly solvable) SC reference problem in the auxiliary
fermionic fields and the corresponding transformation rela-
tions to calculate the physical quantities of the final solution.
These derivations allow us to clarify the relation to the fRG
flow equations formulated directly for the physical fermionic
fields, including the first pioneering ones reported in the
recent literature [7,8,10-12]. Furthermore, we could also
elucidate the implications of the approximations introduced by
truncating the hierarchy of the flow equations in the different
schemes; see Fig. 5 for a summary. This represents indeed a
pivotal aspect for all strong-coupling fRG algorithms, since
the conventional arguments justifying the truncation do not
hold any longer beyond the weak-coupling regime. Hence,
a precise definition of the diagrammatic content associated
with the truncation of a strong-coupling fRG flow is essential
for adapting the novel algorithms to the nonperturbative
physics of interest. The reported analytic and diagrammatic
results, together with the physical insights which can be
captured within the different formulations of the fRG with
nonperturbative starting points, will provide an important
reference for any future method development in this promising
direction.
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APPENDIX
1. Notation details

Here we present explicitly Eq. (26) and Eq. (27), shown in
compact notation in the main text. The flow equation for the
self-energy reads

2(&5)-——22 2 @)y (61,63 6.6). (A

(2] S'2 5

We use the convention that for an m-particle quantity the
first m arguments refer to the outgoing lines, and the last m
to the incoming lines. The loop variables are & = (w3,s>)
and &)(w),s5). It is implicitly assumed that the energy is
conserved (w; = w)), while the multi-index s, consists of a
set of continuous and discrete quantum numbers. Therefore
the summations ZSN& have to be understood as integrations

or summations, respectively. For example, in the case where
only spin and momentum are considered for a translationally
invariant system (k, = k), Eq. (A1) reads

2@1;&10:— >y / dK S (@

@2 0y, 02
RPN NN AN W]
x (wikio1,w:k 005 0| K| 01, 0,k,0,). (A2)

For the 1PI two-particle vertex the flow equation is usually
subdivided in three channels (particle-particle, particle-hole
direct, and particle-hole crossed) corresponding to the dia-
grammatic contributions

Vs (61,62;€1.65) = Cpp(€1,62:€.E)) + Cpp_a(&1.62:61.8)
+Cpn—c(&1.62:€.8)), (A3)
with

Cpp(fl,fz;éf,%'é)
B Z Z I:S;\M(w%)Ga 54(601 + wy — a)3)

w3 3, v3 S4, v4

53583 S4,54

X v (€162 856Dy (63,643 61,87,
Cph—d(shEZ;E]/vEZ,)
=—= Z Z [S2,(@3)G (@1 — o) + w3)

GA (w3)SA (w1 — o] + w3)]

x Vs (61,633 61,6075 (4,62, E4.ED),
Cphfc(gl §2,§1/7§2/)
== Z Z [S, (@G (@1 — ) + w3)

+G4 (w3)82

SS; S 54(

+GA (@3)Sh (w1 + vy — w3)]

(A4)

(AS5)

— wh + »3)]
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Xy (61,63; 5,675 (§2.64: €1.E)). (A6)
2. Auxiliary fields

Performing the Hubbard-Stratonovich transformation (4)
yields an action

S(@,9,9,v) =Sg(@,9) + Sp(@,0,9,v) + (D,nA” ' nv),
(AT)

with Sy (@,¢,7,v) = (V,n@) + (§,nv). We determine the inter-
action V of the auxiliary v fermions by integrating out the ¢
fields and obtain

f D(§.@)e—SHTD-S,@000) _ 7., G.00-VED) (Ag)

This relation defines ¥ and 0, where Q is to be chosen such
that ¥ does not contain any quadratic part in the auxiliary
fermions. Note that the left-hand side is closely related to the
generating functional of the reference Green’s functions,

/D(@,w)e—SR(@‘ﬂ)—Sq;(@,(P,ﬁ,U) =Zr gR(ﬁ»n)|n:nv,f]:nTD~

(A9)
Inserting in Eq. (A8) and solving for } we obtain

v(‘_)ﬂ}) = _[ln gR(ﬁJI) - (f],l’lil Qniln)]r]:nv,ﬁ:nﬁ‘)

=_[_(ﬁ9GR’?)+O(772772)_(77]7”_1 Qn_ln)]n:nv,f]:nTﬂ'

(A10)

For the quadratic part of 1% to vanish we have to choose
n~'On~' = —Gg and hence QO = —nG gn. Thus

V(©,v) = —[InG* @, + @,Grm)ly=nv=nrs,  (AlD)
in accordance with Eq. (7). This functional generates two-
particle and multi-particle connected Green’s functions, where
n is appended at the outer legs. The free propagation of the
auxiliary fields is then described by

0.=0—-nA"'"n=—-n[Gr+A""In (A12)

as shown in Eq. (6) for 0, = g .

