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A procedure to obtain single-electron wave functions within the tight-binding formalism is proposed. It is
based on linear combinations of Slater-type orbitals whose screening coefficients are extracted from the optical
matrix elements of the tight-binding Hamiltonian. Bloch functions obtained for zinc-blende semiconductors in the
extended-basis spds∗ tight-binding model demonstrate very good agreement with first-principles wave functions.
We apply this method to the calculation of the electron-hole exchange interaction, and obtain the dispersion of
excitonic fine structure in bulk GaAs. Beyond semiconductor nanostructures, this work is a fundamental step
toward modeling many-body effects from post-processing single-particle wave functions within the tight-binding
theory.
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I. INTRODUCTION

Tight-binding is widely used as a conceptual frame to
account for the kinetic energy operator in solid state theory. It
served as a basis for major contributions such as Anderson’s
strong localization [1] and magnetic impurity [2] theories,
Hubbard’s model of interacting electrons [3], and many others
[4–6]. In these theories, interactions are generally introduced
using symmetry considerations and ad hoc parameters, and the
goal is to have the simplest model integrating the physically
relevant features of hopping and interaction integrals while
getting rid of the complexities of underlying atomic physics.
On the other hand, empirical-parameter tight-binding (EPTB)
is known as a powerful modeling technique for the electronic
structure of semiconductors, metals, and all kinds of nanoscale
structures and devices. The systematic procedure for construct-
ing the EPTB Hamiltonian was discussed in a seminal paper
by Slater and Koster (SK) in 1954 [7], but it is only many years
later that computers have allowed systematic implementations
[8,9]. A major step was achieved in the late 1990s with the
development of EPTB models using an extended spds∗ orbital
basis [10,11] and allowing accurate full-band representation of
single-particle states. However, when it comes to calculating
short-range interactions between quasiparticles, EPTB models
(like the k · p theory itself) are hampered by the lack of an
explicit orbital basis. This is a strong limitation for the use of
advanced EPTB schemes to explore highly topical problems of
strongly correlated electron systems. In this paper, we present a
method that reconciles the “conceptual frame” and “modeling
tool” faces of tight-binding, by self-consistently determining
the orbital basis out of the EPTB Hamiltonian. We thus
obtain the local wave functions, which allows parameter-free
calculation of short-range interactions. We illustrate this by
calculating electron-hole exchange and the fine structure of
excitons in GaAs. Beyond semiconductors, this method can
be used for many different materials and can handle million-
atom supercells that are still out of reach of first-principle
methods.

II. SELF-CONSISTENT PROJECTION BASIS
FOR THE EPTB HAMILTONIAN

In the SK formalism, the crystal potential is approximated
as a sum of spherically symmetrical potentials around each
atom. This allows the electronic wave functions �αk, where α

stands for the band indices, to be developed on a set of Bloch
sums �lmk of atomic-like orbitals (called the Löwdin orbitals)
ψlmj , where ψlmj is the mth orbital on the lth atom in the j th
unit cell:

�αk =
∑
m,l

Cα
ml�lmk, (1)

�lmk = 1√
N

∑
j

exp(irj l · k)ψml(r − rj l) (2)

The Löwdin orbitals have well defined angular properties,
but unknown radial dependencies. The Hamiltonian matrix
elements between them are treated as “disposable constants”
with which one can fit band structures that have been
experimentally determined or calculated using more accurate
techniques. The fit is performed in k-space, removing any
necessity to further characterize the local wave functions in
real space. Very interestingly, following a method introduced
by Boykin and Vogl, interaction with the electromagnetic field
can be built-in using a derivation of the Hamiltonian matrix
elements in momentum space [12]:

plm,l′m′ = i�〈�lm | �kH | �l′m′ 〉. (3)

Optical properties can be consequently calculated in EPTB
models without adding parameters. Although this method
misses intra-atomic matrix elements, good accuracy is ob-
tained provided that the orbital basis is rich enough [13]. In
this context, the spds∗ TB model is known to give a description
of dielectric properties equivalent to best ab initio calculations
within the one-electron approximation [14]. Altogether, the
model’s major qualities are the transferability of parameters
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from bulk materials to nanostructures, the unique ability to
describe with the same accuracy electronic properties in any
region of the Brillouin zone, and the capacity to handle
large supercells. However, interactions (in particular, short-
range interactions) between quasiparticles involve the local
wave functions, and cannot be calculated in this frame.
Existing calculations of Coulomb matrix elements use ap-
proximations on the radial dependence of the basis orbitals
[15,16].

