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Unfolding spinor wave functions and expectation values of general operators:
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We show that the spectral weights Wm �K (�k) used for the unfolding of two-component spinor eigenstates
|ψSC

m �K〉 = |α〉|ψSC,α

m �K 〉 + |β〉|ψSC,β

m �K 〉 can be decomposed as the sum of the partial spectral weights W
μ

m �K (�k) calculated
for each component μ = α,β independently, effortlessly turning a possibly complicated problem involving two
coupled quantities into two independent problems of easy solution. Furthermore, we define the unfolding-density
operator ρ̂ �K (�k; ε), which unfolds the primitive cell expectation values ϕpc(�k; ε) of any arbitrary operator ϕ̂

according to ϕpc(�k; ε) = Tr(ρ̂ �K (�k; ε) ϕ̂). As a proof of concept, we apply the method to obtain the unfolded
band structures, as well as the expectation values of the Pauli spin matrices, for prototypical physical systems
described by two-component spinor eigenfunctions.
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Modern electronic structure calculations, aided by the ever
growing increase in computer power, aim more and more at
tackling realistic problems. This is often done by means of
supercell (SC) modeling; i.e., the use of a typically large unit
cell whose lattice vectors �Ai relate to the lattice vectors �aj of a
given reference primitive cell (PC) as �Ai = ∑3

j=1 Nij �aj , with
integers Nij . In the ideal case, a SC is a perfect repetition of a
given reference PC, meaning that not only the Bravais lattice,
but also the positions of the atoms in the basis can be mapped
from the SC to the PC. In practice, however, the effect of
having defects, impurities, and other types of perturbations is
the very object of investigation, and thus the perfect mapping
of the atomic positions is no longer possible.

A procedure to unravel the PC Bloch character hidden
in SC eigenstates is commonly referred to as unfolding.
Several unfolding approaches have been proposed [1–10] and
successfully applied to recover a PC representation of the band
structure of systems described by means of both perfect and
defective (often nearly perfect) SCs, greatly simplifying the
analysis of the results and enabling direct comparisons with
experimental measurements, such as angle-resolved photoe-
mission spectroscopy (ARPES), often represented along the
high-symmetry directions of the PC Brillouin zone (PCBZ).
We use the expression “nearly perfect SC” to mean (i) SCs
that deviate only slightly from a perfect repetition of a given
reference PC, (ii) SCs consisting of a perfect repetition of
the reference PC, combined with some weakly interacting
external agent(s), or (iii) a combination of (i) and (ii). The
use of an unfolding methodology for a nearly perfect SC can
be justified by considering the deviations from the ideal case
as small perturbations [9]. There are, nonetheless, scenarios in
which unfolding can be justified however strong the influence
of the presence of external agents might be, and those include,
for instance, the assessment of how similar the eigenstates of
a given system are to the eigenstates of its composing parts
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— periodic systems themselves — when not interacting with
each other [8]. For nonperfect cases, the unfolding yields an
effective band structure (EBS) [7].

Although such unfolding methodologies have successfully
been used in conjunction with eigenvalue problems involving
scalar wave functions, there has been little or no discussion
so far, to the best of our knowledge, when it comes to spinor
wave functions, despite the fact that the eigenstates of spin
1/2 particles, such as electrons, are generally two-component
spinors. This is particularly important, for instance, when
the systems being modeled feature noncollinear magnetism
or strong spin-orbit coupling [11–13]. Another important
overlooked issue is the problem not only of unfolding the
eigenvalues of the crystal Hamiltonian, but the more general
one of unfolding the expectation values of any given operator,
such as, for instance, the Pauli spin matrices. This is important
for the study of, e.g., the spin polarization of graphene’s π

bands induced by a heavy metal substrate [14–18], as well
as in Rashba-type splitting of Shockley surface states on
reconstructed surfaces [19,20] and in surface alloys [21–24].

In this Rapid Communication, we extend the unfolding
methodology for the case of two-component spinor wave
functions, and define the unfolding-density operator ρ̂ �K (�k; ε),
which unfolds the PC expectation values ϕpc(�k; ε) of any
arbitrary operator ϕ̂ according to ϕpc(�k; ε) = Tr(ρ̂ �K (�k; ε) ϕ̂).
To illustrate the applicability of the method, we perform some
benchmark calculations on physically relevant model systems.

