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First-principles simulations and shock Hugoniot calculations of warm dense neon
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All-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD)
simulations provide a consistent, first-principles investigation of warm dense neon plasmas in the density-
temperature range of 1–15 g cm−3 and 104–109 K. At high temperatures, DFT-MD becomes intractable because
of too many partially occupied bands, while at lower temperatures, PIMC is intractable because of the free-particle
approximation of fermion nodes. In combination, PIMC and DFT-MD pressures and internal energies provide
a coherent equation of state with a region of overlap in which the two methods cross-validate each other.
Pair-correlation functions at various temperatures and densities provide details of the plasma structure and the
temperature-driven ionization process. The electronic density of states of neon shows that a gap persists for the
highest density-temperature conditions studied here with DFT-MD. Finally, the computed shock Hugoniot curves
show an increase in compression as the first and second shells are ionized.
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I. INTRODUCTION

Theoretical prediction of thermodynamic properties of
warm dense matter [1] (WDM) plays an important role in
furthering our understanding of a large variety of high en-
ergy density physics applications, including inertial confined
plasmas [2,3], shock [4], astrophysical processes [5,6], stellar
and planetary interiors [7,8], and supernovae [9]. In order to
understand the thermodynamic properties of these physical
processes, one must develop accurate methods to predict the
equation of state (EOS) of plasmas. The development of a
comprehensive first-principles methodology for this purpose
remains a great challenge.

The difficulty in treating the physics of the WDM regime
is that plasmas are partially ionized such that the electron-ion
Coulomb interaction is comparable in magnitude to the kinetic
energy. Effects of bonding, ionization, exchange-correlation,
and quantum degeneracy all contribute significantly to the total
energy [1]. A number of analytic and numerical methods, em-
ploying various levels of classical and quantum physics, have
been developed to study plasmas in various regimes [10,11],
but it is difficult to link them together in a thermodynamically
consistent way.

In an effort to develop a comprehensive first-principles
treatment of WDM, we have been working on the development
of a combined approach using density functional theory
molecular dynamics (DFT-MD) at low temperatures and path-
integral Monte Carlo (PIMC) at high temperatures [12,13].
Prior to our work, PIMC had been applied only to the lightest
two elements, hydrogen [14–16] and helium [12]. We showed
that all-electron PIMC with free-particle nodes is a feasible
route to study even heavier elements, computing EOSs for
both water and carbon plasmas [13,17]. In the work presented
here, we aim to press the limits of our technique and show that
it is capable of producing an EOS for elements as heavy as
neon.
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Neon is itself an interesting and important material in the
universe, as it is the fifth most abundant element after H, He,
O, and C. During nucleosynthesis, neon is created during the
carbon-burning process. As an inert, noble gas, neon is highly
volatile and, therefore, easily depleted from atmospheres of
even giant gas planets such as Jupiter [18]. Due to stellar and
planetary interest in neon, a number of studies have been done
for various warm and dense conditions [19–21].

In this paper, we aim to produce a comprehensive,
first-principles EOS for neon that covers a large range
of temperature-density space (0.8949–15.0255 g cm−3 and
104–109 K). In Sec. II, we discuss the details of the PIMC
and DFT-MD methods used for our calculations. In Sec. III,
we provide the EOS over a wide temperature-density range
and show that both PIMC and DFT-MD agree near 1 × 106 K,
where both methods are feasible. In Sec. IV, we characterize
the structure of the plasma by looking at various pair-
correlation functions of electrons and nuclei as a function of
temperature and density. In Sec. V, we discuss the electronic
density of states at the most extreme conditions computed here
with DFT-MD. We find that a gap persists at 1 × 106 K and
15.0255 g cm−3. Finally, in Sec. VI, we discuss predictions
for the shock Hugoniot curves.

II. METHODS

A rigorous discussion of PIMC [22] and DFT-MD [23]
methods and the details of our specific PIMC implemen-
tation [12] have been reported previously. In this section,
we focus only on details that are important for our neon
simulations.

PIMC is a first-principles method for studying materials at
high temperature where properties of materials are dominated
by excited states. The thermal density matrix, which is effi-
ciently computed within Feynman’s path integral formalism,
is the natural operator to use for computing high-temperature
observables. The PIMC method stochastically solves the full,
finite-temperature quantum many-body problem by treating
electrons and nuclei on an equal footing. In contrast to DFT-
MD, PIMC efficiency increases with temperature as particles
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become more classical and fewer time slices are needed to
describe quantum mechanical many-body correlations, scaling
inversely with temperature.