In order to solve this theoretical issue that has remained
open ever since the seminal work of Slater and Koster,
we start with a trial set B of spds∗ basis functions in
the form of normalized Slater-type orbitals (STOs) φμ(r) =√

(2α)2n+1/(2n)! Yμ(θ,φ)rn−1e−αr , where n is the first quan-
tum number, α is a screening parameter [17], and μ stands
for the symmetry of the orbital. STOs are largely employed
in quantum chemistry but do not fulfill the orthogonality
condition, since finite overlap exists between two STOs
localized at different sites of the crystal. Following the notation
of Ref. [18], we define the overlap integral between two STOs
of symmetry μ and ν and localized at the lattice points R1 and
R2 respectively as

SμR1,νR2 =
∫

φμ(r − R1)φν(r − R2)dτ − δμνδR1R2 , (4)

where dτ is the volume element. Because of the periodicity of
the crystal, the overlap integral depends only on the difference
between R2 and R1 and thus can be written as Sμ,ν(R2 − R1).

First, the orbital overlap matrix S is calculated including
all orbitals up to a cutoff distance R0 that must be taken
large enough so that overlap with remote atoms be negligible.
Thanks to the nice properties of STOs, this step is done

analytically, and in practice we found that, for α = 0.5 Å
−1

,
overlap with neighbors located farther than 3 lattice pa-
rameters (17 Å) can safely be neglected. Note that, un-
like real atomic orbitals, s and s∗ on-site STOs are not
orthogonal. This small difficulty is easily solved by sub-
stituting s∗ with a Gramm-Schmitt combination s̃∗ = (s∗ −
〈s|s∗〉s)/

√
1 − 〈s|s∗〉2. Then, the functions ψμ of the orthogo-

nal basis Borth can be expressed in terms of the functions φμ of
the nonorthogonal basisB using the Löwdin orthogonalization
procedure [18]:

{ψ} = {φ} · (1 + S)−
1
2 (5)

or

ψλ(r − R1)

= φλ(r − R1) − 1

2

∑
μ,R2

φμ(r − R2)SμR2,λR1

+ 3

8

∑
μ,R2

∑
ν,R3

φμ(r − R2)SμR2,νR3SνR3,λR1 − + · · · ,

(6)

where {ψ} and {φ} denote the row matrices formed by the
elements ψμ and φμ, respectively. The orthogonalized STOs
will serve as trial functions for the unknown Löwdin orbitals.
The expansion of electronic eigenfunctions (Bloch functions)
in the basis B is obtained by multiplying the eigenvectors of

the sp3d5s∗ Hamiltonian matrix by the matrix (1 + S)
1
2 , which

provides definitely their representation in real space. Then the
momentum matrix elements are calculated in real space from
the Bloch sums by the relation

plm,l′m′ = i�〈�lm | �r | �l′m′ 〉 (7)

This derivation involves a sum of matrix elements between
two STOs that are calculated analytically [19]. Finally the
screening parameters are fitted into a genetic algorithm until
the optical matrix elements calculated in real space compare
satisfactorily with those derived in k-space from the electronic
Hamiltonian. In the end, the optical matrix element between
two electronic bands denoted by α and β is obtained by

Pα,β =
∑
l,m

∑
l′m′

Cα
lm plm,l′m′ C

β

l′m′ . (8)

We note that one can derive similar approaches by considering
other atomic like orbitals (e.g., Gaussians instead of the
radial part of STOs) or by using another orthogonalization
procedure. However, besides the mathematical properties
of STOs allowing analytical calculation of almost every
observable, STOs are close to the envelopes of real atomic
orbitals and the latter can be further approached by considering
linear combination of STOs. On the other hand, the choice
of Löwdin’s method rather than any other orthogonalization
procedure is clearly justified since, as proven by Slater and
Koster in the appendix of Ref. [7], Löwdin’s method has a
unique merit that an orthogonal basis set remains as close as
possible to the original nonorthogonal set and retains their
symmetry characteristics.

