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Elastic constants and ultrasound attenuation in the spin-liquid phase of Cs2CuCl4
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The spin excitations in the spin-liquid phase of the anisotropic triangular lattice quantum antiferromagnet
Cs2CuCl4 have been shown to propagate dominantly along the crystallographic b axis. To test this dimensional
reduction scenario, we have performed ultrasound experiments in the spin-liquid phase of Cs2CuCl4 probing the
elastic constant c22 and the sound attenuation along the b axis as a function of an external magnetic field along the a

axis. We show that our data can be quantitatively explained within the framework of a nearest-neighbor spin-1/2
Heisenberg chain, where fermions are introduced via the Jordan-Wigner transformation and the spin-phonon
interaction arises from the usual exchange-striction mechanism.
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Spin-liquid behavior can occur either in a spin-liquid
ground state or in a spin-liquid phase at finite temperatures.
One of the characteristic properties of spin liquids are strong
short-range spin correlations in the absence of long-range
magnetic order. Such a behavior has been observed in the
magnetic insulator Cs2CuCl4, for example in inelastic neutron
scattering experiments [1], at temperatures between 0.6 K
and 2.6 K in magnetic fields below the saturation field Bc =
8.5 T. Experimentally, the boundary between the spin-liquid
phase and the conventional paramagnetic phase has been
characterized by broad peaks in the specific heat [2] and in
the magnetic susceptibility [3]. Cs2CuCl4 can be modeled
by a spin-1/2 Heisenberg antiferromagnet on a spatially
anisotropic triangular lattice with nearest-neighbor exchange
couplings J = 4.34 K along the crystallographic b axis and
J ′ = 1.49 K ≈ J/3 along the diagonal links within the bc

plane (see Fig. 1) [4]. The interplane interaction J ′′ = 0.2 K
and the Dzyaloshinskii-Moriya interaction D = 0.23 K can
be neglected in the temperature range of the spin-liquid
phase. Given the fact that the diagonal coupling J ′ is
nonnegligible, one would naively expect an anisotropic two-
dimensional spin liquid state. However, several independent
calculations [5–15] found that the spin excitations in the
anisotropic triangular lattice antiferromagnet are quasi-one-
dimensional and propagate dominantly along the direction
corresponding to the largest exchange coupling, which is
the crystallographic b axis in Cs2CuCl4. In this work we
shall give further evidence for this dimensional reduction
scenario [16] by showing that ultrasound experiments probing
the sound propagation along the b axis can be quantitatively
explained using a one-dimensional Heisenberg chain which is
coupled to lattice vibrations via the usual exchange-striction
mechanism [17].

The spin-phonon interaction and the ultrasonic attenuation
in two-dimensional spin liquids have recently been discussed
by Zhou and Lee [18] and by Serbyn and Lee [19]. In
one-dimensional Heisenberg [20] and XY chains [21] the
interaction between the spin degrees of freedom and the
phonons were studied a long time ago, but these older works
mainly focused on the spin-Peierls transition and treated

the spin-phonon interaction in an adiabatic approximation.
Moreover, only the first derivative of the exchange coupling
with respect to the phonon coordinates were considered,
which turns out to be insufficient to explain our ultrasound
experiments for the c22 mode in Cs2CuCl4.

From the exact Bethe ansatz solution of the spin-1/2
antiferromagnetic Heisenberg chain we know that the ground
state is a spin liquid, exhibiting algebraic correlations but no
long-range magnetic order. The elementary excitations above
this ground state are spinons carrying spin 1/2. A combination
of numerical and analytical methods has lead to an excellent
understanding of this model [22]; for example, exact numerical
results for the magnetization [23], magnetic susceptibility [24],
specific heat [25], and the dynamic structure factor [26,27]
are available. However, a proper microscopic calculation of
ultrasound propagation and attenuation in the Heisenberg
chain cannot be found in the literature. Below we shall present a
simple solution of this problem using the Jordan-Wigner repre-
sentation of the spin algebra in terms of spinless fermions [28].
We shall also present some new data of the elastic constant
c22 and the corresponding ultrasound damping rate in the
spin-liquid phase of Cs2CuCl4 which agree very well with our
theory. For details concerning the experiment and the sample
preparation we refer to Ref. [29] and Ref. [30], respectively.
The ultrasound physics of Cs2CuCl4 has previously been
studied for magnetic fields along the a axis in the ordered
phase using spin-wave theory [29], and for magnetic fields
along the b axis in the spin-liquid phase by combining
phenomenological expressions for the ultrasound propagation
and attenuation with calculations for two-dimensional spin
models [31].