PIMC uses a fixed nodal surface to avoid the fermion sign
problem. Thus far, all PIMC implementations have employed
a free-particle nodal structure, which is expected to be a
sensible approximation for systems that are close to a fully
ionized state. However, reliable results at surprisingly low
temperatures have been obtained for hydrogen [14], as well as
carbon and water [13]. These results showed that free-particle
nodes are sufficient for systems with a filled 1s state and 2s

states that are partially ionized.
For our PIMC simulations, the Coulomb interaction is

incorporated via pair density matrices derived from the
eigenstates of the two-body Coulomb problem. A sufficiently
small time step is determined by converging total energy as
a function of time step until the energy changes less than
0.8% (see Supplemental Material [24]). We use a time step of
1/256 Ha−1 for temperatures below 4 × 106 K and, for higher
temperatures, the time step decreases as 1/T while keeping at
least five time slices in the path integral. In order to minimize
finite-size errors, the total energy is converged to better than
0.4% when comparing 8- and 24-atom simple cubic simulation
cells (see Supplemental Material [24]).

The framework of DFT provides an exact mapping of the
many-body problem onto a single-particle problem, assum-
ing an approximate exchange-correlation (XC) functional is
known. For all but the simplest model systems, the most
commonly used XC functionals have been constructed from
data based on zero-temperature quantum Monte Carlo calcu-
lations of the electron gas [25]. In the WDM regime, where
temperatures are at or above the Fermi temperature, there is
no expectation for an XC functional to provide an accurate
description of the electronic physics [26]. However, in previous
PIMC and DFT-MD work on helium [12], carbon [13], and
water [13], it was shown that DFT functionals are surprisingly
accurate at high temperatures.

Finite-temperature DFT uses a Fermi-Dirac function to
allow for thermal occupation of single-particle electronic
states [27], but requires an increasing number of bands with
temperature, crippling its efficiency at extreme temperatures.
In addition, typically pseudopotentials replace the core elec-
trons in each atom. It is possible that the pseudopotential
approximation may break down and should be compared with
all-electron calculations, particularly as electrons are thermally
excited out of the core. Orbital-free density functional methods
aim to overcome such thermal band limitations, but several
challenges remain to be solved [28].

The DFT-MD simulations were performed with the Vi-
enna Ab initio Simulation Package (VASP) [29] using the
projector augmented-wave (PAW) method [30]. MD uses
an NVT ensemble regulated with a Nosé-Hoover thermostat.
Exchange-correlation effects are described using the Perdew-
Burke-Ernzerhof [31] generalized gradient approximation.
Electronic wave functions are expanded in a plane-wave basis
with a energy cutoff of at least 1000 eV in order to converge
total energy to chemical accuracy. Size convergence tests up
to a 24-atom simulation cell at temperatures of 10 000 K
and above indicate that total energies are converged to better
than 0.1% in a 24-atom simple cubic cell (see Supplemental

Material [24]). We find, at temperatures above 250 000 K,
8-atom cell results are sufficient since the kinetic energy far
outweighs the interaction energy at such high temperatures.
The number of bands in each calculation is selected such
that thermal occupation is converged to better than 10−4,
which requires up to 9000 bands in the highest temperature
cases corresponding with the lowest density. All simulations
are performed at the � point of the Brillouin zone, which is
sufficient for high-temperature fluids, converging total energy
to better than 0.01% relative to a comparison with a grid of k

points.

III. EQUATION OF STATE RESULTS

In this section, we report our EOS results for four densities
of 0.8949, 3.7283, 7.8959, and 15.0255 g cm−3 and for a
temperature range of 104 − 109 K. The four isochores are
shown in Fig. 1, which is discussed in more detail in Sec. VI.

Figure 2 compares pressures obtained for neon from PIMC
and DFT-MD simulations and from the analytical Debye-
Hückel plasma model [32]. Pressures, P , are plotted relative
to a fully ionized Fermi gas of electrons and ions with
pressure, P0, in order to compare only the excess pressure
contributions that result from particle interactions. DFT-MD
excess pressures agree with PIMC to better than 0.05% at
106 K for the largest three densities. For the lowest density,
we were unable to obtain converged DFT result at 106 K,
and free-particle nodes in PIMC start to break down at that
temperature. Nonetheless, the excellent agreement near 106 K
at all higher densities allows for cross-validation between DFT
and PIMC, which implies the zero temperature DFT exchange-
correlation potential remains valid at high temperatures and
that the free-particle nodal approximation is valid in PIMC
when atoms are partially and fully ionized. For the smallest
density, we find that the 2s state is 15% occupied when
free-particle nodes start to break down, while for the largest
density, the 2s state is 50% occupied at the breaking point.