III. PRACTICAL IMPLEMENTATION AND DISCUSSION

In practice however, the 9150×9150 S matrix obtained for
R0 = 17 Å contains considerably redundant information (for
instance, overlap of two given orbitals on neighboring sites
appears 3528 times) and its large size makes its inversion
computationally difficult. Fortunately, one can take advantage
of the crystal periodicity and reduce the size of the matrix to
be inverted. For this, we consider Bloch sums of STOs:

κμ,k = 1√
N

∑
R

eiR·kφμ(r − R). (9)

In the spds∗ model, the {κk} set contains 40 elements for each
k. We construct the 40×40 overlap matrix S̃ between these
Bloch sums of STOs:

S̃μν =
∑

R

eiR·kSμν(R). (10)

Then the orthogonal Bloch sums χμ,k are obtained by Löwdin’s
orthogonalization:

{χk} = {κk} · (1 + S̃)−
1
2 , (11)

where {χk} and {κk} denote the row matrices formed by the
elements χμ,k and κμ,k, respectively. Although this may be not
obvious at first glance, the orthogonalized Bloch sums of STOs
are identical to Bloch sums of orthogonalized STOs. Indeed,
multiplying Eq. (6) by 1√

N
eiR1·k, summing over lattice points
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TABLE I. Optimized Slater orbital screening coefficients (Å
−1

)
for gallium (Ga) and arsenic (As), compared with Slater’s atomic
screening coefficients [17].

Ga As

Orbital Ref. [17] This work Ref. [17] This work

4s 1.35 1.83 1.7 1.94
4p 1.35 1.77 1.7 1.79
4d 0.27 0.93 0.27 0.96
5s 0.32 1.64 0.4 1.74

R1, and using the fact that the overlap integrals Sμ,ν(R1,R2)
depend only on R2 − R1, we obtain

1√
N

∑
R1

eiR1·kψλ(r − R1)

= κλ,k − 1

2

∑
μ

κμ,kS̃μ,λ

+ 3

8

∑
μ

∑
ν

κμ,kS̃μ,ν S̃ν,λ − + · · · (12)

and thus

1√
N

∑
R1

eiR1·kψλ(r − R1) = χλ,k. (13)

Since the procedure sketched in Sec. II uses the Bloch sums
rather than the individual on-site orbitals, it can therefore be
implemented at much lower computational cost using the S̃
instead of the S matrix. Once the screening parameters have
been optimized though the genetic algorithm (see Table I), we
can invert the full S matrix and get the Löwdin orbitals. The
effect of orthogonalization on the different basis functions is
illustrated with the case of arsenic in GaAs in Figs. 1, 2, and 3.
The final set of screening parameters is used in the calculation.
It can be seen that the STOs are not too severely modified by
the orthogonalization procedure, which indicates that they are
a fair zeroth-order guess.

As for the determination of interband matrix elements, the
consideration of different bands and different high symmetry
points in the Brillouin zone provides more than necessary
information for the fit convergence from a computational point
of view. However, we observe that somewhat different sets of
screening parameters can give similar “fitness” parameters.
This problem is linked with the fact that upper-band disper-
sions are necessarily incorrect, due to the noncompleteness
of finite basis. Hence, optical matrix elements involving s∗
and d orbitals are poorly represented in k-space, and using
them to fit screening parameters can lead to an unphysical
optimum in the algorithm. Noncompleteness is a fundamental
difficulty of the EPTB method. On the other hand, the d(�12)
eigenstate (notation refers to the specific case of zinc-blende
crystals) is known to be a nearly-free electron state weakly
perturbed by the crystal potential, and its wave function can
be accurately determined from empirical pseudopotential or
ab initio calculations. Constraining the parameter space in such
a way that the d(�12) orbital agrees with independent empirical

FIG. 1. (Color online) Arsenic s (top) and s∗ (bottom) Slater
orbitals before (left) and after (right) orthogonalization.

