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We identify the existence of various symmetry-protected topological states in one-dimensional superlattices
with periodically modulated hopping amplitudes or on-site potentials, which can be characterized by the quantized
Berry phase π or the emergence of a pair of degenerate boundary states. It is shown that there may exist three
types of topological phases, which are protected by inversion symmetry, chiral symmetry, and both of them,
respectively, depending on the modulations, the odd, or the even modulation period. The connection between
the hopping and potential modulations is also discussed. Furthermore, we demonstrate that the topological
phase protected by the inversion symmetry can be realized in the interacting boson systems trapped in the same
superlattices. The results can very possibly be studied experimentally in superlattice systems engineered with
state-of-the-art technologies.
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Introduction. The one-dimensional (1D) topological phases
have attracted intense recent studies due to the experimental
progress in hybrid superconductor-semiconductor wires [1,2],
photonic crystals [3,4], and cold-atomic gases [5]. The classi-
fication of 1D free fermion systems covering the time-reversal
symmetry, particle-hole symmetry, and chiral symmetry has
been established and five out of ten symmetry classes are
topological [6,7]. The inversion symmetry has also been
included and the classification is considerably modified, such
as the AI class becomes topological; the topological invariant
of the BDI class is replaced by a Z2 number [8–10]. A
generalization of the free fermion result to interacting cases has
also been obtained for 1D systems [11–16]. Many efforts are
devoted to constructing models belonging to different classes
in order to study different kinds of topological properties
[17–23].

While the theory of topological classifications indicates
permitted types of topological states, existing topological
orders in realistic physical systems are rare. Due to their good
tunability, the 1D optical and photonic superlattice systems
provide an ideal toolbox for exploring topologically nontrivial
states [3,5]. Particularly, recent studies of 1D superlattice and
quasiperiodic systems from the topological viewpoint [3,24]
have unveiled the relation between these systems and two-
dimensional (2D) topological insulators [3,24–28], which
has been experimentally confirmed by using optical waveg-
uides [3]. These studies stimulated the exploration of topolog-
ical phases in 1D superlattice systems [29–37]. Nevertheless,
it is worth indicating that most previously studied topological
phases in 1D superlattice systems do not belong to standard
topological classification of the tenfold way, i.e., they are
generally not symmetry-protected topological (SPT) states as
these states are characterized by topological invariants of the
2D parameter space through dimensional extension [24,33,38].
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In the Rapid Communication, we explore SPT states in 1D
superlattices with periodically modulated hopping amplitudes
or on-site potentials, and identify a series of topological phases
protected by inversion symmetry, chiral symmetry, and both
of them, respectively. All these SPT states are characterized
by the presence of a pair of degenerate in-gap boundary
states or nontrivial quantized Berry phase. For the systems
with periodically modulated hopping amplitudes, the odd
modulations only generate the inversion-symmetry-protected
topological states, while all three types of SPT states can exist
in the even modulation systems. The systems with periodical
potentials only support the topological states protected by
inversion symmetry. It is interesting that topological states
protected solely by inversion symmetry correspond to the
crossings of edge modes in the parameter space of the
modulation phase, whereas SPT states with chiral symmetry
exist in a much wider regime of the parameter space. It
is also found that 1D bosonic topological phases protected
by inversion symmetry can be directly realized by loading
the interacting bosons into the above lattices. Due to the
simplicity of our models and the sophisticated technologies
of manipulating optical lattices and photonic crystals, the 1D
superlattice systems are thus expected to be an experimentally
accessible platform demonstrating rich SPT phases.

Model with periodically modulated hopping. We consider
the 1D spinless model with periodically modulated hopping
amplitudes described by the following Hamiltonian [39,40],

Ĥ1 =
∑

j

(tj,j+1ĉ
†
j ĉj+1 + H.c.), (1)

where ĉj ,ĉ
†
j are the fermion annihilation and creation oper-

ators on the j th lattice site; tj,j+1 is the amplitude of the
nearest-neighbor hopping and is periodically modulated, i.e.,
tj,j+1 = tj+T ,j+T +1 with T the period. For convenience, we
also denote tj ≡ tj,j+1 for j = 1, . . . ,T . In the presence of
the periodic modulations, the unit cell is enlarged to T and
the Brillouin zone is reduced to [− π

T
, π
T

]. Correspondingly, the
energy spectrum of the uniform system E(k) = 2t cos k with
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FIG. 1. (Color online) Schematic illustration of the model Eq. (1)
with period (a) T = 3, (b) T = 4. The hopping amplitudes at
inversion symmetric point ϕ = 0: (c) T = 3, (d) T = 4. The energy
spectrum on an open chain with length L = 60: (e) T = 3, (f) T = 4.
The Berry phase corresponding to the above figure: (g) T = 3 at 1/T

filling; (h) T = 4 at half filling. The parameters λ = 0.6 for T = 3
cases and λ = 3 for T = 4 cases are used.

tj,j+1 = t is folded into the reduced Brillouin zone and forms
T bands with T − 1 1D Dirac points. The inclusion of the
modulations usually induces gaps between the adjacent bands
and generates insulators at the filling n

T
with n = 1, . . . ,T − 1.