FIG. 1. (Color online) Temperature-pressure conditions for the
PIMC and DFT-MD calculations along four isochores corresponding
to the densities of 0.8949, 3.7283, 7.8959, and 15.0255 g cm−3. The
dash-dotted line shows the Hugoniot curve for an initial density of
ρ0 = 1.5070 g cm−3.
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FIG. 2. (Color online) Comparison of excess pressure relative to
the ideal Fermi gas plotted as a function of temperature for neon.

The two methods have comparable computational cost in the
overlap region, but DFT starts to become prohibitive beyond
7.5 × 105 K, and free-particle nodes break down below 106 K
for all densities.

Figure 3 compares internal energies, E, plotted relative to
the internal energy of a fully ionized Fermi gas, E0. PIMC
and DFT-MD results for excess internal energy agree to better
than 0.04% at 106 K for the largest three densities. The DFT-
MD and PIMC methods together form a coherent equation of
state over all temperatures ranging to the weakly interacting
plasma limit. PIMC extends the equations of state to the weakly
interacting plasma limit at high temperatures, in agreement
with the Debye-Hückel model [32].

Table I provides the densities, temperatures, and the raw
pressures and energies used to construct our equations of state.
The DFT-MD energies have been shifted by 128.8661280
Ha/atom in order to shift the the PAW pseudpotential reference
energy back to the absolute atomic energy. The shift was
calculated by performing an all-electron atomic calculation
in the OPIUM code [33] and a corresponding isolated-atom
calculation in VASP.

The EOS table also allows one to compare the PIMC
and DFT-MD internal energies and pressures at 1 × 106 K,
where the two methods provide overlapping EOS data at the
highest three densities. There is roughly a 2%–3% discrepancy
between the DFT and PIMC raw energies and 1%–2% in the
total pressures at that temperature. There are three potential
sources of this discrepancy: (1) the use of free-particle nodes
in PIMC, (2) employment of the PBE exchange-correlation
functional in DFT-MD that was constructed for ground-state
calculations, and (3) insufficiency of the VASP DFT-MD
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FIG. 3. (Color online) Comparison of excess internal energies
relative to the ideal Fermi gas plotted as a function of temperature for
neon.

pseudopotential to include effects of core excitations. There is
currently no straightforward method to test the size of the error
introduced by the PIMC free-particle node approximation and
DFT-MD exchange-correlation approximation.

However, the accuracy of the VASP pseudopotential at
1 × 106 K can be tested by comparing with the results of an all-
electron calculation. We constructed a neon pseudopotential
(cutoff radius of 0.1 Bohr radii) that includes all electrons in the
valence using the fhi98PP code [34]. This pseudopotential can
be used for finite temperature DFT calculations in the ABINIT
code [35]. We compared the VASP and all-election ABINIT
DFT energies for a static calculation of neon at 1 × 106 K and
found that the VASP pseudopotential calculation is 0.73 Ha
too low in energy. This means that the unincorporated effects
of core excitations in the VASP pseudpotential approximation
at 1 × 106 K account for nearly one-third of the discrepancy
we find between the PIMC and DFT-MD internal energies.
Therefore, only 1%–2% of the discrepancy between PIMC
and DFT is due to the combined effects of the free-particle
node approximation in PIMC and the exchange-correlation
approximation in DFT-MD.

IV. PAIR-CORRELATION FUNCTIONS

In this section, we study the structure of neon plasmas.
Pair-correlation functions [36] between the various particles
are analyzed as a function of temperature and density. The data
give insight into details of the temperature-driven ionization
process.

Figure 4 shows nuclear pair-correlation functions, g(r),
computed with PIMC. At low temperature, the atoms are
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TABLE I. EOS table with pressures and internal energies at all
temperature and density conditions considered in this work. The
numbers in parentheses indicate the statistical uncertainties of the
DFT-MD and PIMC simulations.