In the following, { �Gpcbz←SCBZ} denotes the set of the
N ≡ 	pcbz/	SCBZ distinct SC reciprocal lattice (SCRL) trans-
lation vectors �Gi that generate the PCBZ from the SC Brillouin
zone (SCBZ), and {�rpc→SC} is the set of the N distinct PC
translation vectors �ri that generate the SC from the PC [8]. The
symbols 	pcbz and 	SCBZ represent, respectively, the volumes
of the PCBZ and SCBZ. For every wave vector �K of the
SCBZ, there are thus N wave vectors �ki of the PCBZ obeying
the geometric unfolding relation

�ki = �K + �Gi, �Gi ∈ { �Gpcbz←SCBZ}. (1)
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The unfolding theorem of Allen et al. [8] states that
any function 
 �K (�r) possessing the Bloch symmetry
of the SC can be uniquely decomposed into a sum
of partial functions ψ �K+ �Gi

(�r) ≡ P̂ ( �K → �K + �Gi)
 �K (�r),

for every �Gi ∈ { �Gpcbz←SCBZ}, each ψ �K+ �Gi
(�r) satisfying

T̂ (�ri)ψ �K+ �Gi
(�r) = ei( �K+ �Gi )·�ri ψ �K+ �Gi

(�r), where T̂ (�ri) denotes a
translation by the PCRL vector �ri . The projectors are given by
[8]

P̂ ( �K → �K + �Gi) = 1

N
∑

�rj ∈{�rpc→SC}
T̂ ( �rj )e−i( �K+ �Gi )· �rj . (2)

If 
 �K (�r) is normalized to unity, the norm of the partial function
ψ �K+ �Gi

(�r) can be used as a spectral weight to assess the

amount of PC Bloch character �ki = �K + �Gi hidden in 
 �K (�r).
In particular, if |ψSC

m �K〉 is an eigenstate of the Hamiltonian in

the SC representation and �ki is a PCBZ wave vector related to
�K through Eq. (1), then the spectral weight Wm �K (�ki) reads

Wm �K (�ki) ≡ 〈
ψSC

m �K
∣∣P̂ ( �K → �ki)

∣∣ψSC
m �K

〉
, (3)

where we have used P̂ 2( �K → �ki) = P̂ ( �K → �ki).
Consider now the normalized two-component spinor eigen-

states ∣∣ψSC
m �K

〉 = ∣∣α〉∣∣ψSC,α

m �K
〉 + |β〉∣∣ψSC,β

m �K
〉

(4)

satisfying the eigenvalue equation

Ĥ
∣∣ψSC

m �K
〉 = εm( �K)

∣∣ψSC
m �K

〉
(5)

for some crystal Hamiltonian Ĥ . The ket spinors |α〉 and |β〉
are the two eigenvectors of the Pauli spin matrix σ̂z:

|α〉 =
(

1

0

)
, |β〉 =

(
0

1

)
. (6)

For every �K , {|ψSC
mi

�K〉} is a complete set orthonormal eigen-

functions of Ĥ with respect to the inner product

〈F|G〉 = F†G = (Fα∗Fβ∗)

(
Gα

Gβ

)
= Fα∗Gα + Fβ∗Gβ.

(7)

The unfolding theorem allows us to promptly arrive to a very
useful result: Despite the fact that Ĥ generally couples the
two components of |ψSC

m �K〉, the spectral weights Wm �K (�ki) can
always be decomposed as

Wm �K (�ki) = Wα

m �K (�ki) + W
β

m �K (�ki), (8)

where the partial spectral weights W
μ

m �K (�ki) are defined as

W
μ

m �K (�ki) ≡ 〈
ψ

SC,μ

m �K
∣∣P̂ 2( �K → �ki)

∣∣ψSC,μ

m �K
〉
, μ = α,β. (9)

The reason is that the components of the spinor wave function
|ψSC

m �K〉 are not mixed when |ψSC
m �K〉 is acted upon by the

projectors P̂ ( �K → �ki):

P̂ ( �K → �ki)
∣∣ψSC

m �K
〉 =

∑
μ=α,β

|μ〉[P̂ ( �K → �ki)
∣∣ψSC,μ

m �K
〉]
.