FIG. 2. (Color online) Arsenic px , py , and pz Slater orbitals
before (left) and after (right) orthogonalization.
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FIG. 3. (Color online) Arsenic dxy , dyz, dxz, d3z2−r2 , and dx2−y2

Slater orbitals before (left) and after (right) orthogonalization.

pseudo-potential or ab initio calculations cures the problem
of underdetermination of the set of screening parameters. In
Table I, we compare the optimized screening coefficients for
GaAs with Slater’s atomic screening coefficients [17]. Due to
the self-consistent procedure, they obviously depend on the
Hamiltonian parameters, which are given in Tables II and III

TABLE II. Tight-binding parameters for Ge (eV).

a 5.6500 Es −3.2967
Es∗ 19.1725 Ep 4.6560
Ed 13.0143 ssσ −1.5002

ss∗σ −1.9206 s∗s∗σ −3.6029
spσ 2.7985 s∗pσ 2.8176
sdσ −2.8028 s∗dσ −0.6209
ppσ 4.2540 ppπ −1.6510
pdσ −2.2138 pdπ 1.9001
ddσ −1.2171 ddπ 2.5054
ddδ −2.1389 �/3 0.12742

for Ge and GaAs respectively. These parameters are a slightly
reworked version of the classical set of Ref. [10].

We applied the procedure explained above to the prototype
systems of Ge and GaAs. The electron configuration of Ge
is [Ar]3d104s24p2. In the spds∗ model, the deep 3d states
are discarded and the basis is formed by the orbitals 4s, the
three orbitals 4p, the five empty orbitals 4d and the empty
orbitals 5s. When building the STO basis B, we keep fixed the
first quantum number n of these orbitals and introduce one
adjustable screening parameter α for each symmetry type.
Alternatively, as often done in quantum chemistry, we can im-
prove parametrical flexibility by considering that each element
of the starting basis is a linear combination of q STOs instead
of one. This does not change much the model, but increases to
4q the number of fitted parameters. For GaAs, since there are
two different atoms in the unit cell, the number of parameters
is twice that for Ge. The fitted screening parameters for Ga
and As are given in Table I, and contrasted with the Slater
atomic screening constants. Those obtained independently for
Ge are close to averaged values for Ga and As. At the end of
the fitting procedure, the global discrepancy on the sum of all
interband matrix elements, calculated at the �, X, and L points
of the Brillouin zone, is less than 15% with one Slater orbital
per atomic state and less than 7% with a linear combination
of two Slater orbitals for each atomic state. By changing the
relative weights of different spectral or Brillouin zone regions

TABLE III. Tight-binding parameters for GaAs (eV).

a 5.6500 Ea
s −5.9820

Ea
s∗ 19.4477 Ec

s −0.3803
Ec

s∗ 19.4548 Ea
p 3.3087

Ea
d 13.2015 Ec

p 6.3801
Ec

d 13.2055 ssσ −1.6874
sas

∗
c σ −1.5212 s∗

a scσ −2.1058
s∗s∗σ −3.7170 sapcσ 2.8845
scpaσ 2.8902 s∗

apcσ 2.5294
s∗
c paσ 2.3883 sadcσ −2.8716
scdaσ −2.2801 s∗

a dcσ −0.6568
s∗
c daσ −0.6113 ppσ 4.4047
ppπ −1.4470 padcσ −1.6034
pcdaσ −1.6260 padcπ 1.8422
pcdaπ 2.1420 ddσ −1.0884
ddπ 2.1560 ddδ −1.8607
�a/3 0.1745 �c/3 0.0408
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TABLE IV. Main interband matrix elements (in eV Å) for Ge and
GaAs at the � point, calculated from differents models.