Assuming that the relevant spin excitations can propagate
only along the crystallographic b axis in the spin-liquid phase
of Cs2CuCl4, we expect that ultrasound experiments probing
the c22 mode along the b axis can be explained by the following
one-dimensional spin-phonon Hamiltonian,

H =
∑

n

Jn[Sn · Sn+1 − 1/4] − h
∑

n

Sz
n + Hp

2 , (1)
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FIG. 1. Part of the anisotropic triangular lattice formed by the
spins in Cs2CuCl4. The largest exchange coupling J connects nearest-
neighbor spins along the crystallographic b axis. The corresponding
elastic constant is denoted by c22. In this work we consider only the
case where the magnetic field B is along the a axis perpendicular to
the plane of the lattice.

where Sn are spin-1/2 operators localized at the positions xn

on a chain with N spins and periodic boundary conditions, and
h = gμBB (with g ≈ 2.2) [4] is the Zeeman energy associated
with an external magnetic field B along the crystallographic
a axis; see Fig. 1. The spin-phonon coupling arises from the
fact that for a vibrating lattice the spins are located at xn =
nb + Xn, where nb (with n = 1, . . . ,N) are the points of a one-
dimensional lattice with lattice spacing b, and Xn denote the
deviations from the lattice points. Since the exchange coupling
Jn between a pair of spins Sn and Sn+1 located at xn and
xn+1 depends on the actual distance between the spins, Jn is a
function of Xn+1 − Xn. Assuming that this difference is small,
we may expand to second order,

Jn ≈ J + J (1)(Xn+1 − Xn) + J (2)

2
(Xn+1 − Xn)2, (2)

where J (1) and J (2) are the first and second derivative of the
exchange coupling along the b axis with respect to the phonon
coordinates. As usual, we quantize the lattice vibrations by
introducing the conjugate momenta Pn and demanding that
[Xn,Pm] = iδn,m, where we have set � = 1. The last term
in Eq. (1) describes noninteracting phonons with dispersion
ωq = c|q| [32],

Hp

2 =
∑

q

[
P−qPq

2M
+ M

2
ω2

qX−qXq

]
, (3)

where M is the mass attached to the vibrating sites, and the
operators Xq and Pq are defined via the Fourier expansions
Xn = N−1/2 ∑

q eiqnbXq and Pn = N−1/2 ∑
q eiqnbPq .

To explain ultrasound experiments, we calculate the self-
energy correction �(q,iω) to the phonon propagator, which
arises from the coupling of the phonons to the spins.
Let us therefore represent the spin operators in terms of
spinless fermions using the Jordan-Wigner transformation
[28]

S+
n = (S−

n )† = c†n(−1)neiπ
∑

j<n c
†
j cj , Sz

n = c†ncn − 1/2, (4)

where cn annihilates a fermion at site xn and the phase
factor (−1)n is introduced for convenience. Our spin-phonon
Hamiltonian (1) then assumes the form

H=−1

2

∑
n

Jn(c†ncn+1 + c
†
n+1cn + c†ncn + c

†
n+1cn+1)

+
∑

n

Jnc
†
ncnc

†
n+1cn+1 − h

∑
n

c†ncn + Nh/2 + Hp

2 . (5)

In this work, we shall treat the two-body interaction in the
second line of Eq. (5) within the self-consistent Hartree-Fock
approximation, which amounts to approximating the two-body
term by

c†ncnc
†
n+1cn+1 ≈ ρ(c†n+1cn+1 + c†ncn) − ρ2

− τ (c†ncn+1 + c
†
n+1cn) + τ 2, (6)

where the dimensionless variational parameters ρ and τ satisfy
the self-consistency conditions

ρ = 〈c†ncn〉, τ = 〈c†ncn+1〉. (7)

In the absence of phonons, the solution of these equations was
worked out a long time ago by Bulaevskii [33]. Within the
Hartree-Fock approximation the fermion dispersion is ξk =
−ZJ cos k + 2sJ − h, where Z = 1 + 2τ is the dimension-
less renormalization factor of the nearest-neighbor hopping,
s = ρ − 1/2 is the dimensionless magnetization, and k is
the fermion lattice momentum in units of the inverse lattice
spacing 1/b. In Fig. 2 we show the numerical result for Z(h) at
T = 0 and we compare our mean-field result for s(h) with the
exact magnetization curve of the Heisenberg chain obtained
via the Bethe ansatz [23].