(10)

Equation (8) holds regardless of the basis set used to represent
|ψSC

m �K〉. In fact, such a decomposition is reminiscent of the
orbital decomposition presented in Ref. [5]. At no extra cost,
Eq. (8) turns the original problem, involving two possibly
coupled quantities, into two completely independent problems.
With this result, for instance, we straightforwardly generalize
the expression for the number N (�k; ε) = limδε→0+ δN (�k; ε) of
unfolded PC bands crossing the point (�k; ε) [9] as

N (�k; ε)=
∑
m

∑
μ=α,β

W
μ

m �K (�k) lim
δε→0+

∫ ε+δε/2

ε−δε/2
δ(ε′−εm( �K))dε′.

(11)

We will now address a different problem, stated as follows:
Suppose that N ( �ki = �K + �Gi ; ε) �= 0, i.e., that there is at least
one PC band with energy ε at the PCBZ wave vector �ki . Given
a general operator ϕ̂, and a complete set of SC eigenstates
|ψSC

m �K〉, how can one calculate the expectation value

ϕpc( �ki ; ε) ≡ 1

N ( �ki ; ε)

∑
n

εn( �ki ) = ε

〈
ψ

pc

n�ki

∣∣ϕ̂∣∣ψpc

n�ki

〉
(12)

without explicitly calculating the PC eigenstates |ψpc

n�ki

〉? We

anticipate that ϕpc(�ki ; ε) can be expressed as

ϕpc(�ki ; ε) = Tr(ρ̂ �K (�ki ; ε) ϕ̂), (13)

where ρ̂ �K (�ki ; ε) is completely defined by the geometric
relations between the PC and SC lattice vectors. We refer
to ρ̂ �K (�ki ; ε) as the unfolding-density operator.

To find ρ̂ �K (�ki ; ε), we start by inserting the identity operator

1 = ∑
m |ψSC

m �K〉〈ψSC
m �K |, twice, in the right-hand side of Eq. (12).

After some rearrangement, this leads to

ϕpc(�ki ; ε) =
∑
m′m

ϕSC
m′m( �K)

N ( �ki ; ε)

× 〈
ψSC

m �K
∣∣
⎡
⎢⎢⎢⎣

∑
n

εn(�ki ) = ε

∣∣ψpc

n�ki

〉〈
ψ

pc

n�ki

∣∣
⎤
⎥⎥⎥⎦

∣∣ψSC
m′ �K

〉
, (14)

where ϕSC
m′m( �K) ≡ 〈ψSC

m′ �K |ϕ̂|ψSC
m �K〉. Since, for perfect SCs,

〈ψpc

n�ki

|ψSC
m �K〉 = 0 if εn(�ki) �= εm( �K), we can rewrite Eq. (14)

as

ϕpc(�ki ; ε) =
∑
m′m

εm′ ( �K) = ε

εm( �K) = ε

ϕSC
m′m( �K)

N ( �ki ; ε)

× 〈
ψSC

m �K
∣∣ [∑

n

∣∣ψpc

n�ki

〉〈
ψ

pc

n�ki

∣∣] ∣∣ψSC
m′ �K

〉
, (15)

where n runs now over all PC bands. Notably,∑
n

∣∣ψpc

n�ki

〉〈
ψ

pc

n�ki

∣∣ = P̂ ( �K → �ki), (16)
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as the partial functions P̂ ( �K → �ki)|ψSC
m �K〉 that decompose

|ψSC
m �K〉 according to the unfolding theorem belong to the

subspace spanned by the eigenfunctions |ψpc

n�ki

〉. Equation (15)
then becomes

ϕpc(�ki ; ε) =
∑
m′m

εm′ ( �K) = ε

εm( �K) = ε

ϕSC
m′m( �K)

〈
ψSC

m �K
∣∣ P̂ ( �K → �ki)

N ( �ki ; ε)

∣∣ψSC
m′ �K

〉
.