WF1a WF2a LDAb Hamiltonianc

Ge P0 7.69 10.18 8.49 10.14
Q0 8.29 8.42 7.32 8.70

GaAs P0 7.38 9.88 8.35 9.82
P1 0.80 0.93 1.38 0.11
Q0 8.16 8.31 7.37 8.72

aReal space calculation from TB wave functions with respectively
one and two Slater orbital for each basis element.
bReal space calculation from LDA wave functions, ABINIT code.
cCalculated from Hamiltonian derivation.

in the genetic algorithm fitness function, the discrepancy
at, e.g., � can be minimized down to the percent range.
The residual discrepancy has three distinct physical origins:
(i) the difference between orthogonalized STOs and the actual
Löwdin orbitals, (ii) the lack of completeness of the spds∗
basis, and (iii) the missing intra-atomic contribution in the
k-space derivation method. Table IV shows the main interband
momentum elements P0 ≡ −i〈sc|px |xv〉, P1 ≡ −i〈sc|px |xc〉
and Q0 ≡ −i〈xc|py |zv〉 obtained for Ge and GaAs at the �

point. Agreement is very good, but a discrepancy observed for
the weak matrix element P1, for which real space calculations
agree, but differ from the Hamiltonian derivation value [20].
This might be a trace of the methodological limitation relative
to intra-atomic contributions. While further work is required
to explore the method limitations and improve the results, the
present achievement is already sufficient for most practical
purposes. Note that the interband momentum elements for
GaAs calculated using the original Slater screening parameters
of Ref. [17] are P0 = 1.50 eV Å and Q0 = 5.34 eV Å. These
values are far from experimental ones and prove the need to
fit the screening parameters.

Once screening parameters best reproducing the interband
matrix elements are obtained, the different Bloch functions can
be plotted and compared with ab initio calculations. The latter
were performed using the ABINIT code [21,22] in the local
density approximation (LDA), completed by self-consistent
GW correction. Figures 4 and 5 show (110) plane isodensity
contours of wave functions in bulk GaAs at the Brillouin zone
center. Figure 4 shows valence band states sv and y ′

v ≡ yv − xv ,
in both TB and ab initio calculations. The overall quantitative
agreement is very good, since the overlap between TB and
ab initio densities is always better than 95%. Yet, TB wave
functions appear somewhat less localized in the sense that
they have larger density in regions where the ab initio density
is almost zero, and the Ga/As asymmetry is more pronounced
in the ABINIT result. The most significant difference is for
the deep sv state near the atomic sites, for which TB density
is significantly smaller. This probably reflects the difference
of the projection basis between the two models: TB wave
functions are expanded in the basis of Slater orbitals which
have a node at the atomic sites while the ABINIT wave functions
are expanded in a basis of plane-wave functions that may be
maximum on the atomic sites. The wave-vector cut-off used
in the ABINIT calculations is important, because this approach

FIG. 4. (Color online) Isodensity contours of the S and
Y ′ = X + Y valence Bloch function at the zone center in bulk GaAs
in the plane (110). TB calculation (left) is compared with ABINIT

calculations (right).

cannot describe the region located less than 1/kcutoff from
atomic sites. Yet, the cutoff does not suffice to explain the
observed difference. In our TB approach, a finite on-site value
for the sv state results from the contribution of neighboring
atoms and is quite sensitive to the STO screening parameters.

In Fig. 5, we show the conduction Bloch functions also
calculated with the same two models. Again TB wave
functions are very similar to those calculated in the LDA+GW
approximation, except for a significant difference for the sc

FIG. 5. (Color online) Isodensity contours in the (110) plane for
the S, Y ′, and D(�12) conduction Bloch functions at the zone center
in bulk GaAs TB calculation (left) and ABINIT calculations (right).
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state density in the vicinity of atomic sites. In order to clarify
this issue, we used the SIESTA code, which is based on DFT
expanded in a strictly localized orbitals set. SIESTA results for
sc actually agree very well with our TB results (Appendix A).

We note that electron hyperfine interaction constants, that
are well documented, scale as sc

2(r = 0) and could serve as
a quantitative test. A most striking result is the TB ability to
reproduce the wave functions of the nearly free electron states
s∗ and d.

