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Kinetic properties of a two-dimensional model of fermions interacting with antiferromagnetic spin excitations
near the quantum critical point are considered. The temperature or doping are assumed to be sufficiently high,
such that the pseudogap does not appear. In contrast to standard spin-fermion models, it is assumed that there are
intrinsic inhomogeneities in the system suppressing space correlations of the antiferromagnetic excitations. It is
argued that the inhomogeneities in the spin excitations in the “strange metal” phase can be a consequence of the
existence of “π -shifted” domain walls in the doped antiferromagnetic phase. Averaging over the inhomogeneities
and calculating physical quantities such as resistivity and some others one can explain unusual properties of
cuprates unified under the name “marginal Fermi liquid.” The dependence of the slope of the linear temperature
dependence of the resistivity on doping is compared with experimental data.
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I. INTRODUCTION

Properties of the normal state of high-Tc superconducting
cuprates in the vicinity of the quantum critical point (QCP)
are not consistent with the Landau Fermi liquid theory. Such
unusual effects as the linear dependence of the resistivity on
temperature, the linear tunneling conductivity as a function
of voltage, almost frequency and temperature independent
backgrounds in the Raman-scattering intensity, constant ther-
mal conductivity, and a very large nuclear relaxation time are
similar in all CuO-based high-Tc compounds. This region is
usually referred to as “strange metal.”

In the pioneering work Varma et al. [1,2] have proposed
a “marginal Fermi liquid” (MFL) phenomenology that al-
lowed them to describe the unusual experimental findings
surprisingly well. The theory is based on the assumptions that
(1) electrons are scattered by unknown bosonic excitations
characterized by a retarded propagator χR(q,ω,T ), where q is
momentum, ω is frequency, and T is temperature, and (2) the
imaginary part of this propagator has the form

ImχR(q,ω,T ) =
{
ν(ω/T ), ω � T ,

ν(sgn ω), T � ω � ωc,
(1.1)

where ν is the density of states per unit volume and per spin
direction, and ωc is a high-energy cutoff.

Later, Abrahams and Varma [3] demonstrated that the MFL
assumption described results of angle-resolved photoemission
(ARPES) [4,5] very well, too (see also Ref. [6]).

In spite of the evident success in describing the experi-
ments [7–11], the final agreement on the origin of the bosonic
mode specified by Eq. (1.1) seems to be lacking so far. The
strange-metal behavior is attributed to quite different phenom-
ena such as existence of spontaneous orbital currents [12],
quantum criticality near antiferromagnetic transition [13–15],
and many others.

A recent discovery of the charge modulation in
cuprates [16–23] signals a competition between the supercon-
ductivity and a charge density wave (CDW) in the pseudogap
region of the phase diagram of cuprates. Many important
experimental findings of these works can be explained [24–28]

in the framework of the so-called spin-fermion (SF) model
introduced earlier [29,30] for description of electron-electron
interaction in the vicinity of the QCP. In particular, it has been
proposed in Ref. [24] that the pseudogap (PG) state arises as a
consequence of the competition between the superconducting
and a charge-modulated state.

Experimentally, increasing the temperature and doping one
passes from the pseudogap state to a strange-metal state
described by the MFL phenomenology. Assuming that the
pseudogap state can be understood in terms of the SF model
it is natural to use this model also for description of the
“neighboring” strange-metal state. However, the correlation
function of antiferromagnetic spin fluctuations used in the SF
model is definitely different from the one given by Eq. (1.1),
and new ideas are necessary to overcome this inconsistency.

In this paper we show that the MFL with the bosonic mode,
Eq. (1.1), can nevertheless be derived from the SF model for
the antiferromagnet–normal metal quantum phase transition in
2D. However, in order to achieve this goal one should introduce
into the model a disorder reducing the antiferromagnetic
correlations at large distances. It is argued that such a disorder
is intrinsically present due to doping and, being sufficiently
smooth, does not contribute to the residual resistivity.

II. FORMULATION OF THE MODEL

Following this idea we assume that the CuO planes consist
of domains f, such that the antiferromagnetic (AF) field
�φf varies almost periodically with the modulation vector
Q =(π/b,π/b) inside the domains but sharply changes the
sign when crossing the boarder between them. In other words,
the fluctuating field �φf is shifted on the boarder by the lattice
period b (the phase of the oscillations is shifted by π ) and we
write it as

�φf(r) = If(r) �φ(r), If(r) =
{

1, f ∈ “pink”,
−1, f ∈ “white”. (2.1)

In Eq. (2.1) the field �φ is almost periodic everywhere in space,
and “pink” and “white” domains are represented in Fig. 1.
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FIG. 1. (Color online) Domains separated by π -shifted domain
walls.