ρ (g cm−3) T (K) P (GPa) E (Ha/atom)

0.8948a 1034730000 4196329(484) 54055(6)
0.8948a 99497670 401383(260) 5170(3)
0.8948a 16167700 64842(37) 826.1(5)
0.8948a 8083850 31972(14) 400.5(3)
0.8948a 4041920 15045(7) 164.5(2)
0.8948a 2020960 6150(18) −15.7(3)
0.8948a 1497010 4305(13) −49.0(2)
0.8948a 998004 2625(25) −72.2(3)
0.8948b 750000 1666.9(1) −91.746(1)
0.8948b 500000 946.5(1) −105.992(1)
0.8948b 250000 326.1(4) −120.226(1)
0.8948b 100000 80.1(2) −126.792(1)
0.8948b 50000 33.2(8) −128.204(1)
0.8948b 10000 5.70(5) −128.816(1)
0.8948b 7500 4.48(4) −128.829(1)
0.8948b 5000 3.23(2) −128.842(1)
0.8948b 2500 1.69(2) −128.856(1)
0.8948b 1000 0.83(2) −128.864(1)

3.7283a 1034730000 17481714(2218) 54050(7)
3.7283a 99497670 1678235(1064) 5181(3)
3.7283a 16167700 268122(157) 813.3(5)
3.7283a 8083850 130114(63) 379.5(3)
3.7283a 4041920 58450(28) 123.7(1)
3.7283a 2020960 24061(78) −33.0(2)
3.7283a 998004 9895(20) −84.82(8)
3.7283b 1000000 9991(4) −86.757(6)
3.7283b 750000 6786(4) −99.176(7)
3.7283b 500000 3882(4) −111.229(5)
3.7283b 250000 1516(4) −122.180(6)
3.7283b 100000 477(2) −127.211(4)
3.7283b 50000 248(4) −128.280(5)
3.7283b 10000 90.2(2) −128.767(1)
3.7283b 7500 80.0(2) −128.786(1)
3.7283b 5000 68.6(1) −128.804(1)
3.7283b 2500 54.9(1) −128.825(1)

7.8959a 1034730000 37020409(4549) 54042(7)
7.8959a 99497670 3540121(2430) 5155(4)
7.8959a 16167700 561943(312) 798.5(5)
7.8959a 8083850 270886(130) 362.6(3)
7.8959a 4041920 118753(49) 99.5(1)
7.8959a 2020960 49057(164) −41.8(2)
7.8959a 998004 20730(46) −89.15(7)
7.8959b 1000000 21007(24) −91.25(2)
7.8959b 750000 14588(36) −102.47(2)
7.8959b 500000 8675(37) −113.23(1)
7.8959b 250000 3750(18) −122.78(1)
7.8959b 100000 1608(9) −127.125(7)
7.8959b 50000 1050(8) −128.105(6)
7.8959b 10000 650.8(5) −128.576(1)
7.8959b 7500 616.1(7) −128.576(1)

15.0255a 1034730000 70454931(8274) 54044(6)
15.0255a 99497670 6738033(4770) 5152(4)
15.0255a 16167700 1061043(1255) 785(1)
15.0255a 8083850 505320(302) 342.8(3)
15.0255a 4041920 218379(136) 79.1(1)

TABLE I. (Continued.)

ρ (g cm−3) T (K) P (GPa) E (Ha/atom)

15.0255a 2020960 92899(342) −47.6(2)
15.0255a 998004 40246(83) −91.88(7)
15.0255b 1000000 41119(26) −94.37(1)
15.0255b 750000 29324(37) −104.66(2)
15.0255b 500000 18607(35) −114.22(1)
15.0255b 250000 9400(17) −122.70(1)
15.0255b 100000 5370(23) −126.55(1)
15.0255b 50000 4346(20) −127.44(1)

aPIMC.
bDFT-MD.

kept farthest apart as atoms are repelled by Pauli repulsion
among the bound electrons as well as by their Coulomb
interaction. As temperature increases, the nuclei gain kinetic
energy leading to stronger collisions, and atoms become more
ionized, gradually minimizing effects of Pauli repulsion. At the
highest temperature, the system approaches the Debye-Hückel
limit, behaving like a correlated system of screened Coulomb
charges. The g(r) functions depend only weakly on the density.
Still, at high density, the chance of finding two nuclei at close
range is slightly increased.

Figure 5 compares the nuclear pair-correlation functions of
PIMC and DFT at a temperature of 1 × 106 K. These g(r)
curves verify that PIMC and DFT predict consistent structural
properties in addition to the agreement in the equation of state.