To obtain the change of the elastic constant and the sound
attenuation, we should calculate the self-energy of the phonons
due to the coupling to the spins. Substituting the gradient
expansion (2) for the exchange coupling and the Hartree-Fock
decoupling (6) into Eq. (5), we arrive at the approximate spin-
phonon Hamiltonian

H = F0 +
∑

k

ξkc
†
kck + Hp

2 + δHp

2 + Hsp

3 + Hsp

4 , (8)
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FIG. 2. (Color online) Comparison of the Hartree-Fock result
for the magnetization curve s(h) of the Heisenberg chain (without
phonons) at T = 0 with the exact Bethe ansatz [23]. Inset: Renor-
malization Z(h) of the nearest-neighbor hopping.
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where F0/N = h/2 + J (τ 2 − ρ2) and

δHp

2 = 2J (2)(τ 2 − ρ2)
∑

q

sin2(q/2)X−qXq, (9a)

Hsp

3 = 1√
N

∑
k′kq

δ∗
k′,k+q	3(k,q)c†k′ckXq, (9b)

Hsp

4 = 1

2N

∑
k′kq1q2

δ∗
k′,k+q1+q2

	4(k,q1,q2)c†k′ckXq1Xq2 . (9c)

Here δ∗
k′,k = ∑

m δk′,k+2πm/b enforces momentum conser-
vation modulo a vector of the reciprocal lattice, ck =
N−1/2 ∑

n e−ikbncn, and the cubic and quartic interaction
vertices are for small phonon momenta given by

	3(k,q) ≈ −iqJ (1)[Z cos k − 2s], (10a)

	4(k,q1,q2) ≈ q1q2J
(2)[Z cos k − 2s]. (10b)

The coupling to the fermions gives rise to a momentum- and
frequency-dependent self-energy correction �(q,iω) to the
propagator of the phonon field Xq , which is proportional to
[ω2 + ω2

q + �(q,iω)]−1. To second order in the derivatives
of the exchange coupling the phonon self-energy has three
contributions, �(q,iω) = �2(q) + �3(q,iω) + �4(q), where

�2(q) = [J (2)/M][τ 2 − ρ2]4 sin2(q/2), (11a)

�3(q,iω) = 1

MN

∑
k

fk − fk+q

ξk − ξk+q + iω
|	3(k,q)|2, (11b)

�4(q) = 1

MN

∑
k

fk	4(k,q, − q), (11c)

and fk = [eβξk + 1]−1 is the occupation of the fermion state
with momentum k in self-consistent Hartree-Fock approxima-
tion. From the analytic continuation of the self-energy �(q,iω)
to real frequencies we obtain the renormalized phonon energy
and the phonon damping [29],

ω̃q = ωq + Re�(q,ωq + i0)

2ωq

, γq = − Im�(q,ωq + i0)

2ωq

.

(12)

The renormalized phonon velocity can be obtained from c̃/c =
limq→0 ω̃q/ωq , which yields for the shift �c = c̃ − c,

�c/c = g1c
(1) + g2c

(2), (13a)

c(1) = −
∫ π

−π

dk

2π
Jf ′(ξk)

vk

vk − c
[2s − Z cos k]2, (13b)

c(2) = s2 − Z2/4, (13c)

where -
∫

denotes the Cauchy principal value, f ′(ξk) =
−βfk[1 − fk] is the derivative of the Fermi function, vk =
ZJb sin k is the group velocity of the fermionic excitations,
and we have introduced the dimensionless coupling constants
g1 = [J (1)b]2/(2Mc2J ) and g2 = J (2)b2/(2Mc2). In principle
it should be possible to calculate these coupling using ab initio
methods, but here we simply determine g1 and g2 by fitting
our theoretical prediction (13) to our experimental data. In
Fig. 3 we show a comparison between theory and experiment
as a function of the magnetic field. We find that the relative
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FIG. 3. (Color online) Comparison of theory and experiment for
the relative change of the sound velocity of the c22 mode: (a) in the
ordered phase (T = 50 mK) with coupling constants g1 = 0 and g2 =
−1.2 × 10−3, (b) in the spin-liquid phase (T = 1 K) with coupling
constants g1 = 0 and g2 = −1.1 × 10−3. In the fitting procedure we
have allowed a constant offset for �c/c which is necessary due to
a small anomaly in the experimental data close to zero magnetic
field.