The size and the form of the domains are not critical at the
transition between the antiferromagnet and paramagnet, and
Eq. (2.1) is assumed to be applicable on both sides of it. We
write the Lagrangian L of the model as

L = L0 + Lψ + Lφ + Lb. (2.2)

In Eq. (2.2), L0 stands for the Lagrangian of noninteracting
fermions (holes)

L0 =
∫

ψ∗(τ,r)[∂τ + ε(−i∇r) − μ]ψ(τ,r)dr, (2.3)

while

Lψφ = λ
∑

f

∫
ψ∗(τ,r)�σ �φf(τ,r)ψ(τ,r)dr (2.4)

describes interaction of the fermions with the effective ex-
change field �φf(τ,r) of the antiferromagnet. In Eqs. (2.3), (2.4),
ψ is the anticommuting fermionic field, �σ is the vector of
Pauli matrices, and τ is the imaginary time. The second term
in Eq. (2.3) stands for the electron energy operator, and μ is
the chemical potential.

The Lagrangian of Lφ for the exchange field �φ is written
near the QCP as

Lφ = 1

2

∫ {
�φ(τ,r)

[
D̂−1

0 + g �φ2(τ,r)

2

]
�φ(τ,r)

}
dr, (2.5)

where the Fourier transform of D̂0 has the form

D0(ωn,q) = [
v−2

s ω2
n + (Q − q)2 + a

]−1
, (2.6)

and ωn is the bosonic Matsubara frequency.
In Eq. (2.6), vs is the velocity of the spin waves, and a

characterizes the distance from the QCP (a > 0 on the metallic
side and a < 0 in the AF region).

Actually, domain walls (DWs) separating domains with
opposite directions of the staggered magnetization have been
found in 2D using a Hartree-Fock approximation for a CuO
lattice [31] and for the t-J model [33], as well as using a
mean-field approximation for the Hubbard model [32]. Similar
DWs (stripes) have been obtained later within the t-J model
numerically using the density matrix renormalization group
(DMRG) method [34].

The DWs derived in these works separate regions with
opposite direction of the AF ordering (π -shifted DWs). They
contain chains of holes in the middle of DWs, while the
magnetization vanishes there. According to this picture, the

doped holes are not distributed homogeneously in the AF but
are located inside the DWs implying that the doped AF is
intrinsically inhomogeneous. The typical distance between the
DWs is proportional to p−1 [31–35], where p is the number
of doped holes per Cu atom.

A stripe correlation of spins and holes is evident in
cuprates from neutron diffraction [35,36]. As the DWs contain
holes, their shape and locations are affected also by an
inhomogeneous electrostatic field of doping ions located
outside the CuO planes. This interaction should make the shape
and size of the domains rather irregular and we assume that
Fig. 1 together with Eqs. (2.1)–(2.5) can properly describe the
antiferromagnet doped with holes.

On the metallic side, a > 0, field �φ can be finite only as a
result of fluctuations. Although the AF order parameter If �φ0

vanishes at the QCP, the distance between DWs determined
by the hole density remains finite at a = 0.

In the limit of a weak doping p ∼ 0.1–0.2, the typical size
of the domains Q−1

D ∼ (Qp)−1 is considerably larger than the
atomic length Q−1, while the length lT = vs/T can be even
larger than Q−1

D for relevant temperatures.
Neglecting the quartic term in Lφ , Eq. (2.5), we integrate

out the field �φ and come with help of Eq. (2.1) to action Seff [ψ]:

Seff[ψ] =
∫ β

0
L0[ψ]dτ + Sint[ψ], (2.7)

where

Sint[ψ] = −λ2

2

∑
f,f′,k=x,y,z

∫
drdr′dτdτ ′ψ∗(τ,r)σ kψ(τ,r)

× If (r)If′(r′)D0(τ − τ ′,r − r′)ψ∗(τ ′,r′)

× σ kψ(τ ′,r′). (2.8)

As the DWs can randomly be distorted by the potential of
the O atoms located outside the CuO planes, averaging over
random If(r) looks like a reasonable method of calculation.
The propagator D0 varies on distances of order lT and, in the
limit lT QD � 1, one can simply replace the product IfIf′ in
Eq. (2.8) by its average. We assume that the correlations are
Gaussian with the following moments:

〈I (r)〉 = 0, 〈I (r)I (r′)〉 = U (QD|r − r′|), (2.9)

where the function U (x) decays sufficiently fast at x → ∞
and U (0) = 1. Equations (2.5)–(2.9) fully specify the model
considered and allow one to calculate physical quantities
explicitly.