The insulators exhibit various SPT phases. In the following, we
focus on T = 3 and 4 and the results can be directly generalized
to cases with other periods. We also only consider the systems
with the total sizes of an integer multiple of the period T . The
systems with other sizes can be studied similarly by viewing
them as supercells of infinite systems [41].

First we take the cosine modulations tj,j+1 = t[1 +
λ cos( 2πj

T
+ ϕ)] with t = 1 taken as the energy unit, which

have period T and phase factor ϕ. With this kind of modulation,
all bands are gapped at any ϕ for odd T , while the system at half
filling remains gapless at ϕ = 2π

T
(n + 1

2 ),n = 0, . . . ,T − 1 for
even T . To give concrete examples, we display schematic
structures of superlattices with T = 3 and 4 in Figs. 1(a)–1(d)
and the corresponding energy spectrum under open boundary
conditions in Figs. 1(e) and 1(f). The continuous edge states
traversing the gap at the fillings of 1/T and (T − 1)/T

have a crossing at the inversion-symmetric point ϕ = 0,
which indicates the emergence of a pair of degenerate in-gap
boundary states protected by the inversion symmetry [41].
Their appearance is due to the topologically nontrivial property
of the 1D bulk system, characterized by the quantized Berry
phase π , which can be calculated via γ = ∮

A(k)dk with the
Berry connection A(k) = i〈uk| d

dk
|uk〉 and |uk〉 the occupied

Bloch states [42,43]. In Fig. 1(g), we show the Berry phase
versus ϕ for the example system with T = 3 and λ = 0.6. It is
clear that the Berry phase is quantized to π at ϕ = 0, serving
as a hallmark of the 1D topological state, whereas γ = 0 at
the other inversion-symmetry point ϕ = π corresponds to a
topologically trivial state. Similar topological states protected
by inversion symmetry also exist in superlattice systems with
generic T at fillings of 1/T and (T − 1)/T , e.g., as illustrated
in Fig. 1(f), states for the system with T = 4 and ϕ = 0 at
fillings of 1/4 and 3/4 are topologically nontrivial.

Generally, the periodic modulation can take many forms,
and 1D topological phases may occur in the presence of
the inversion symmetries tj = ±tT −j with j = 1, . . . ,T − 1.
When the inversion symmetry is present, the Berry phase
is quantized and can take only the value 0 and π (modulo
2π ) [44,45], with the topological states characterized by the
quantized Berry phase π . Depending on the values of the
hopping amplitudes, the topological phase may be realized
at fillings of 1/T and (T − 1)/T . The system with T = 3
is topological at 1/3 and 2/3 fillings when |t1| = |t2| and
|t1| < |t3|, while the system with T = 4 is topological at 1/4
and 3/4 fillings when |t1| = |t3| and |t2| < |t4|.

Another class of 1D topological phases is identified in
systems with even T ’s at half filling, which appears in alter-
nating regions separated by the gapless points ϕ = 2π

T
(n + 1

2 ).
The topological and trivial regions interchange at a critical λc

(λc = √
2 for T = 4) when the gap at half filling closes. The

states can be characterized by the Berry phase, which is also
quantized to 0 or π . The value π corresponds to the topological
phase, which manifests itself by the existence of a pair of zero
boundary modes under open boundary conditions. For general
modulations, the 1D topological phase exists in a finite region
near |t1| = |t3| when |t2t4| > t2

1 .
Next we explore the symmetries protecting the above

1D topological phases. The system of T = 4 is studied
and its Hamiltonian in the basis of the momentum space
(ĉ1,k,ĉ2,k,ĉ3,k,ĉ4,k)T is written as [41]

Ĥ1(k) = t1 + t3

2
I ⊗ τx + t1 − t3

2
sz ⊗ τx

+ t2 + t4 cos k

2
sx ⊗ τx + t2 − t4 cos k

2
sy ⊗ τy

+ t4 sin k

2
sy ⊗ τx + t4 sin k

2
sx ⊗ τy, (2)

with I the identity matrix and sj ,τj (j = x,y,z) the Pauli
matrices. Ĥ1(k) has chiral symmetries, i.e., ĈĤ1(k)Ĉ−1 =
−Ĥ1(k) with the chiral operator Ĉ = I ⊗ τz. For t1 = t3, Ĥ1(k)
is inversion symmetric, i.e., P̂ Ĥ1(k)P̂ −1 = Ĥ1(−k) with the
inversion operator P̂ = sx ⊗ τx . The 1D topological phases at
fillings of 1/T and (T − 1)/T vanish as soon as P̂ is broken,
as these SPT phases are solely protected by the inversion
symmetry. On the other hand, the 1D topological phases at half
filling are protected by the chiral symmetry Ĉ. However the
inversion-symmetric points ϕ = 0 and π are special, where the
symmetries P̂ and Ĉ coexist. At the two points the topological
phases appear for λ > λc. If a next-nearest-neighbor hopping
HNNN = t ′