change of the sound velocity �c/c is best fitted by g1 ≈ 0
and g2 ≈ −1.1 × 10−3, which gives J (2)b2 ≈ −238J . Only
for our experimental data at the highest temperature T =
1.15 K, we get a finite value g1 = 0.85 × 10−3, which gives
J (1)b ≈ ±14J . Because of the large value of c/(Jb) ≈ 6.8,
the term c(1) is more than one order of magnitude smaller than
c(2) for Cs2CuCl4. While in the ordered phase (T = 50 mK,
upper panel) our theoretical prediction (13) agrees only for
magnetic fields up to 5 T with our experimental data, in the
spin-liquid phase (T = 1 K, lower panel) we obtain excellent
agreement between theory and experiment for magnetic fields
up to 7 T. A natural explanation for the deviations at larger
fields is that in this regime the fluctuations are controlled by
the dilute Bose gas quantum critical point at Bc = 8.5 T [2],
which of course cannot be described by our one-dimensional
model.

Finally, let us discuss the ultrasound attenuation of the c22

mode in Cs2CuCl4. Our experimental data for three different
temperatures as a function of the magnetic field are shown in
Fig. 4. In the regime B � 7 T where the fluctuations controlled
by the quantum critical point are negligible and our theoretical
prediction for the renormalization of the phonon velocity
agrees with experiment, the sound attenuation is very small
and practically constant. This can easily be explained within
our one-dimensional model. Using Eqs. (11b) and (12) we
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FIG. 4. (Color online) Experimental results for the relative
change �γ of the sound attenuation of the c22 mode as a function of
the magnetic field for three different temperatures.

obtain for the damping

γq = π

2Mωq

∫ π

−π

dk

2π
(fk−fk+q )|	3(k,q)|2δ(ξk−ξk+q +ωq).

(14)

This expression is only finite if the absolute value of the
maximal group velocity v∗ = ZJb of the fermions exceeds
the phonon velocity c. Because in Cs2CuCl4 this condition is
never satisfied (c/(Jb) ≈ 6.8), the attenuation of the c22 mode
vanishes in our approximation. Higher orders in perturbation
theory will give a finite result, but it will involve more than
two derivatives of the exchange coupling which are expected
to be small.

On the other hand, the condition v∗ > c can possibly
be realized in some other quasi-one dimensional quantum
antiferromagnet. Let us therefore evaluate Eq. (14) in the
regime v∗ > c. In the long-wavelength limit q → 0 we
obtain

γq

ωq

∼ g1cJ(v2
∗ − c2)

2v∗
√

1 − c2/v2∗
[−f ′(ξ+)V 2

+ − f ′(ξ−)V 2
−], (15)

where ξ± = JV± − h and V± = 2s ± Z
√

1 − c2/v2∗. A nu-
merical evaluation of this expression is shown in the upper
panel of Fig. 5.

The damping exhibits strong peaks as function of the
magnetic field, corresponding to the resonance conditions
ξ± = 0 imposed by the broadened delta functions −f ′(ξ±)
in Eq. (14). In the lower panel of Fig. 5 we show that close
to the resonance the corresponding shift c(1) in the phonon
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FIG. 5. (Color online) (a) Damping γq for different values of r =
c/(Jb) as a function of the magnetic field at temperature T/J = 0.05.
(b) Corresponding contribution c(1) to �c/c defined in Eq. (13).

velocities can exhibit a sign change depending on the value of
r = c/(Jb).

In summary, we have developed a simple microscopic
theory which explains ultrasound experiments probing the
propagation and the attenuation of the c22 mode in the
spin-liquid phase of Cs2CuCl4. Our basic assumption is
that in the spin-liquid phase the elementary excitations are
one-dimensional fermions. The excellent agreement between
theory and experiments shown in Fig. 3 gives further support to
the dimensional reduction scenario advanced by Balents [16].
It would be interesting to test our theoretical predictions for
the ultrasound attenuation shown in Fig. 5 using suitable
antiferromagnetic spin chains with sufficiently small phonon
velocities.
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manuscript. Financial support by the DFG via SFB/TRR49 is
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