III. EFFECTIVE MODE

Averaging in Eq. (2.8) over I (r) we immediately come to
an effective fermion-fermion interaction λ2D̄0(τ − τ ′,r − r′)
with the propagator

D̄0(τ − τ ′,r − r′) = U (QD|r − r′|)D0(τ − τ ′,r − r′). (3.1)

Equation (3.1) shows that the presence of the π -shifted DW
destroys the spin correlations at distances exceeding the typical
domain size Q−1

D .
In the homogeneous case, the bare propagator D0 is

modified due to the Landau damping [37]. This effect can
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be obtained in the random phase approximation (RPA). The
polarization function �(ωn,q) does not depend on q and is
short ranged in the real space. The function �(ωn,r − r′) is
essentially nonzero only when both r and r′ are located in the
same domain. Then, as in the homogeneous case, one comes
to the following relation:

D−1(ωn,q) = D−1
0 (ωn,q) − �(ωn,q), (3.2)

where

�(ωn,q) = C + γ |ωn|, γ = 4λ2

πv2 sin δ
, (3.3)

and C is a constant renormalizing the position of the QCP.
In Eq. (3.3), v is the Fermi velocity at the hot spots and δ is
the angle between the velocities of the neighboring hot spots
(see, e.g., Refs. [29,30] and the Supplementary Information of
Ref. [24]). As usual [24,29,30], we neglect the ω2 term in the
propagator D, Eqs. (2.6), (3.2), (3.3).

Formally, the parameter a entering the propagator D(ωn,q),
Eqs. (2.6), (3.2), should vanish at the transition point. However,
the transition is smeared in 2D at any finite temperature
by thermal fluctuations. One can estimate the characteristic
width of the transition considering corrections to the coupling
constant g within the perturbation theory and keeping only the
most divergent static contributions (Supplementary Informa-
tion of [24]). This gives in the first order

g → g − T g2
∫

d2k

(k2 + a)2
, (3.4)

which leads in the limit a → 0 to a divergency. Since the
transition is smeared, we conclude that a cannot be effectively
smaller than some minimal value a0(T ) at which the correction
in Eq. (3.4) is of the same order as the bare coupling g. This
gives an estimate for a0(T )

a0(T ) = cgT , (3.5)

where c is a numerical coefficient. Then, one should replace
parameter a in Eq. (2.6) by

a(T ) = a0(T ) + ã, (3.6)

where ã characterizes the distance from the critical line, to
obtain

D(ωn,q) = (γ |ωn| + (Q − q)2 + a(T ))−1. (3.7)

Replacing the function D0 in Eq. (3.1) by D from Eq. (3.7)
one obtains an effective propagator D̄ instead of D̄0:

D̄(ωn,q) = Q−2
D

∫
Ũ

( |q − k|
QD

)
D(ωn,k)

dk
(2π )2

, (3.8)

where Ũ is the Fourier transform of U .
The integration over k makes the propagator D̄ weakly

dependent on q for |Q − q| � QD. The analytical continuation
of the propagator D(ωn,q) from positive Matsubara frequen-
cies ωn to the real axis, iωn → ω + i0, gives the retarded
propagator DR(ω,q,T ) that can be obtained from D(ωn,q) by
the replacement |ωn| → iω. Substituting DR(ω,k,T ) instead
of D(ωn,k,T ) in Eq. (3.8) one can obtain the propagator
DR(ω,k,T ). The real part of DR(ω,k,T ) is not interesting
for electron transport properties. Calculation of the integral

over two-dimensional momenta k in Eq. (3.8) is performed
assuming that the inequality γ |ω| � Q2

D is fulfilled. In this
limit, the main contribution comes from (k − Q)2 ∼ γ |ω| �
Q2

D and the variable k in the function Ũ can be simply replaced
by Q. Then, a straightforward integration over k (for details,
see the Appendices) provides

ImD̄R(ω,q,T ) = 1

4πQ2
D

Ũ

(|q − Q|
QD

)
arctan

(
γω

a(T )

)
. (3.9)

Equation (3.9) is in accord with the hypothesis of MFL,
Eq. (1.1), for temperatures exceeding the distance from the
critical line, when a0(T ) � ã. Provided this inequality is
fulfilled, and g and γ are of the same order (as they should be),
one obtains the asymptotics of Eq. (1.1) in the limits of high
ω � T and low ω � T frequencies. The temperature T should
also be higher than the coupling energy between the layers,
which guarantees that the spin fluctuations are effectively two
dimensional.