3. Relation between physical and auxiliary space

We here relate the physical to the auxiliary Green’s
functions. For this we determine the relation between the
generating functional of the physical Green’s functions,

G(.m) =

/ D(@,9) D(v,v) e~ S@9. D H([,9)+@, ﬂ)
(A13)

Z detD

and of the auxiliary Green’s functions,

~S(@.0. D V)HAV) )

ga(ﬁ»ﬁ)= 7 7

(Al4)
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We evaluate

- S(@,(p,\_),l)) + (77]7§0) + (QZ),T])

= —Sr(@,9) + (i1 + 0" 0,0) + (@,n +nv) — (D,n A" 'nv)
(A15)

T\_)/—T_}

and substitute nv — nv’ — pand n’v — n
— Sr(@,9) + (V' ,ng) + (@,nV) — (V,nA™'nv")
— (@A) + @, AT V) + (B nAT )
= —8(@.9.0' V) — (AT ')+ (0" AT7)
+ @ ,nA"1p). (A16)

Thus
G(@1.m) = Gu(nT ATin A ) x @A (A1)

Taking the second derivative with respect to the source fields
and setting 77 = n = 0 yields

G=A"+A"nG,nA"", (A18)
or
G,=n"'"AGAn" "' —n~'An7". (A19)
This translates into a physical self-energy
S=g '~ [AT"+ A MG nATT, (A20)
which can be simplified to
£ gt SR E (A21)
Grn+n-1%,

as reported in Eq. (17).

After deriving the relation (A17) between the generating
functionals of the physical and auxiliary Green’s functions,
we can now establish corresponding relations for the effective
actions. Taking the logarithm of the above equation yields

W@im) = Wan" A0 A ) — (3,07 "), (A22)

from which we get
V(v,v)

= [W(F/J,]) + (77]7g77)] n=g"v
=g77‘

=

=W.n" AT iHnAT ) — @A) + (gm)] =

=
Tl
o0 O

= [Wa(ﬁan) + (ﬁ’gcﬂ?) - (ﬁ,gan)] n=nA"lg7lv

i=nTATg Ty
+@.lg7 —g7 AT g™y
= [Wa(ﬁa 77) + (ﬁsgan)] n=g;'gnA"'g" v

=g, gin"ATg D
—(n" AT gD, gun AT g T )+ (@, [g T =g AT g )
=Va(gin" AT g7 0.ganA g7M)
—m'A g D g AT g T (LT — g AT g T ).
(A23)
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Some algebra yields

v i=ganA g v = —n 1G]

=gl n " AT g = TG ———=7, (A24)
-8
and finally [19]

VE,0) = Va0 0% — (5, —F A25
v,v) =V, (% v )—(V,ml)). ( )

Aside from the relation of the physical and auxiliary self-
energy, a corresponding relation for the respective 1PI two-
particle vertices is easily derived by making use of relation
(A22). Taking the fourth derivative with respect to the source
fields we find

GV =GP A ', A" nn AT n AT, (A26)

Amputating the full one-particle Green’s functions yields
2 =124lGT'ATInG,.GT AT NG,
x GanAT'GT,GnATIGT, (A27)

which simplifies to
Y2 = v2.4l8,8.8,¢1 (A28)
4. Connection between fRG and the flow in the auxiliary space

To understand how the flow for the auxiliary fields is related
to the conventional fRG flow, we will in the following derive
the relations between the flow equations. For this we assume
that the scale dependence in Q2 is governed by a physical
cutoff Q* only. The self-energy relation (A21) holds also in
the scale-dependent case, and we find

$4 = Gln N Grn 4 n ' ER) !
— G SN (Grn 40 ) !
x $M(Gpn+n ' EH) !
= G'n ' [1 = 22(Grn+n'E2) 0]
x $MGrn +n'ER)!

= [GElrfl —(=A - ZR)nfl]X'Ié\(GRn +n7122\)71
=[Gg'n ' = (2" = Zpn ]
x XMGrn + Gr[(Z* — Zp)™" = Grl7'Grn]™!
=(Qr — 'S (Qr — 2Y = ¢ B2EA,
(A29)
with
G =[0r — 27",

where we have already included a possible scale dependence
in the factors ¢* = (nG*)~! and ¢» = (G*n)~!. It can also
be shown easily that

(A30)

A _ -1 _ yA 1 _ 1
Ga_n (QR E)(Q—EA QR—ZA)

x(Qr — M0~ = MGA -GN (A3D)
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&8 5> Q0

FIG. 6. Diagrammatic structure of Eq. (A39). The factors ¢ appended at each leg of y;}a are implicitly included in the diagram.