Figure 6 shows N (r), the integral of the pair correlations,
which represents the average number of electrons within a
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FIG. 4. Nuclear pair-correlation functions for neon from PIMC at
temperatures of 4 × 106, 1.6 × 107, and 1 × 108 K for each density.
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FIG. 5. (Color online) Comparison of PIMC and DFT nuclear
pair-correlation functions for neon at 1 × 106 K.

sphere of radius r around a given nucleus. N (r) decreases with
increasing temperature as atoms become ionized and electrons
become unbound. At low density, the 1s core state is fully
occupied at 1 × 106 K, as it agrees with the isolated 1s core
state. Ionization of the 1s state occurs over the temperature
interval from 1 to 8 × 106 K. At high density, the 1s core
state is still fully occupied at temperatures up to 2 × 106 K,
indicating that the ionization fraction decreases with density
and is not a pressure-driven process as would be expected if
neon were close to metallization. In the next section, we will
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FIG. 6. (Color online) Number of electrons contained in a sphere
of radius, r , around a neon nucleus. PIMC data at four temperatures
are compared with the analytic 1s core state.
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FIG. 7. (Color online) The nucleus-electron pair-correlation
functions calculated with PIMC for neon.

further show that neon maintains a gap in its electronic density
of states for all densities under consideration.

Figure 7 shows nucleus-electron pair correlations as a
function of temperature and density. At low temperature and
high density, we find more electrons near the nuclei, reflecting a
lower ionization fraction. At higher temperatures, electrons are
thermally excited and gradually become unbound, decreasing
their correlation with the nuclei. As the density is increased, the
electrons are more likely to reside near the nuclei confirming
the absence of any pressure-drive ionization as seen in Fig. 6.

Figure 8 shows electron-electron pair correlations with their
spins opposite. The function is multiplied by the particle
density ρ in units of g cm−3, so that the integral under the
curves is related to the number of electrons. The electrons are
most highly correlated for low temperatures since electrons
are most strongly bound to the nuclei in those cases. As tem-
perature increases, electrons are thermally excited, decreasing
the correlation. Higher densities increase correlation at short
distances, consistent with a lower ionization fraction.

Figure 9 shows electron-electron pair correlations with
spins parallel multiplied by the particle density ρ. Different
electrons with parallel spins are bound to a single nucleus,
which leads to a positive correlation at intermediate distances.
For short separations, Pauli exclusion takes over and the
functions decay to zero for small r .

V. ELECTRONIC DENSITY OF STATES

In this section, we briefly examine whether the effects of
high temperature and density can introduce closure of the
electronic band gap in fluid neon. Solid neon is the material
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FIG. 10. (Color online) Electronic density of states of dense,
fluid neon. The solid lines represent all available states while dashed
lines show the occupied DOS. The curves are normalized such that
the occupied DOS integrates to 1.

with the highest metallization pressure [37,38], followed by
helium [39,40]. With DFT-MD simulations, it has been shown
that the atomic disorder present in fluid helium reduces the
metallization pressure significantly [41]. We therefore analyze
the electronic density of states in our DFT-MD simulations of
neon.

Figure 10 compares the total available DOSs and thermally
occupied DOSs at a density of 15.0255 g cm−3 and temper-
atures of 5 × 105 and 1 × 106 K. Results were obtained by
averaging over at least 100 snapshots from equally spaced
DFT-MD trajectories. The eigenvalues of each snapshot were
aligned at their Fermi energy. To simplify Fig. 10, an additional
shift is introduced to align the resulting gaps at zero.

The two occupied DOSs have large peaks near −30 eV
reminiscent of the atomic 2s and 2p states, followed by a gap
at the Fermi energy, which is then followed by a continuous
spectrum of conducting states. For both temperatures, a large
fraction of electrons are excited across the gap, which plays a
role in the increase of pressure seen in Fig. 2 and in the increase
of the compression ratio of Hugoniot curves discussed in the
next section. Unlike hydrogen and helium, whose gaps close,
turning them into metals [39,41–43], we do not find the gap
for fluid neon closes for the even the most extreme conditions
that we have studied here with DFT-MD.

VI. SHOCK COMPRESSION

Dynamic shock compression experiments are the pre-
ferred laboratory experiments to probe the properties of
materials at high pressure and temperature. Lasers [44],
magnetic fields [45], and explosives [46] have been used
to generate shock waves that reached megabar pressures.
Density functional theory has been validated by experiments
as an accurate tool for studying shock-compressed noble
gases [47]. Under shock compression, the initial state of a
material is characterized by internal energy, pressure, and
volume (E0,P0,V0), which changes to a final state denoted by
(E,P,V ). The conservation of mass, momentum, and energy
yields the Hugoniot condition [48],

H = (E − E0) + 1
2 (P + P0)(V − V0) = 0. (1)
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FIG. 11. (Color online) Shock Hugoniot curve for different ini-
tial densities. The label on the curve specifies the ratio of the initial
density to that of neon at 4 K, 1.5070 g cm−3.