The function ImD̄R(ω,q), Eq. (3.9), is generally momen-
tum dependent and thus differs from ImχR(q,ω), Eq. (1.1).
At the same time, the dependence of ImD̄R(ω,q), Eq. (3.9),
is rather weak for a small size Q−1

D of the domains and the
difference between the functions ImD̄R(ω,q) and ImχR(q,ω)
is not very important. One can see from Eq. (3.9) that the origi-
nally sharp dependence of the propagator D on the momentum
Q − k is smeared due to the random shapes of the domains.
The function Ũ (|q − Q|/QD) should describe a smeared shape
of paramagnon peaks in neutron scattering. Experimentally
observed peaks are indeed rather broad [38–40].

The structure of the DW containing both magnetic moments
and holes should result in a coupling of the mode D̄R not only
to spin but also to charge excitations.

IV. FACTORIZATION OF THE IMAGINARY PART OF
SELF-ENERGY INTO ENERGY- AND
MOMENTUM-DEPENDENT PARTS

Many physical quantities can be obtained using the imag-
inary part Im �R of the self-energy �R of the retarded one-
particle electron Green’s function. A very important feature of
the MFL hypothesis is that Im�R factorizes into energy- and
momentum-dependent parts [1–3]. It is this property that leads
finally to the universal dependencies of physical quantities on
temperature, energy, etc.

We calculate Im�R using a self-consistent Born approxi-
mation. A standard representation for Im�R reads

Im�R(ε,p)

= − λ2

(2π )3

∫
dp1

∫ ∞

−∞
dωImGR(ε − ω,p1)

× ImD̄R(ω,p − p1)

(
tanh

ε − ω

2T
+ coth

ω

2T

)
, (4.1)

where

GR(ε,p) = {ε − ε(p) + μ + i/[2τ (p)]}−1, (4.2)

1

2τ (p)
= 1

2τel

− Im�R(ε,p), (4.3)

045110-3



K. B. EFETOV PHYSICAL REVIEW B 91, 045110 (2015)

and τel is the elastic scattering time due to scattering on
nonmagnetic impurities. In principle, Eqs. (4.1)–(4.3) are an
integral equation. However, it can easily be solved assuming
that the dependence of GR(ε,p1) on the component p1⊥
perpendicular to the Fermi surface is more sharp than that of
ImD̄R(ω,p − p1). Then, we neglect p1⊥ in ImD̄R(ω,p − p1)
and integrate over this variable. The main contribution comes
from the vicinity of the Fermi surface and we obtain

Im�R(ε,p) = −λ2A(p)T

(4π )2
f

(
ε

2T

)
, (4.4)

where

A(p) = Q−2
D

∫
FS

Ũ (|p − Q − p̄1|/QD)
dp̄1

v(p̄1)
, (4.5)

v(p̄1) is the velocity at a point p̄1 on the Fermi surface, the
integration is performed over the Fermi surface, and

f (u) =
∫ ∞

−∞
[tanh(u − x) + coth x] arctan(bx)dx, (4.6)

where b = 2γ /(cg) is of order 1. The function Im�R(ε,p) is a
smooth function of the position on the Fermi surface and does
not depend on the elastic scattering time τel .

The approximation used for the derivation of Im�R(ε,p) is
applicable for τ−1(p) � vF QD , where vF is a typical Fermi
velocity. For a weak scattering on impurities, one comes using
Eqs. (4.4), (4.5) to the inequality

T � T1 = (QDvF )2/λ2. (4.7)

At the same time, the temperature T ∗ separating the pseudogap
phase and metallic region was evaluated within the spin-
fermion model in Ref. [24] as T ∗ ∼ 0.1λ2, which allows one
to estimate the energy λ2 as

λ2 ∼ 2000–3000 K. (4.8)

As QD ∼ pQ, we can estimate the energy QDvF as

QDvF ∼ 1000 K. (4.9)

Using the estimates (4.7), (4.9) one can conclude that at
temperatures

T � 300–500 K (4.10)

the approximation used is clearly justified. Of course, the
estimate does not exclude the linear temperature dependence
of Im�R(ε,p) even at higher temperatures.