Let us now proceed with the single-scale propagator S» =
9 G2 |5, fixea- Note that keeping the auxiliary self-energy fixed
in the derivative is equivalent to keeping the physical self-
energy fixed. Therefore by taking the derivative of Eq. (A31)
we find

Sa =M @OaG 5 prea)l ™ = £ASATN, (A32)
as G and thus ¢* only depend on A through the self-energy.
Looking at the flow in the physical system we find that any
vertex in the diagrams effectively gets (nG*)~! appended at
each connection point and internal propagators are given by
G» — G*. Let us now consider the fRG truncation at second
order, thus including the vertex flow. To achieve this we solve
the scale-dependent version of Eq. (A28) for Vzl,\a5

Via =y lEHTLENHTLEHTLEN .
When constructing the diagrams contributing to the auxiliary
flow, the (¢%)~!' factors exactly cancel the outer expres-
sions in G2 of (A31) and S2 of (A32) that connect to a

vertex. The diagrams for the flow can thus be translated
according

(A33)

v =y, SA s sh G GM -G, (A34)

and the orders in y, , translate to the corresponding orders in
y,. Let us now come back to the task of deriving a connection
between the flow equations in physical and auxiliary space.
To this end, we start by looking at the flow equation for the
two-particle vertex. Since we also want to understand the effect
of the truncation we first consider the exact flow equations
(i.e., without truncation) that involve the 1PI three-particle
vertex. This reads, respectively for the physical and auxiliary
fermions,

W =9 o (8 0 GM 4+ G o SM oyt + v o SA, (A35)
)}21,\a = yZI,\a o (Szi\ o thz\ + G;/l\ © Sl;\) o y21,\a + y3/,\a o Sé\
(A36)

Differentiating Eq. (A28) with respect to A, substituting
Eq. (A36), and using Eqgs. (A32), (A31), and (A28), we obtain

AR AN SN B A DREN SRR
— yale BTN TN
ST (NS RS BV (RN SRR
=2 o(S2 0 (G = GM+ (G =G o SN0y
2V (SRR SN SRS R
—YAEAGA1,1,1] — Y1, 246 1,1

—y ML L,GAEA ] - pA1L,1,1,G4 24 (A37)

Neglecting the term proportional to y5',, consistently with
a one-loop approximation in auxiliary’ space, one directly
obtains Eq. (39). To understand the connection between the
three-particle physical and auxiliary vertexes, instead, let us
keep all the terms and compare Eq. (A37) with Eq. (A35). A
moment of inspection shows that

it o SN =yl It e e N e e o sP
YL o (82 0 GA + G oSN oy
—pMEAGA 1,11 - YA, EAGA 1,1
— y ML L,GAEA 1] — p2AL,1,1,G 24,
(A38)

Using the flow equation for the self-energy in physical space,
Eq. (26), and Eq. (A32) yields

y3A o0 SA = y31,\a[é_A,§.A’§.A’EA’EA,EA] o SA
—yon(SAoGA—f-GAoSA)oyzA
— M8t oyt 0 G
— v [1.8% oyt 0 GALLL
_ yzA[]l’]l,GA o 7/ZA oSM 1
[

M1,1,1,G% oy 0 2

)

—_ e e

; (A39)

which can be depicted diagrammatically as shown in Fig. 6.
The last six terms on the right-hand side of this equation
can be seen diagrammatically as the possible distinct ways
of connecting two out of the six external points of the quantity
¥ o G" oy, and therefore acquire the same diagrammatic
structure of the first two terms. Hence by performing a
functional derivative with respect to S* we can finally write a
relation between the three-particle vertex:

yi =y e oM e oM MM = vt 0GR oyt (A40)

as depicted diagrammatically in Fig. 4. Let us also note
explicitly that this equation is consistent with the fact that in
the beginning of the flow the auxiliary 1PI three-particle vertex
is equal to the amputated connected three-particle Green’s
function of the reference system.

As for the flow of the self-energy one can see from Eq.
(37) that no further diagrams appear by performing the flow in
the auxiliary space, i.e., the self-energy flow equation Eq. (26)
remains the same, and the only differences arise indirectly
due to the change of the vertex during the flow discussed
above.
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