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Analytic theory of Hund’s metals: A renormalization group perspective

Camille Aron1,2 and Gabriel Kotliar1

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 12 January 2014; published 12 January 2015; corrected 25 March 2015)

We study the emergence of quasiparticles in Hund’s metals with an SU(M) × SU(N )-symmetric Kondo
impurity model carrying both spin and orbital degrees of freedom. We show that the coupling of the impurity spin to
the conduction electrons can be ferromagnetic, notably for hole-doped iron pnictides. We derive the weak-coupling
renormalization group (RG) equations for arbitrary representations of SU(M) × SU(N ). A ferromagnetic spin
coupling results in a protracted RG flow, accounting for the surprising particle-hole asymmetry that is observed
in the iron-pnictide systems. We establish the low coherence scale TK, which depends on the filling through
the impurity representation. We also discuss the temperature dependence of the spin and orbital susceptibilities.
Finally, we argue that this mechanism explains the strong valence dependence of the coherence scale observed
in dilute transition-metal magnetic alloys.
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There is renewed interest in a class of materials where
strong electronic correlations, manifest in large mass renor-
malizations, arise from Hund’s coupling rather than from
the Hubbard U term. Noticeable examples are the recently
discovered iron pnictides and chalcogenides high-temperature
superconductors [1,2], ruthenates [3,4], or other 4d transition-
metal oxides [5].

A local approach seems a promising route for the un-
derstanding of Hund’s metals. GW calculations support the
idea that the self-energy at low energies has a purely local
character [6]. LDA+DMFT studies, mapping the many-body
problem to an impurity problem in a self-consistent determined
environment, has provided a successful description of several
materials in this class [5]. Hund’s metals form a Fermi
liquid below a coherence temperature, which is remarkably
low [1]. The physical degrees of freedom at higher energies
are fluctuating moments [7], which are observed in XES
measurements [8] and incoherent electronic excitations, which
are observed in their optical properties [9–11].

Since the DMFT bath of the Hund’s metals is relatively
structureless at low energies, it is natural to investigate this
problem with a representative impurity model, an SU(M) ×
SU(N ) generalization of the model introduced in Ref. [12] by
means of an analytical renormalization group analysis. The
goal is to get analytical insights into why is the coherence
scale of Hund’s metals so low, and what are the physical
parameters that control its value. This mystery dates back to
the fifties when early investigations of the Kondo temperature
TK of dilute transition-metal magnetic alloys revealed that
TK decreases dramatically as the d-shell filling approaches
half-filling [13,14]. The renormalization group flows describe
an interesting interplay of spin and orbital degrees of freedom,
give new insights into why the spin and orbital susceptibility
are so different and account for the surprising particle-hole
asymmetry observed in the iron-pnictide systems.

a. Model. We study the impurity model described
by the Hamiltonian HK = Hbath + Hint, where Hbath =∑

k,m,σ εk ψ
†
kmσψkmσ describes the noninteracting conduction

electrons ψkσa with momentum k. σ = 1 . . . N labels the spin
of the electron and m = 1, . . . ,M labels its orbital. M is the
number of active orbitals in the shell (i.e., M = 3 for t2g or

M = 5 for a full shell of d electrons). The physical case for the
spin sector is N = 2 but we keep its value general. We consider
a dispersion εk corresponding to a flat density of states ρ (we
later set ρ = 1 to simplify expressions) with large bandwidth
2D0. The spin and orbital degrees of freedom of the impurity,
S and T , live respectively in faithful representations of SU(N )
and SU(M) to be precised below. The coupling to conduction
electrons reads (summing over repeated indices)

Hint = Jp ψ†
aσψaσ + J0 Sα

(
ψ†
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σα
σσ ′

2
ψmσ ′

)

+K0T
a

(
ψ†

mσ

τ a
mm′

2
ψm′σ

)

+ I0S
αT a

(
ψ†

mσ

σα
σσ ′

2

τ a
mm′

2
ψm′σ ′

)
, (1)

with the local conduction electron ψmσ ≡ ∑
k ψkmσ . Jp, J0,

K0, and I0 are, respectively, the bare potential, spin-spin,
orbital-orbital, and spin-orbital Kondo coupling constants. σα

(α = 1, . . . ,N2 − 1) and τ a (a = 1, . . . ,M2 − 1) are the gen-
erators of SU(N ) and SU(M), respectively, in their fundamen-
tal representations. They obey the Lie algebra commutation
relations and are normalized such that Tr[σασβ] = 2δαβ and
Tr[τ aτ b] = 2δab. For SU(2) and SU(3), they correspond to the
Pauli and Gell-Mann matrices, respectively.