∑
j (ĉ†j ĉj+2 + H.c.) is added to break the chiral

symmetry, the topological phases are broken except at ϕ = 0
and π , which implies that the 1D topological phases at ϕ = 0
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and π are protected by both the inversion symmetry and the
chiral symmetry. Interestingly they can be broken separately,
but the topological phase persists. The 1D topological phases
protected by the inversion symmetry and both of the two
symmetries also exist for t1 = −t3, when the inversion operator
becomes P̂ ′ = sy ⊗ τy . We note that the Hamiltonian of
Eq.(1) also has time-reversal symmetry with the time-reversal
operator T = K (the complex conjugate). Thus our results
identify some concrete models exhibiting 1D SPT phases
belonging to the BDI class, the AI class, and the corresponding
ones with inversion symmetry.

Model with periodically modulated potentials. We show
another kind of spinless model with periodically modulated
on-site potentials, which also exhibit many 1D SPT phases.
The model is described by the following Hamiltonian,

Ĥ2 = t
∑

j

(ĉ†j ĉj+1 + H.c.) +
∑

j

Vj n̂j , (3)

where n̂j = ĉ
†
j ĉj is the number operator, and Vj is the strength

of the periodically modulated on-site potentials, which sat-
isfies Vj = Vj+T with the period T . First we consider the
modulation with the simple cosine form Vj = λ cos( 2πj

T
+ ϕ).

The 1D topological phase protected by inversion symmetry is
identified at two inversion-symmetric points ϕ = π (1 − 1/T )
and π (2 − 1/T ) for fillings of 1/T and (T − 1)/T . Our
calculations show that the Berry phase is quantized to 0 or
π at inversion-symmetric points for the above fillings and
a pair of degenerate states appear in the gap for the open
boundary system when the Berry phase of the bulk system is
π . Also the periodic potential can take general forms with
inversion symmetry, i.e., Vj = VT +1−j with j = 1, . . . ,T .
Then the 1D topological phase may be realized depending on
the values of the potentials. The system with T = 3 is inversion
symmetric for V1 = V3, and is topological for V1 < V2 at
1/3 filling, whereas V1 > V2 at 2/3 filling. The system with
T = 4 is inversion symmetric for V1 = V4 and V2 = V3, and
is topological for V1 < V2 at 1/4 filling, whereas V1 > V2 at
3/4 filling.

The Hamiltonian Eq. (3) with T = 4 in the momentum
space is written as

Ĥ2(k) = t
1 + cos k

2
sx ⊗ τx + t

1 − cos k

2
sy ⊗ τy

+ t
sin k

2
sy ⊗ τx + t

sin k

2
sx ⊗ τy + tI ⊗ τx

+ Ṽ2I ⊗ τz + Ṽ3sz ⊗ I + Ṽ4sz ⊗ τz + Ṽ1, (4)

with Ṽ1 = (V1+V2+V3+V4)/4, Ṽ2 = (V1−V2+V3−V4)/4,
Ṽ3 = (V1+V2−V3−V4)/4, and Ṽ4 = (V1−V2−V3+V4)/4.
Ĥ2(k) is inversion symmetric for V1 = V4 and V2 = V3 with
the inversion operator given by P̂ = sx ⊗ τx . Thus the above
identified 1D topological phases are protected by inversion
symmetry. Since the Hamiltonian Eq. (4) has no chiral
symmetry, no topological phases appear at half filling.

As both kinds of models display rich SPT phases, we
show that the model with periodically modulated potentials
can be also understood in terms of the one with periodic
hopping amplitudes. Since the periodic potential leads to
the distribution of particles varying periodically, the effective

FIG. 2. (Color online) The periodic on-site potential at inversion-
symmetric point ϕ = π (1 − 1/T ) with period (a) T = 3, (b) T = 4.
The effective hopping amplitude χi of the Hamiltonian described by
Eq. (3) for T = 3 and ϕ = 2π

3 at filling (c) 1
3 , (e) 2

3 . χi for T = 4 and
ϕ = 3π

4 at filling (d) 1
4 , (f) 3

4 . The parameter λ = 1.5 is used.