(17)

Let ̂ε be an operator whose action on an arbitrary eigenstate
|ψ〉 of Ĥ is to check whether εψ ≡ 〈Ĥ 〉ψ equals ε or not. We
define it in terms of its action on |ψ〉:

̂ε|ψ〉 = λε,εψ
|ψ〉, (18)

where

λε,εψ
= lim

δε→0+

∫ ε+δε/2

ε−δε/2
δ(ε′ − εψ )dε′. (19)

We can thus express Eq. (17) as

ϕpc(�ki ; ε) =
∑
mm′

〈
ψSC

m �K
∣∣ ̂εP̂ ( �K → �ki)̂ε

N ( �ki ; ε)

∣∣ψSC
m′ �K

〉
ϕSC

m′m( �K),

(20)

which is put into the form of Eq. (13) by defining the unfolding-
density operator ρ̂ �K (�ki ; ε) as

ρ̂ �K (�ki ; ε) ≡ ̂εP̂ ( �K → �ki)̂ε

N ( �ki ; ε)
. (21)

The unfolding-density operator ρ̂ �K (�ki ; ε) has the prop-
erties of a mixed state density matrix. The condition
Tr(ρ̂ �K (�ki ; ε)) = 1 is verified by using ϕ̂ = 1 in Eq. (13),
along with the definition of N ( �ki ; ε) [Eq. (11)] and the fact
that λ2

ε,εm( �K)
= λε,εm( �K). The Hermiticity of ρ̂ �K (�ki ; ε) is also

immediate, as N ( �ki ; ε) is real and both ̂ε and P̂ ( �K → �ki)
are Hermitian. Finally, ρ̂ �K (�ki ; ε) � 0 follows by noticing that
Wm �K ( �ki), N ( �ki ; ε), λε,εm( �K) � 0.

To exemplify the use of the discussed formalism, we
have obtained the unfolded band structures and unfolded
expectation values of the Pauli vector �σ ≡ σ̂x êx + σ̂y êy +
σ̂zêz for some benchmark physical systems. As previously
discussed, we justify the use of this unfolding methodology
for nearly perfect SCs by considering the deviations from the
ideal case as small perturbations. The methods have been
implemented in BandUP [9], an open-source code freely
available for download [25]. Our density-functional theory
(DFT) calculations, allowing for noncollinear magnetism and
accounting for spin-orbit coupling effects, were performed
using the VASP code [13,26,27]. These are typical cases
where the formulation of the one-electron eigenvalue problem
involves the use of two-component spinor eigenfunctions
[11–13]. Specific computational details are given in the
Supplemental Material (SM) [28].

As a first example, we consider an ideal case of a perfect
SC. Figure 1 shows the results of our simulations of a
graphene layer with gold atoms attached on one side (one

FIG. 1. (Color online) Graphene@Au: (a) Band structure and
projections of the Pauli vector �σ ≡ σ̂x êx + σ̂y êy + σ̂zêz for the 2 × 2
SC before (a) and after (b) unfolding onto the PC. The inset shows
the 2 × 2 SC used (black rhombus), and a PC (red rhombus). In
the curves, blue and red indicate opposite signs for the values of �σ
projected perpendicular to the PCBZ wave vectors, and black means
a zero net value.

Au atom per graphene PC). Such a system has been used,
for instance, as a model to understand the spin-orbit splitting
in graphene, due to hybridization with gold, when graphene
is adsorbed on an Ni(111) substrate with intercalated Au
atoms [14]. As systems with spin locked perpendicular to the
momentum, such as Rashba-type spin-split surface states [29]
or surface states of three-dimensional topological insulators
[30], are considered promising for applications in spintronics,
we calculated the spin projections perpendicular to the PCBZ
wave vectors. Although spin-orbit splitting can be observed
from the calculation involving the 2 × 2 SC, the use of the
SC clearly complicates the analysis of the band structure
and is prone to misleading interpretations. The unfolded band
structure and eigenvalues of �σ are also shown in Fig. 1. Since
the SC is perfect, Eqs. (11) and (13) exactly recover the PC
band/spin structure of the system, as reported in the SM [28].