We consider the case of Hund’s metals with valences nd

less than half-shell filling. Above half-shell capacity, one can
perform a particle-hole transformation, before generalizing
from SU(2) to SU(N ). We denote the distance from half-filling
by d ≡ M − nd � 1. The effect of strong Hund’s coupling
is to maximize the impurity spin, therefore we take S as
the generators of the totally symmetric representation of nd

fundamental SU(N ) spins and T to live in the totally anti-
symmetric representation composed of nd < M fundamental
SU(M) isospins. See the Young’s tableaux in Fig. 1. Notice
that at exactly 1/N-filling, i.e., nd = M , the orbital isospin is
a singlet state (scalar representation) and the model reduces
to an M-channel Coqblin-Schrieffer model with a totally
antisymmetric spin representation [15].

The Kondo model in Eq. (1) can be derived, via a canonical
Schrieffer-Wolff transformation, from the large interaction
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FIG. 1. Young’s tableaux of the representations of T and S in our
class of Hund’s metals. A single box represents a fundamental spin
of SU(M) or SU(N ).

limit of the SU(M) × SU(N )-symmetric Anderson impurity
Hamiltonian [16], HAIM = Himp + Hhyb + Hbath with

Himp ≡ εd nd + 1

2

∑
mnpq, σσ ′

Umnpq d†
mσ d

†
nσ ′dpσ ′dqσ , (2)

Hhyb ≡ V
∑
k,m,σ

ψ
†
kmσ dmσ + H.c. (3)

dmσ represents an impurity electron with spin σ in the
orbital m, εd is the energy level, and nd ≡ ∑

mσ d
†
mσ dmσ . The

second term of Himp encodes both Coulombic repulsion and
Hund’s coupling with Umnpq ≡ Uδmqδnp + JHδmpδnq . Hhyb is
the hybridization with the conduction electrons.

In the large interaction limit, U � D0 � JH � V , the
charge degrees of freedom of the Anderson impurity are
frozen, and the nominal valence of the impurity is identified
to nd . The states of the impurity carry an SU(N ) spin S and
an orbital SU(M) isospin T interacting according to Hint, with
the Kondo couplings [17]:

Jp = 1

MN

(
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N + nd
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)
V 2, (4)

J0 = 2

M

(
1


E− − M − nd

nd + 1

1


E+

)
V 2, (5)

K0 = 2

N

(
1
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1


E+

)
V 2, (6)

I0 = 4

(
1

nd

1


E− + 1

nd + 1

1


E+

)
V 2, (7)

in which the virtual charge excitation energies to the nd ± 1
valence states, 
E+ ≈ εd + ndU and 
E− � −εd − (nd −
1)U , are both positive if εd = −(nd − 1 + α)U with α ∈ ]0,1[.
The minus sign in front of the second term of J0 above implies
that, depending on the value of εd , J0 can be significantly
smaller than the other couplings, and even ferromagnetic,
J0 < 0. For α > α∗ ≡ (nd + 1)/(M + 1), virtual transitions
to valence nd + 1 dominate and J0 is ferromagnetic. For iron
pnictites or ruthenates, which have M = 5 or 3 with valences
one unit larger than half-filling, a preliminary particle-hole
transformation yields nd = 4 or 2, respectively, and thus hole
doping favors a ferromagnetic J0.

The possibility of such a ferromagnetic spin coupling is
a consequence of the large Hund’s coupling encoded in our
choice of representations. Indeed, setting JH = 0 yields posi-
tive Kondo couplings with J0 = 2/M([1/
E+ + 1/
E−)V 2

and ndI0 = 2MJ0 = 2NK0 [17]. In this case, the model
reduces to a single-channel Coqblin-Schrieffer model, with
a single Kondo coupling J0 between the conduction electrons

FIG. 2. (Top) Second- and third-order nonparquet diagrams
contributing to the RG equations (8)–(10). (Bottom) Third-order
renormalization of the wave function and a fourth-order diagram.

and an impurity spin living in the totally antisymmetric
representation of SU(M × N ) and composed of nd electrons.

b. RG equations. To study the physical properties of the
Kondo model, we use a poor man’s scaling approach at zero
temperature [18,19]. This consists in reducing the bandwidth
by perturbatively integrating over the degrees of freedom of
those conduction electrons with an energy in the edge δD of
the band and requiring that the physics remains invariant. The
corresponding renormalization of the couplings is given by
the so-called β functions, βi ≡ dJi/d ln D with Ji = J,K,I ,
together with the initial conditions set by the bare couplings,
J (D0) = J0, K(D0) = K0, and I (D0) = I0. The expansion of
the β functions to any order in the couplings can be expressed
in terms of CS

n and CT
n , the eigenvalues of nth order Casimir

invariants of the representations of S and T , respectively.1 Up
to third order, we obtain (see Fig. 2)