hopping amplitudes are affected. To see this clearly, we
calculate the effective nearest-neighbor hopping amplitudes
defined as χi = |〈ĉ†i ĉi+1〉| (〈. . .〉 indicates the expectation value
in the ground state) for systems of T = 3 and T = 4 with
λ = 1.5. As shown in Fig. 2, the effective hopping amplitudes
are periodically modulated with period T . For T = 3 and
ϕ = 2π

3 , we have χ1 = χ2 and χ1 < χ3 at 1/3 filling, which
corresponds to a topological phase; whereas at 2/3 filling,
χ1 = χ2 and χ1 > χ3, which corresponds to a trivial phase.
For T = 4 and ϕ = 3π

4 , we have χ1 = χ3 and χ2 < χ4 at
1/4 filling, which corresponds to a topological phase; on
the other hand, we get χ1 = χ3 and χ2 > χ4 at 3/4 filling,
which corresponds to a trivial phase. Thus the topological
phase induced by periodic potentials can be well understood
in terms of the effective hopping amplitudes.

Bosonic topological phases protected by inversion symme-
try. We study the topological property of the interacting bosons
loaded into the optical superlattice, which is described by a
Bose-Hubbard model with periodical modulations of hopping
amplitudes [46]:

Ĥ3 =
∑

i

(ti,i+1b̂
†
i b̂i+1 + H.c.) + U

∑

j

n̂j (n̂j − 1)/2, (5)

where b̂j (b̂†j ) is the bosonic annihilation (creation) operator,

n̂j = b̂
†
j b̂j the number operator of bosons, and U represents the

strength of on-site interactions. The inclusion of the interaction
generally breaks the chiral symmetry.

For interacting bosons trapped in optical superlattices,
increasing the repulsive interaction U drives the system at
commensurate fillings into a Mott insulator. As the on-site
interaction does not break the inversion symmetry, one would
expect that the bosonic Mott insulator is a topological Mott
insulator protected by the inversion symmetry. To see this
clearly, we perform exact diagonalization of the Hamiltonian
Eq. (5) with the same parameters used in Fig. 1 [47]. The
energy gaps between the ground state and the first excited
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FIG. 3. (Color online) The energy gap E1 − E0 and the Berry
phase γ vs U with ϕ = 0: (a) T = 3 at 1

3 filling; (b) T = 4 at
half filling. E1 − E0 and γ vs ϕ with fixed U = 50: (c) T = 3 at
1
3 filling; (d) T = 4 at half filling. The L = 15 (L = 12) sites are
used to calculate γ in (a) [(b)] and the quantities in (c) [(d)].

state as well as the Berry phase of the system with ϕ = 0
are calculated as a function of U [48]. As shown in Figs. 3(a)
and 3(b), the gaps begin to develop at small interactions and the
resulting Mott insulator is characterized by a nontrivial Berry
phase γ = π , where the Berry phase for a many-body system
is defined using the twisted boundary phase θ [34–36,49].
Though the gaps are generated at other ϕ’s, the Mott insulators
are topological only at the inversion-symmetric point ϕ = 0
for the system of T = 3 and at ϕ = 0 and π for T = 4. Apart
from these inversion-symmetric points, the Berry phase is no
longer quantized to π as shown in Figs. 3(c) and 3(d), which
clearly unveils that the resulting topological Mott phase is
protected by inversion symmetry.

According to the bulk-edge correspondence for topological
systems, twofold-degenerate edge states are expected to appear
on an open chain. As displayed in Figs. 3(c) and 3(d),
the excitation gap gets its minimum at ϕ = 0 (also ϕ = π

for the system of T = 4), which approaches zero in the
thermodynamic limit. Here the emergent degeneracy at the
inversion-symmetric point is related to the boundary exci-
tations of quasiparticles. Particularly, in the hard-core limit
U = ∞, the system can be mapped to the free fermion model
Eq.(1) via the Jordan-Wigner transformation [50]; thus all the
three-type SPT phases can all be realized in this limit, which
is experimentally accessible by loading the interacting bosons
into the corresponding optical superlattices and adiabatically
tuning the interaction strength to the strongly interacting limit
with the help of Feshbach resonance techniques.

Summary. In summary, we have identified various SPT
phases in the 1D models with periodically modulated hopping
amplitudes or on-site potentials. The topological phase is
characterized by a nontrivial Berry phase or a pair of degen-
erate in-gap boundary states. The symmetries protecting the
topological phases are explicitly analyzed and the connection
between the two kinds of modulations is discussed. We also
find that the 1D bosonic topological phase protected by
inversion symmetry can be realized directly by loading the
interacting bosons into the same lattices. The identified SPT
phases are possible to be observed in the superlattice systems
which are realizable in current cold-atomic experiments or
photonic crystal setups.
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