IV. EXCITON FINE STRUCTURE

The major interest of having a real space representation of
wave functions is the ability to study many-body problems. In
order to illustrate the potential of our wavefunction derivation
method, we calculate the binding energy and the fine structure
of excitons in bulk GaAs by adding the Coulomb interaction
term to the single-particle Hamiltonian. The Coulomb interac-
tion can be specified by the matrix elements

〈α′,k′
e; β ′,k′

h|Ueh|α,ke; β,kh〉, (14)

where

Ueh = e2/κ|re − rh|.
Here, |α,ke; β,kh〉 is the two-particule excited state, κ is the
permittivity, and �αke

≡ 〈r|α,ke〉 and �βkh
≡ 〈r|β,kh〉 are the

Bloch wave functions in electron and hole representations,
respectively [23,24]. The present expansion of Bloch functions
as linear combinations of Slater orbitals allows to expand the
electron-hole interaction in terms of Coulomb matrix elements
between STOs:

Vl1m1,l2m2,l3m3,l4m4

= 〈φl1m1 (r − R1),φl2m2 (r − R2)|Ueh|φl3m3 (r − R3),

×φl4m4 (r − R4)〉. (15)

Restricting the expansion to two-center contributions
(R1 = R3 and R2 = R4), the evaluation of the integrals can be
done quasi-analytically using the expansion of the Coulomb
potential in terms of spherical harmonics centered on the
same site when R1 = R2 [25], and a bipolar expansion when
R1 	= R2 [26]. Following the approach used in Refs. [27,28],
we introduce a r-dependent dielectric constant such that short-
range (on-site) interaction is unscreened, while long range
interaction is subject to standard dielectric screening. Then, we
solve the Bethe-Salpeter equation (BSE), expressed in terms
electron and hole single-particle energies and electron-hole
interactions calculated using the tight-binding wave functions.
The BSE is an eigenvalue problem of infinite dimensionality:

(Ec,k+Q/2 − Ev,k−Q/2)Avck

+
∫

VBZ

d3k′ ∑
v′,c′

〈vck|Ueh|v′c′k′〉Av′c′k′ = �SAvck,

where Ec,k+Q/2 and Ev,k−Q/2 are the electron and hole
energies respectively. Resolution of BSE gives the exciton
wavefunction components Avck and the excitation energies �S .
To make the problem tractable, continuous integration with
respect to k′ was replaced by a discrete scheme. Following the
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FIG. 6. (Color online) Dispersion of the exciton states of bulk
GaAs for Q along the [111] direction. The long range exchange
is exactly zero at Q = 0, and builds up for very small values of
Q, for which convergency is more difficult to ensure. The wave
vector of light, for which strong polariton features would add to the
present picture, is indicated with a vertical line. The inset shows
schematically the different contributions to the fine structure of
�8v×�6c fundamental exciton.

procedure described in Refs. [29,30], to calculate the exciton
spectra and binding energy at the � point, the integration
was performed over a small region near the position of the
band extrema (|k| < 0.015 a.u.). This region was divided
into a 11×11×11 uniform grid. For an exciton wave vector
Q = 0, we find an excitonic binding energy Eb = 4.75 meV.
In addition, the eightfold degenerate �8v×�6c fundamental
excitonic transition is split by short range exchange interaction
into one twofold, and two threefold degenerate excitons.
The twofold and threefold J = 2 “dark excitons” are split
by δanis = 0.02 μeV. This anisotropy splitting is due to the
zinc-blende structure which does not allow more than threefold
degeneracy. We expectedly find a very small value for δanis.
The J = 1 “bright exciton” threefold state is separated from
the J = 2 states by the short range exchange splitting �exc. We
get �exc = 20.6 μeV, in agreement with recent experimental
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FIG. 7. (Color online) Dispersion of the exciton states of bulk
GaAs for Q along the [110] direction.
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FIG. 8. (Color online) Isodensity contours in the (110) plane for the sc conduction Bloch function at the zone center in bulk GaAs. TB
calculation (left), SIESTA calculations (center), and ABINIT calculations (right).

determination [31]. When one moves away slightly from
Q = 0, the J = 1 excitons are further split by the long range
exchange interaction into twofold degenerate, optically active
transverse excitons, and a longitudinal exciton. The energy
difference corresponds to the longitudinal-transverse splitting
�LT , for which we find a value �LT = 105.3 μeV in very good
agreement with the well documented experimental value.