Next, we consider the adsorption of graphene on a Bi(111)
bilayer. Due to incommensurability between the two lattices
[31], it is not possible to simulate graphene@Bi(111) with a
single PC of graphene. Notably, this is often the case with
epitaxially grown overlayers such as metal-organic interfaces
[32] and graphene on metal surfaces [15–18]. The in-plane
lattice constant of Bi(111) is about 1.9 times greater than
graphene’s lattice constant, but a matching within 2% is
achieved for a 2 × 2 Bi(111) bilayer combined with

√
13 ×√

13 graphene, as shown in Fig. 2. Graphene deviates only
0.02 Å from being perfectly flat, and the graphene-Bi(111)
equilibrium distance is 3.4 Å, incorporating van der Waals
interactions in the calculations [33]. Since graphene interacts
only weakly with bismuth, a picture of graphene’s band
structure in terms of its PCBZ is still useful. Figure 2 shows
the EBS obtained for the system. While the calculated folded
band structure [28] is practically unreadable, the signature
of a quasi-freestanding graphene layer is clearly featured in
the EBS. Strikingly, the effects of the interaction with the Bi
substrate are directly revealed by unfolding the expectation
values of �σ : In the regions of intersection between graphene
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FIG. 2. (Color online) Graphene@Bi: EBS calculated along
high-symmetry directions of graphene’s PCBZ. The upper inset
shows a top view of the atomic structure of the system, with the
SC indicated by a black rhombus. The lower inset details the region
delimited by the green rectangle. In the EBS inset, the colors are
defined as in Fig. 1 and the area of the spheres represents the
magnitude of the projections.

and Bi bands, spin-dependent avoided-crossing effects appear,
causing spin-splitting of the graphene bands (see Fig. 2, inset).

Our final example is the 2 × 1 reconstructed Au(110)
surface [19]. Under reconstruction, the Y gap, containing two
Shockley states (at −0.6 and +1.35 eV for the unreconstructed
surface), folds into the � point, where the continuum of bulk
states exists. However, by unfolding the band structure onto
the PCBZ (Fig. 3), we clarify that the lower surface state
survives as a surface resonance around the Y point. The
SC bulk states are also unfolded from the � point to the
PCBZ Y point, but with very small N (�k; ε)/spectral weights,
forming nothing but a weak background that introduces only
little broadening to the surface resonance. Therefore, such
resonance can, in practice, be considered as a surface state.
Since the reconstruction pushes the surface state above the
Fermi level, it is not detected by ARPES [19]. The same
experiment, nevertheless, undoubtedly detects the energy gap
at the Y point. The surface state has anisotropic Rashba-type
spin splitting. The unfolding of the eigenvalues of �σ enables
the quantification of the splitting for the Y� and YS directions:
�k = 0.055 Å−1 and 0.017 Å−1, respectively.

In conclusion, we have shown that the spectral weights
for the unfolding of two-dimensional spinors can always be
decomposed as the sum of partial spectral weights, one for each
spinor component, transforming, at no extra cost, a problem of
two possibly coupled quantities into two independent tractable

FIG. 3. (Color online) Au(110), 2 × 1 reconstructed surface:
EBS along high-symmetry directions of the PCBZ of the nonrecon-
structed surface. The inset shows a zoom-in into the region delimited
by the green rectangle. In the inset, the colors are defined as in Fig. 1,
but the projections are now onto the perpendicular to �k-Y . The area
of the spheres represents the magnitude of the projections.

problems. In a plane wave basis set, both the total and the
partial spectral weights take the same form as the one for
scalar wave functions (see SM [28]). We introduced the
unfolding-density operator, which unfolds the primitive cell
expectation values for any given operator directly from a
supercell calculation, extending the unfolding methodology
to any k-space sensitive property. The applicability of the
method was demonstrated for systems described in terms of
two-component spinors, in particular to unfold expectation
values of the Pauli spin matrices.

Given the general and basis-set independent character of our
discussion, we believe that our work can be adapted to more
complex cases without major complications. The development
and implementation of methods to unfold band structures is
a very active topic of research, which has already brought
up many intriguing questions and answers. Indeed, by the
time this work was being processed by the publisher, a related
approach was used to unfold the Berry curvature using Wannier
Functions [34]. Besides extending the scope of the discussion
to the unfolding of other material properties, we anticipate that
our results will motivate researchers to tackle other emerging
problems. There is no doubt that, given the rapid recent de-
velopments in both theory and computational implementation,
the unfolding methodologies being developed now will soon
become common practices in the study of periodic materials.
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