βJ = −N

2
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2
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) (
J 2 + CT

2
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I 2

)
+ . . . , (8)
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2
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+ . . . , (9)
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4

[(
4

M
J + 4

N
K − J 2 − K2

)
I

+
(

CT
3

MCT
2

+ CS
3

NCS
2

)
I 2 +

(
1

4
− CT

2

2M
− CS

2

2N

)
I 3

]

+ . . . . (10)

For the sake of generality, we gave the β functions for S
and T living in arbitrary faithful representations of SU(N )
and SU(M). These equations have a broad range of applica-
bility since the spin-orbital Kondo effect can be realized in
different settings such as bilayer graphene [20] or nanoscale
devices [21]. We shall later return to our particular model by
specifying the Casimirs for the Hund’s metals.

We discarded the flow of potential scattering since it
does not renormalize the other couplings. We also discarded
the flow of quadrupolar spin-orbital interactions generated
by the pertubative expansion but not initially present in

1. CS
n IS ≡ Tr[ σ {α1

2 . . . σαn}
2 ]Sα1 . . . Sαn , where IS is the identity in

the representation of S and {a1 . . . an} stands for the sum over all
permutations weighted by 1/n! .
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Hint. For example, the term in I 2(S · σ )( Q · τ ) with Qc ≡
{T a,T b}Tr[τ {aτ bτ c}] was projected on (S · σ )(T · τ ) [17].2

The six fixed points of the RG Eqs. (8)–(10) are easily iden-
tified as (i) J = K = I = 0, the noninteracting fixed point,
(ii) J = J ∗ ≡ 2/M,K = I = 0, the intermediate-coupling
fixed point of the N -channel SU(M) Coqblin-Schrieffer
model, and (iii) K = K∗ ≡ 2/N,J = I = 0, the one of
the M-channel SU(N ) Coqblin-Schrieffer model. (i), (ii),
and (iii) are unstable against J0 > 0 or K0 > 0 and, as
long as I0 = 0, the RG flows to the fixed point (iv) J =
J ∗,K = K∗,I = 0, which corresponds to the fixed point of
two uncoupled multichannel Coqblin-Schrieffer models and
the low-energy physics is dominated by the one with the
smallest Kondo scale. As soon as I0 	= 0, the fixed points
(i)–(iv) are all unstable and the RG eventually flows towards
(v) J = J ∗,K = K∗,I = I ∗

− or (vi) J = J ∗,K = K∗,I = I ∗
+

depending on the sign of I0. Here, I ∗
± ≡ (a ± √

bc + a2)/b,

with a ≡ CS
3 /NCS

2 + CT
3 /MCT

2 , b ≡ CS
2 /N + CT

2 /M − 1/2,
and c ≡ 8(1/N2 + 1/M2). Contrary to (i)–(iv), the locations
of the fixed points (v) and (vi) and the RG flows around
them, depend on the representations of the impurity spin S
and isospin T .

The pertubative expansion of the β functions are only
reliable around the noninteracting fixed point (i) and one must
be careful before assigning a physical meaning to (v) and (vi).
When both sectors, S and T , are in their fundamental represen-
tation, CS

2 = (N2 − 1)/2N and CS
3 = (N2 − 1)(N2 − 4)/4N2

(and similar expressions for CT
2 and CT

3 ), one recovers the β

equations derived in Ref. [22]. For SU(2) × SU(2), (v) and
(vi) with I ∗

± = ±4 are known to be artifacts of the third-order
expansion, and the correct fixed point is a strong-coupling
fixed point at I , J , K → ∞. For arbitrary M and N , (v) with
I ∗
− = −4 N2+M2

N2M2−N2−M2 is well defined at large N and M and
it was conjectured to be stable for all N and M except for
N = M = 2 [22]. On the other hand, (vi) with I ∗

+ = 4 lies out
of the scope of the pertubative analysis. Kuramoto argued that,
similarly to the SU(2) × SU(2) case, it should be replaced by
a strong-coupling fixed point. This is particularly clear at the
special values of couplings 2MJ = 2NK = I for which the
model reduces to the SU(M × N ) Coqblin-Schrieffer model,
which has only a noninteracting and a strong-coupling fixed
point.

c. RG flow of Hund’s metals. We now return to
Hund’s metals by working with the totally symmet-
ric and antisymmetric representations introduced before
(see Fig. 1). The Casimirs read CS