It is relevant to mention that the mean-free path l = vF τ

may considerably exceed the domain size Q−1
D . Although the

domain borders contain charges, the picture can be smeared
due to overlap of the borders near the quantum critical point.
In addition, the charges can be screened. All this can reduce
the scattering amplitudes and result in a long elastic mean-free
path and a rough estimation leads to a conclusion that the
temperature T1 can reach values of order 1000 K.

Remarkably, the function Im�R(ε,p), Eq. (4.4), factorizes
into the energy- and momentum-dependent parts. Therefore,
its temperature and energy dependence are the same for all
parts of the Fermi surface. One can write

Im�R(ε,p) ∝ −λ2 max(|ε|,T ) (4.11)

in agreement with the findings of Refs. [1–3].

The electron spectral function has been compared in Ref. [3]
with the results of the ARPES measurements of Refs. [4,5]
and a good agreement has been found. Using Eq. (3.9) one can
describe also the other experiments discussed in Refs. [1–3]
and, in particular, obtain linear in temperature dc resistivity.

V. LINEAR TEMPERATURE DEPENDENCE
OF RESISTIVITY

Having calculated the imaginary part Im�R(ε,p) of the
self-energy �R(ε,p), Eqs. (4.5) and (4.6), we can calculate the
conductivity and resistivity. The zero-frequency conductivity
σ can conveniently be calculated using the Kubo-Kirkwood
formula

σ = 2e2

π

∫
v2

x(p)[ImGR(p)]2 dp
(2π )2

, (5.1)

where vx(p) is the x component of the velocity, and GR is the
retarded Green’s function taken at zero energy ε and averaged
over all types of disorder.

In principle, the integrand in Eq. (5.1) should contain the
disorder average of the product of the Green’s functions.
However, neglecting localization effects this fact is important
only in the case of a smooth disorder. In the latter case one
should simply replace at the end the scattering time τ by a
longer transport time τtr . As we consider scattering with the
large vector Q, just writing averaged Green’s functions can be
a good approximation.

We write the Green’s function GR(p) as

GR(p) = −
[
ε(p) − μ − i

2τel

+ iIm�R(p)

]−1

, (5.2)

where τel is the elastic scattering time, μ is the chemical
potential, and Im�R(p) is obtained from Eq. (4.5) and (4.6)
by putting ε = 0. We write this function as

Im�R(p) = −λ2A(p)Tf (0)

(4π )2
, (5.3)

where the functions A(p) and f (0) are determined by Eqs. (4.5)
and (4.6).

This allows one to express the conductivity σ in terms of
the following integral:

σ = e2

π

∫
v2(p){

[ε(p) − μ]2 + 1
4τ 2(p)

}2

1

4τ 2(p)

dp
(2π )2

, (5.4)

where τ (p) equals

1

2τ (p)
= 1

2τel

+ λ2A(p)Tf (0)

(4π )2
. (5.5)

As τ−1(p) is assumed to be not very large, such that the
inequality

τ−1(p) � QDvF (5.6)

is fulfilled, the main contribution into the integral (5.4) comes
from the narrow region near the Fermi surface. This allows
one to integrate separately over the perpendicular to the Fermi
surface component p⊥ of the momentum using the variable
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ξ = ε(p) − μ � (p⊥ − p̄)v(p̄) and the vector on the Fermi
surface p̄.

Integrating over ξ we reduce the conductivity σ to the form

σ = e2
∫

FS
v(p̄)τ (p̄)

dp̄
(2π )2

, (5.7)

where v(p̄) = |v(p̄)| is the modulus of the velocity at the
momentum p̄ on the Fermi surface and the integration in
Eq. (5.7) is performed over the Fermi surface. Actually, we
assume that the main contribution to τ−1(p), Eq. (5.5), comes
from Im�R(ε,p) and the inequality (4.7) is fulfilled.

Using Eq. (5.5) we write the resistivity ρ as

ρ(T ) = 1

e2νeff

[〈
v2(p̄)

2

(
1

2τel

+ λ2A(p̄)Tf (0)

(4π )2

)−1〉
FS

]−1

,

(5.8)

where the symbol 〈. . .〉FS stands for the average over the Fermi
surface

〈...〉FS = 1

νeff

∫
FS

(...)

v(p̄)

dp̄
(2π )2

, (5.9)

and νeff is given by the integral

νeff = 1

(2π )2

∫
FS

dp̄
v(p̄)

. (5.10)

The quantity νeff is the standard density of states per spin
direction for a circular Fermi surface but it may numerically
differ from the latter for more complex geometries.