Then, we examine the evolution of the exciton fine structure
as a function of the exciton wave vector Q. Figure 6 shows
the calculated dispersion curves. For large Q, when the heavy-
hole light-hole splitting becomes larger than exciton binding
energy, the exciton splits into a “heavy” exciton formed of two
twofold degenerate states and a “light” exciton formed of one
threefold degenerate state and one singlet state. Our calculation
shows how energy levels interpolate between the small and
large Q regimes. Finally, we note that when Q is along the
[110] direction (Fig. 7), our results show the full details of
exciton state spin splittings, including both contributions of
electron and hole spin splittings. Note, however, that terms
linear in k in hole dispersion are not present in the current
spds∗ model.

V. CONCLUSION

In conclusion, we have devised a method that allows
self-consistent definition of local wavefunctions within the
EPTB theory, and successfully used bulk exciton fine-structure
as a parameter-free testbed. Extension to nanostructures is
straightforward as long as bulk screening parameters are, like
other tight binding parameters, transferable to nanostructures.
While some fundamental aspects of the method, like the
problem of on-site optical matrix elements, still require further
clarification, this approach opens a route towards reconciling
tight-binding and predictive evaluation of interactions between
quasi-particles.
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APPENDIX A: SIESTA VERSUS ABINIT
AND TB WAVEFUNCTIONS

As discussed in the article, the main differences between
the tight-binding wave functions and those obtained using
the ABINIT code were observed for s-symmetry states in the

TABLE V. Tight-binding parameters for Si (eV).

a 5.4300 Es −2.0386
Es∗ 19.9699 Ep 5.0669
Ed 14.8323 ssσ −1.8885
ss∗σ −1.5103 s∗s∗σ −3.6932
spσ 2.9607 s∗pσ 3.5346
sdσ −2.5344 s∗dσ −2.0505
ppσ 4.3649 ppπ −1.6285
pdσ −2.2675 pdπ 2.4736
ddσ −1.5424 ddπ 3.6059
ddδ −1.7157 �/3 0.0195

FIG. 9. (Color online) Calculated bulk silicon band structure.

TABLE VI. Some calculated Si band parameters compared with
available experimental data.

TB Expt.

�min 0.85 X 0.85 X
Ec(�min) 1.17 eV 1.17 eV
mt (�min) 0.19 0.19
ml(�min) 0.99 0.98
γ1 4.5 4.3
γ2 0.2 0.3
γ3 1.5 1.6
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FIG. 10. (Color online) Isodensity contours in the (110) plane for
the sv , zv , and y ′

v conduction Bloch functions at the zone center in
bulk Si TB calculation (left) and ABINIT calculations (right).

vicinity of atomic sites. To clarify this issue, we calculated the
electronic wave function using the SIESTA code, which is based
on DFT expanded in a set of strictly localized orbitals. In Fig. 8
we show SIESTA results for sc compared with tight-binding and
ABINIT calculations. Tight-binding wave functions compare
more favorably with SIESTA results.

APPENDIX B: SILICON PARAMETRIZATION
AND SCREENING PARAMETERS

Silicon is technologically the most important semiconduc-
tor, and its band structure has been determined experimentally

FIG. 11. (Color online) Isodensity contours in the (110) plane for
the y ′

c, sc and d(�12) conduction Bloch functions at the zone center
in bulk Si TB calculation (left) and ABINIT calculations (right).

with very high accuracy. Yet, the ability of simple tight-binding
models for precise modeling of Si electronic properties has
been much discussed [32]. The spds∗ model has solved these
issues and the parametrization given in Table V provides
the band structure shown in Fig. 9, which is in very good
agreement with experiment [33] (see Table VI).

In the present context, Si is interesting both for its band
structure specificities and because the first quantum numbers
n differ from the Ge and GaAs cases. We applied the procedure
described in the article to silicon. The final set of screening

parameters for Si are αs = 1.83 Å
−1

, αp = 0.97 Å
−1

, αd =
0.57 Å

−1
and αs∗ = 0.72 Å

−1
. Figures 10 and 11 show that

tight-binding wave functions also compare favorably with
ABINIT results in the Si case.
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