2 = (N − 1)nd (N +
nd )/2N , CS

3 = (N − 2)(N − 1)nd (N + nd )(N + 2nd )/4N2,
CT

2 = (M + 1)nd (M − nd )/2M , and CT
3 = (M + 2)(M +

1)nd (M − nd )(M − 2nd )/4M2 [23]. Henceforth, we work
in the large-N , large-M limit while keeping both the ratio
q ≡ M/N and the distance to 1/N -filling, d ≡ M − nd � 1,
finite. In this limit, the fixed points (v) and (vi) are located at

I ∗
− � − 4

NM
and I ∗

+ � 4

M
, (11)

2In the fundamental representations, quadrupolar terms are simply
absent since one necessarily has Q ∝ S owing to the fact that
{I,Sa ; a = 1 . . . N2 − 1} is a complete basis of the SU(N ) operators.

FIG. 3. (Color online) Numerical RG flow starting from (a)
weakly ferromagnetic |J0| = 10−3 � K0, (b) strongly ferromagnetic
|J0| = 10−1 � K0, and (c) strongly antiferromagnetic J0 = 10−2 �
K0 (q = 3/2, d = 1, K0 = 10−3, I0 = 10−5, N = 20).

both lying out of the convergence domain of the perturba-
tive expansion.3 Based on numerical renormalization group
results [24] and numerical findings [12], we conjecture that
the flow towards (vi) at (J ∗,K∗,I ∗

+) should be understood as
a flow to strong coupling and we use (vi) only to estimate the
energy scale at which the Fermi-liquid coherence is restored.

The RG Eqs. (8)–(10) can be solved numerically with
arbitrary bare couplings J0, K0 and I0 as initial conditions.
Below, we illustrate how the RG trajectories depend on
J0 by solving them analytically in three regimes: weakly
ferromagnetic |J0| � K0, strongly ferromagnetic |J0| � K0,
and strongly antiferromagnetic J0 � K0. Not all these regimes
of couplings can be reached from the strong-coupling limit of
the multiband Anderson model, see Eqs. (5)–(7), so that the
Kondo model is a more general low-energy model. This is
justified because in actual materials there are additional ligand
bands contributing to the Kondo couplings.

In the large-M , large-N limit and to quadratic order, the
RG equations read

βJ = −N/2(J 2 + d/4 I 2) + . . . , (12)

βK = −M/2[K2 + Nq(1 + q)/4 I 2] + . . . , (13)

βI = −NI (J + qK + q2N/4 I ) + . . . . (14)

To discuss different types of RG flow, we introduce
T K

K ≈ exp(−2/MK0)D0, T I
K ≈ exp(−4/M2I0)D0, and T J

K ≈
exp(−2/NJ0)D0 if J0 > 0, which are the intrinsic Kondo
scales in absence of cross-terms in Eqs. (12)–(14). Below,
we consider the spin-orbital coupling as the smallest coupling
by assuming the hierarchy T I

K < T K
K .

Let us first examine the case of a weakly ferromagnetic
spin coupling, J0 < 0, with |J0| � K0 [see Fig. 3(a)]. At
high energies, the terms involving I in the RG Eqs. (12)
and (13) can be neglected, thus spin and orbital degrees of
freedom are decoupled. The antiferromagnetic coupling K

of the totally antisymmetric SU(M) pseudospin approaches
the non-Fermi-liquid fixed point (ii) controlled by the Kondo
scale T K

K and the scaling exponent 
K ≡ dβK/dK ≈ q [15],

3A rapid inspection shows that the higher order terms in the
expansion of βI scale as N 2n−2I n for n � 4 (see e.g. the fourth order
term in Fig. 2). This indicates that the pertubative expansion converges
if |I | � 1/N2.
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while the ferromagnetic coupling J of the totally symmetric
SU(N ) spin slowly flows to weak coupling with an exponent

J ≡ dβJ /dJ ≈ 0. At energy scales of the order of T K

K , J is
still ferromagnetic while K reaches its fixed point, K(T K

K ) ≈
K∗. Below T K

K , K∗ controls βI ≈ −MK∗I < 0 and the spin-
orbital coupling renormalizes to strong coupling, I (T K

K ) ≈ I ∗
+.

Then, the I 2 term in Eq. (12) drives the growth of J , which
crosses over from a ferromagnetic to an antiferromagnetic
value. The integration of Eq. (12) provides an estimate of the
typical energy scale TK at which J → J ∗, i.e., at which the
strong-coupling regime establishes,

TK(d) ≈ exp(−q/d)T K
K . (15)

Note that Eq. (15) is still valid for a relatively small
antiferromagnetic coupling, as long as T J

K < T K
K or T J

K < T I
K .