In case of a large QD , when the domain size is of the same
order as atomic distances or slightly exceeds the latter, the
function A(p̄) weakly depends on the momenta p̄ on the Fermi
surface. This possibility is supported by the fact that there are
8 hot spots in the Brillouin zone and the distance between them
may be somewhat smaller than the antiferromagnetic vector Q.
If one neglected the dependence of A(p̄) on p̄ one would obtain
the resistivity ρ(T ) simply putting in Eq. (5.8) A(p̄) = A. In
this case, the averaging over the Fermi surface in Eq. (5.8) is
trivial and the resistivity ρ(T ) takes the form

ρ(T ) = ρ0 + αT , (5.11)

where ρ0 is the residual resistivity and

α = λ2Af (0)

(4πe)2E
, E = 1

2

∫
FS

v(p̄)
dp̄

(2π )2
. (5.12)

In Eq. (5.12) the parameter E is an energy of the order of
the Fermi energy. The ratio of the first and second term in
Eq. (5.11) can be arbitrary and, in particular, the T -dependent
term can be much larger that the residual resistivity ρ0.

As concerns the lower limit, the temperature T should not
be in the pseudogap region, which gives the inequality

T > T ∗. (5.13)

In reality, at finite τel the resistivity ρ(T ) is not universally
linear in T due to a dependence of A(p̄) on the momentum
p̄ on the Fermi surface. Nevertheless, it does become linear
at sufficiently high temperatures. This can be seen from the
expansion in small (τelT )−1 of the resistivity ρ(T ) in Eq. (5.8).
The calculation is straightforward and one can easily write the

first three terms of the expansion of ρ(T ):

ρ(T ) = (e2νeff)
−1

(
b1T + b0

τel

+ b−1

τ 2
elT

)
, (5.14)

b1 = λ2f (0)

8π2

〈
v2(p̄)

A(p̄)

〉−1

FS

, (5.15)

b0 =
〈
v2(p̄)

A2(p̄)

〉
FS

〈
v2(p̄)

A(p̄)

〉−2

FS

, (5.16)

b−1 = 8π2

λ2f (0)

〈
v2(p̄)

A(p̄)

〉−3

FS

×
[〈

v2(p̄)

A2(p̄)

〉2

FS

−
〈
v2(p̄)

A(p̄)

〉
FS

〈
v2(p̄)

A3(p̄)

〉
FS

]
. (5.17)

It is clear from Eqs. (5.14)–(5.17) that the coefficient b−1 in
the third term in Eq. (5.14), as well as all higher terms of the
expansion in (τelT )−1, vanishes in the case when A(p̄) does
not depend on the momentum p̄ on the Fermi surface and one
comes to Eq. (5.11). If A(p̄) depends on the p̄ the third term
in Eq. (5.14) is finite but it is small in the limit τelT � 1 . The
characteristic temperature T1 of the deviation from the linear
dependence depends on the form of the function A(p̄). One
can roughly estimate this temperature as

T0 = (4π )2
(
A−1

min − A−1
max

)
2τelλ2f (0)

, (5.18)

where Amax and Amin are maximum and minimum values of
A(p̄) on the Fermi surface. One obtains the linear in T behavior
for temperatures T � T0. Of course, the inequality (5.13)
should also be fulfilled.

Thus, using Eqs. (5.14), (5.18) we come to the conclusion
that the region of the linear resistivity exists provided the
following inequality is fulfilled:

τ−1
el � (QDvF )2 AmaxAmin

Amax − Amin
. (5.19)

Estimating typical values of A as Amax ∼ (vF QD)−1 and
introducing a parameter κ = A max/Amin we rewrite the in-
equality (5.19) as

τ−1
el � QDvF

κ − 1
. (5.20)

Of course, a linear temperature dependence can also be
obtained in the limit T � T0 when the main contribution to the
resistivity comes from the scattering on impurities. However,
this limit is not as interesting as the opposite limit of high
temperatures.

VI. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

A model of fermions interacting with antiferromagnetic
spin fluctuations has been considered. It was assumed that
the interaction is random due to the presence of domains
with different phase of the antiferromagnetic field. As a
microscopic mechanism supporting the existence of these
“π -shifted domains,” it was assumed that stripes are formed
in the doped antiferromagnet and eventually destroy the
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antiferromagnetic order affecting, however, antiferromagnetic
fluctuations in the metallic side. This type of disorder has not
previously been considered in models of cuprates. Of course,
conventional potential disorder can be present in the model as
well.