For one set of initial conditions, the shock Hugoniot curve
refers to the collection of final states that can be obtained
for different shock velocities. This curve can be predicted
theoretically from an EOS table as given in Table I. For the
initial state of the principal Hugoniot curve, we have chosen
the density of solid neon at 4 K and ambient pressure, ρ0 =
1.5070 g cm−3 (Ref. [49]). We computed the corresponding
internal energy with DFT calculations of a face-centered-cubic
(fcc) solid. The resulting Hugoniot curve has been plotted in
T -P and P -ρ spaces in Figs. 1 and 11, respectively.

Shock wave experiments have been performed in combi-
nation with diamond anvil cells in order to precompress the
sample statically before a shock is launched. This technique
allows one to increase the initial density and then reach much
higher final densities. Thus density-temperature conditions
much deeper in the interiors of planets can be reached [50]. We
repeated our Hugoniot calculations for initial densities ranging
from 1/2 to a 2-fold change of the ambient value, ρ0. P0 and E0

were again derived from DFT calculations of an fcc solid since
experimental [51–53] and theoretical [54] work consistently
predict this crystal structure for solid neon.

Figure 11 shows the resulting family of Hugoniot curves.
While starting from the ambient density had led to a maximal
shock density of 7.202 g cm−3, a 2-fold pre-compression to
13.6 GPa yields a much higher maximum shock density of
14.37 g cm−3, as expected.

The shock compression behavior can best be analyzed
by dividing the shock density by the initial density, which
has been done for three representative Hugoniot curves in
Fig. 12. In the high-temperature limit, all curves converge to
a compression ratio of 4, which is the value of an ideal gas.
However, compression ratios close to 4-fold may already be
obtained at lower temperature where interaction effects are still
important. In general, the shock compression ratio is controlled
by the excitation of internal degrees of freedom, which increase
the compression, and by interaction effects between particles
that reduce it [55]. Consistent with our results for hydrogen
and helium [12], we find that an increase in the initial density

FIG. 12. (Color online) Hugoniot curves for different precom-
pression ratios.

leads to a slight reduction in the shock compression ratio
(Fig. 12) because particles interact more strongly at higher
density.

The Hugoniot curves in Fig. 12 also exhibit two maxima if
the shock densities are compared for different temperatures.
The two compression maxima can be attributed to the
ionization of electrons in the first and second shell. On the
principal Hugoniot curve, the first maximum of ρ/ρ0 = 4.779
occurs at temperature of 6.265 × 105 K (53.93 eV), which is
above the first ionization energy of the neon atom, 21.56 eV. A
second compression maximum of ρ/ρ0 = 4.968 is found for
a temperature of 4.355 × 106 K (375.3 eV). This maximum
can be attributed to the ionization of the 1s core states of the
neon ions. From comparison, the ionization of the last electron
requires an energy of 1360 eV. In the temperature interval near
the compression maximum, (2–8) × 106 K, we find a substan-
tial reduction of the charge density around the nuclei, which
we plotted in Fig. 6 confirming our ionization hypothesis.

Conditions where the 1s state are partially or fully ionized
are very difficult to study with DFT-MD simulations because
one typically employs a pseudopotential with a frozen 1s core
to reach a level of efficiency that makes MD simulations with
many particles possible in the first place. Thus, neon is the
second material after helium [55] where it has been shown that
PIMC simulations are necessary to determine the maximum
compression along the principle Hugoniot curve.

VII. CONCLUSIONS

In this work, we have combined PIMC with DFT-MD to
construct a coherent EOS for neon over a large range of
densities and temperatures. The two methods validate each
other near temperatures of 1 × 106 K, where both methods are
capable of producing results. This work presses the limits
of our combined PIMC/DFT-MD approach for computing
EOSs for WDM from first principles, where we employ only
free-particle nodes in PIMC. Unlike hydrogen and helium,
we do not find that the gap in the electronic density of
states for neon closes for the most extreme conditions that
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we studied here with DFT-MD. Our analysis of the pair-
correlation functions describes how the structure of the plasma
changes with temperature and density as atoms are ionized
and electrons in the first and second shells become free. The
ionization imprints a corresponding signature on the shock
Hugoniot curves. We find that PIMC simulations are necessary
to determine the state of the highest shock compression.
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