In agreement with the experimental and numerical evidence,
TK is found to decrease as one approaches 1/N-filling (i.e., as
d gets smaller). At a more formal level, TK depends explicitly
on the representations of the spin and the orbital isospin. This
is unlike the typical Kondo scales emerging in Kondo models
without spin-orbital coupling.

Let us now discuss the scenario with large ferromagnetic
coupling |J0| � K0 [see Fig. 3(b)]. As seen in Eq. (14),
J controls the renormalization of I as long as K � |J |
and βI ≈ −NJI > 0. Thus I first slowly renormalizes to
weak coupling and reaches values on the order of I ′

0 ≡
q2I0K

2
0 /|J0|2 � I0 at T K

K (when K → K∗). The subsequent
growth of I to I ∗

+ is therefore delayed by such a small initial

value and I escapes weak coupling at a scale I
′−1/
I

0 T K
K <

T K
K with 
I ≡ dβI/dI ≈ −2q. In turn, this also delays the

subsequent renormalization of J to J ∗. The relevance of
multichannel Kondo physics for the intermediate asymptotics
was conjectured and the operator responsible for the crossover
to the Fermi liquid at low energies was identified in Ref. [25].

It is useful to contrast the scenarios above with the case
of large antiferromagnetic coupling J0 � K0 [ see Fig. 3(c)].
There, the RG flow is radically different as all three couplings
reach strong coupling concomitantly at the scale set by T J

K >

T K
K .

Finally, our results can also be compared to the case
of the absence of Hund’s coupling, JH = 0, for which the
model reduces to the antiferromagnetic SU(M × N ) Coqblin-
Schrieffer model described before. There, all antiferromag-
netic Kondo couplings are locked together by symmetry
considerations and strong coupling is reached at energies on
the order of exp[−2/(MNJ0)]D0.

d. Susceptibilities. The RG flow can be used to study
physical observables such as the impurity spin and orbital
static susceptibilities, χS and χT , respectively. The temperature

scaling equations derived in Ref. [17] have solutions

χS/T (T ) ∼ 1

T
exp

[
−

∫ D0

T

dD

D
γS/T (Ji(D))

]
, (16)

with the functions γS = MN (J 2 + CT
2 I 2/2)/2 and γT =

MN (K2 + CS
2 I 2/2)/2. Let us focus on the ferromagnetic case,

J0 < 0. At high temperatures T ∼ D0, the exponent above can
be neglected and both susceptibilities follow a Curie law, i.e.,
1/T . At temperatures down to T K

K , Eq. (16) and the RG flow
discussed above imply that the magnitude of χT is significantly
smaller than the one of χS . At T K

K , the orbital susceptibility
crosses over to a strong-coupling regime and χT → 0 when
T → 0. In the weakly ferromagnetic scenario |J0| � K0,
γS(T K

K ) is controlled by I ∗
+ thus the spin susceptibility crosses

over to strong coupling concomitantly with χT . However, in
the strongly ferromagnetic case |J0| � K0, the retardation of
I → I ∗

+ over K → K∗ leads to a crossover of χS at even
lower temperatures. These findings are consistent with the
numerical results of [12] and provide a simple picture of the
incoherent regime of Hund’s metals at intermediate energy
scales: composite quasiparticles incorporate orbital degrees of
freedom but not spin degrees of freedom, screening T but
not S.

e. Discussion. We studied impurities in the presence of
strong Hund’s coupling in terms of a Kondo problem with
spin and orbital degrees of freedom. The spin coupling can be
ferromagnetic or antiferromagnetic depending on the filling of
the underlying Anderson impurity model. In the Hund’s metal
region, very close to half-filling, the coupling is ferromagnetic
and this is the regime that corresponds to hole-doped iron
pnictides, while the antiferromagnetic case is realized in the
strongly electron-doped regime. In the ferromagnetic case,
there is a subtle interplay of spin and orbital degrees of
freedom which leads to protracted flows until the Fermi liquid.
This explains the strong doping dependence of the coherence
scale that has been observed, the electron-doped iron pnictides
such as Fe1−xCoxBa2As2 [26] having a much larger coherence
temperature than hole-doped materials such as KFe2As2 [27].

Finally, our Kondo impurity model describes true magnetic
impurities with large Hund’s coupling and embedded in
metallic hosts. Thus the above mechanism also applies to dilute
transition-metal magnetic alloys and successfully reproduces
the overall trend of the experimentally measured coherence
temperature as a function of filling [13].

We are grateful to N. Andrei, J. von Delft, K. Haule,
M. Kharitonov, K. Stadler and A.M. Tsvelik for insightful
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