Although the model is quite simple, it allows one to obtain
results predicted on basis of the MFL hypothesis [1,2] in a
rather simple way. Of course, the model considered here is
not free of assumptions and is not completely microscopical.
However, it is definitely “more microscopic” than the MFL
hypothesis of Refs. [1,2]. It has also predictive power being
able to describe the dependence of the slope of the linear
temperature dependence of the resistivity on doping.

The slope α of the T dependence does not depend on τel

but the residual resistivity ρ0 determined by τel does. This
agrees with observations of Ref. [10]. At the same time, a
clear decrease of the slope with the doping has been observed
in experiments [9,11]. A more detailed microscopic theory is
necessary in order to describe precisely the dependence of α

on the doping p but a rough estimation can already be done
using Eqs. (4.5), (5.11), (5.12).

We use for comparison between theory and experiment
Fig. 1(a) of Ref. [9] displaying the linear temperature
dependence of resistivity Bi2Sr2−xLaxCuO6+δ for doping p

= 0.11–0.18. The slope α is extracted from the difference
�ρ = ρ(300 K) − ρ(100 K). Estimating physical quantities
characterizing the fermions we simply assume that their den-
sity (volume under Fermi surface) is proportional to pQ2 and
QD ∼ pQ (Q is inverse interatomic atomic distance). It is also
assumed that there are no singularities on the Fermi surface.

It is important to emphasize that the spin-fermion (SF)
model contains low-energy effective fermions instead of
original electrons on the CuO lattice. The shape of the Fermi
surface of these fermions and the dependence of the Fermi
energy on doping is formally not specified in the SF model
and one is to be guided by reasonable assumptions. As the
SF model is designed to describe the system near the QCP,
one has no need to think on what happens in the limit p → 0
when the system becomes a Mott insulator. At the same time,
in the vicinity of the QCP one can reasonably assume that the
density of the fermions in the SF model is proportional to the
density of doped electrons, which leads to the proportionality
of the fermion density to pQ2. This proportionality is clearly
good for comparatively high doping. As concerns low doping,
it may still be a good approximation in the framework of the
SF model even in the antiferromagnetic region provided one
stays in the vicinity of the QCP.

Using the original formulation of MFL, Eq. (1.1), of
Refs. [1,2] and the fact that in the SF model the density of
states ν is thus independent in 2D of doping p one comes to
the relation α ∝ v−2

F ∝ p−1. The dependence of y = αp on
p taken from Fig. 1(a) of Ref. [9] is represented by dots in
Fig. 2. Its essential dependence on p indicates that Eq. (1.1)
should possibly be modified. At the same time, it follows
from Eq. (4.5) that A ∝ (vF QD)−1 and E ∝ mv2

F , which leads
to α ∝ v−3

F Q−1
D ∝ p−5/2. The variation of y = 10αp5/2 with

p is represented by boxes in Fig. 2. A weak dependence of
y = αp5/2 on the doping p supports the present theory. As the
discussion presented here is based on the assumption that
the doping is not too low, it is important to emphasize that

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

1.5

2

2.5

3

3.5

doping p

y

y = α ∗ p

y = 10 ∗ α ∗ p

FIG. 2. (Color online) Dependence of y = αp (blue dots) and
y = 10αp2.5 (red boxes) on doping p extracted from Fig. 1(a) of
Ref. [9].

the lowest doping level p studied in Ref. [9] is p = 0.11,
which is already well in the metallic region. Therefore, the
assumption that the density of states is weakly dependent on
doping is not unrealistic for p � 0.11.

Anyway, the quantity y = 10αp5/2 in Fig. 2 is not exactly
a constant and one can speak rather of a qualitative agreement
than of a microscopic theory. However, the present formulation
already gives a better agreement with the experimental data
than the original version of the MFL hypothesis, Eq. (1.1).
Actually, to the best of our knowledge, the dependence of the
slope on the doping is discussed here for the first time and the
theory presented has a potential of further improvement.

In conclusion, fermions interacting with critical antifer-
romagnetic fluctuations in two dimensions are considered.
Assuming that the CuO planes consist of different domains,
such that the coupling constant λ changes the sign when
crossing the boarders between them, we have derived the
hypothetical mode of the marginal Fermi liquid and clarified its
dependence on the doping. The slope of the linear temperature
dependence of the resistivity calculated here is compared with
experimental results and an encouraging agreement is found.
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APPENDIX A: CALCULATION OF Im D̄(ω,q,T )

Here we calculate the function ImD̄(ω,q,T ), where
D̄R(ω,q,T ) is the analytical continuation iωn → ω + iδ from
Matsubara frequencies ωn to real frequencies ω of the function
D̄(ωn,q), Eq. (3.8),

D̄(ωn,q) = Q−2
D

∫
Ũ

( |q − k|
QD

)
D(ωn,k)

dk
(2π )2

, (A1)

with D(ωn,k) from Eq. (3.7) of the main text,

D(ωn,k) = (γ |ωn| + (Q − k)2 + a(T ))−1. (A2)
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The analytical continuation of propagator D(ωn,k) can easily
be performed leading to the retarded propagator

DR(ω,k) = (−iγ ω + (Q − k)2 + a(T ))−1. (A3)

Then, we obtain for the imaginary part of this function the
following expression:

ImDR(ω,k) = γω

γ 2ω2 + ((Q − k)2 + a(T ))2 . (A4)

Using Eq. (A4) we represent ImD̄(ω,q,T ) in the form

ImD̄(ω,q,T )

= Q−2
D

∫
γωŨ

( |q−k|
QD

)
γ 2ω2 + ((Q − k)2 + a(T ))2

dk
(2π )2

. (A5)

Shifting in the integral the momentum k → k + Q the function
ImD̄(ω,q,T ) can be written as

ImD̄(ω,q,T )

= Q−2
D

∫ ∞

0

∫ 2π

0

γωŨ
(√

k2−2k|q−Q| cos θ+|q−Q|2
QD

)
γ 2ω2 + [k2 + a(T )]2

kdkdθ

(2π )2
,

(A6)

where θ is the angle between the vectors k and q − Q.
In the limit γ |ω| � Q2

D , the main contribution to the
integral in Eq. (A6) comes from k ∼ (γω)1/2 � QD . This
allows one to neglect k in the argument of the function Ũ .
Changing the variable of the integration to z = k2 we come to
the integral

ImD̄(ω,q,T ) = Q−2
D

∫ ∞

0

γωŨ (|q − Q|/QD)

γ 2ω2 + [z + a(T )]2

dz

4π
. (A7)

Calculating the integral over z we come to Eq. (3.9) of the
main text.

APPENDIX B: CALCULATION OF Im�R

A convenient representation of the imaginary part
Im�R(ε,p) can be found in Eqs. (4.1)–(4.3) of the main text
and we use it here. Equations (4.1)–(4.3) are written in the self-
consistent Born approximation. They can be obtained writing
the Green’s functions on Matsubara frequencies and making
analytical continuation to frequencies ω on the real axis. As
the Green’s function in the integrand contains Im�R(ε,p),
Eq. (4.1) is an integral equation and one should solve this
equation in order to find this quantity. The solution is rather
simple in the case when the dependence of the imaginary part
ImGR(ε,p1) of the Green’s function GR on the component
p1⊥ is more sharp than the dependence of ImD̄R(ω,p − p1)
on the same variable. In this situation, one may simply replace
p1 in ImD̄R(ω,p − p1) by its value p̄1 on the Fermi surface
and calculate explicitly the integral over p1⊥ in Eq. (4.1) using
Eq. (4.2).

Using Eq. (4.2) and integrating ImGR(ε − ω,p1) over p1⊥
while keeping the parallel component of p fixed at a point p̄1

on the Fermi surface we have∫
ImGR(ε − ω,p1)dp1⊥ =

∫ ∞

−∞
ImGR(ε − ω,p1)

dξ1

v(p̄1)
,

(B1)

where ξ1 = ε(p1) − μ � v(p̄1)(p1−p̄1) and v(p̄1) is the ve-
locity on the Fermi surface at the point p̄1. Neglecting the
perpendicular component p1 − p̄1 in τ (p1) we obtain∫

ImGR(ε − ω,p1)dp1⊥

= − 1

2τ (p̄1)

∫ ∞

−∞

dξ

(ε − ξ )2 + [2τ (p̄1)]−2
= π. (B2)

Substituting Eq. (B2) into Eq. (4.1) and using Eq. (3.9) we
come immediately to Eqs. (4.4)–(4.6).
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