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Anyon braiding in semianalytical fractional quantum Hall lattice models
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It has been demonstrated numerically, mainly by considering ground state properties, that fractional quantum
Hall physics can appear in lattice systems, but it is very difficult to study the anyons directly. Here, I propose
to solve this problem by using conformal field theory to build semianalytical fractional quantum Hall lattice
models having anyons in their ground states, and I carry out the construction explicitly for the family of bosonic
and fermionic Laughlin states. This enables me to show directly that the braiding properties of the anyons are
those expected from an analytical continuation of the wave functions and to compute properties such as internal
structure, size, and charge of the anyons with simple Monte Carlo simulations. The models can also be used
to study how the anyons behave when they approach or even pass through the edge of the sample. Finally, I
compute the effective magnetic field seen by the anyons, which varies periodically due to the presence of the
lattice.
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The discovery of the fractional quantum Hall (FQH)
effect [1] revealed the existence of phases of matter that are
fundamentally different from previously known phases. These
phases have attracted much attention both because new physics
is needed to describe them [2] and because their properties
are interesting for quantum computing [3]. With the aim
of getting a deeper understanding of the effect and finding
more robust and controllable ways to realize it experimentally,
much effort is currently being put into exploring under which
conditions the effect occurs. A major result in this direction
is the discovery that FQH physics can be realized in lattice
systems [4–16], which opens up doors towards investigating
the effect under new parameter regimes, maybe even room
temperature [17].

One of the special features of FQH states is the possibility
to create anyons. Anyons are particlelike excitations that
have a more complicated exchange statistics than bosons
and fermions. By now, more techniques have been developed
that allow one to determine which types of anyons can be
created in a system by looking only at the properties of the
ground states [14,18–29], and these techniques have been
used to demonstrate the FQH nature of the above-mentioned
lattice models. The techniques do, however, have limitations
in that they do not provide information about, e.g., what
the size and internal structure of the anyons are, how the
anyons can be created and moved around, and the details
of braiding operations. In order to describe these features,
one needs to study the anyons directly, but this is very
difficult for lattice FQH models, where only the Hamiltonian
(or at best the Hamiltonian and the anyon free ground
state [6,11,12,15,30,31]) is known analytically (although test
computations can be done for very small systems [32]).

In this Rapid Communication, I provide a solution to these
problems by proposing to construct lattice FQH models that
have anyons in their ground states and for which both the
Hamiltonian and the ground states are expressed analytically.
This allows me to study the anyons in great detail, even for
quite large systems, by using simple Monte Carlo simulations.
In addition, it is immediately clear how to move the anyons
around, since the positions of the anyons are parameters of the
Hamiltonian.

Analytical wave functions have played an important role in
understanding the FQH effect in continuum systems [33–37],
and it is also possible to write down states whose analytical
continuation properties suggest that the states contain anyons.
It has, however, taken a long time and a lot of effort to confirm
numerically that braiding anyons in these states in fact leads to
the same changes of the wave functions as doing an analytical
continuation alone [38–43]. The states proposed here can be
seen as lattice versions of the continuum states, but because
the states are now defined on lattices, it is numerically easy to
do braiding operations and check that the changes of the states
are as expected from an analytical continuation.

Another unusual feature of the models proposed here is that
the Hamiltonians are still exact if the coordinates of the anyons
are taken out of the sample. This gives excellent possibilities
for studying how the properties of the anyons change, when
the anyons approach or pass through the edge of the sample.
It also suggests an alternative viewpoint, in which anyons
are not excitations in a system, but instead normal particles
that become anyons when moving on a background of other
particles. This idea may be interesting to explore in proposals
for realizing anyons experimentally.

The construction I propose builds on the idea of expressing
wave functions in terms of conformal field theory (CFT)
correlators [37,44] and the idea of using CFT properties to
derive parent Hamiltonians for such states in the continuum
[37] or the lattice [45]. Here, I demonstrate that CFT properties
can also be used to derive parent Hamiltonians of states
containing anyons. I specifically construct models whose
ground states are lattice Laughlin states with filling factor
1/q, q ∈ N, containing quasiholes, but it is likely that the same
approach can be used to build several other lattice FQH models
with Abelian and non-Abelian anyons. It is, e.g., already
known how to construct a number of different FQH states
in the continuum in terms of CFT correlators, and these states
can be easily transformed to lattice states.

Wave functions. I first use CFT to construct lattice Laughlin
states containing quasiholes. Consider an arbitrary lattice in
two dimensions with lattice sites at the positions zj , j =
1,2, . . . ,N , where zj are complex numbers. The positions of
the quasiholes are likewise specified by wj , j = 1,2, . . . ,Q.
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To each of the lattice sites I associate a vertex oper-
ator Vnj

(zj ) = (−1)(j−1)nj : exp[i(qnj − 1)φ(zj )/
√

q] :, and
to each of the quasiholes I associate the vertex operator
Wpj

(wj ) = : exp[ipjφ(wj )/
√

q] :. Here, φ(z) is the chiral
part of the field of a free massless boson, : · · · : stands for
normal ordering, q is a positive integer, nj ∈ {0,1} is the
number of hard-core bosons/fermions at lattice site number
j for q even/odd, and, as we shall see below, pj/q with
pj ∈ {1,2,3, . . .} is the charge of the quasihole at wj . The
wave function is then defined as

|�q〉 =
∑

n1,...,nN

�q(w1→Q,n1→N )|n1, . . . ,nN 〉, (1)

where w1→Q is shorthand for w1,w2, . . . ,wQ,

�q(w1→Q,n1→N ) ∝ 〈0|Wp1 (w1)Wp2 (w2) · · · WpQ
(wQ)

×Vn1 (z1)Vn2 (z2) · · ·VnN
(zN )|0〉, (2)

and 〈0| · · · |0〉 denotes the vacuum expectation value in the
CFT. Note that the positions zi of the lattice sites are fixed
throughout, whereas the positions wi of the quasiholes are
taken to be parameters. A quasihole coordinate wi may
coincide with one of the lattice sites. In that case the model is
the same as the model obtained by leaving out the lattice site
and placing a quasihole with charge (pi − 1)/q at the position.

Evaluating (2) using standard methods [46] gives

�q(w1→Q,n1→N ) = C(w1→Q)−1δn

∏
i<j

(wi − wj )pipj /q

×
∏
i,j

(wi − zj )pinj

∏
i<j

(zi − zj )qninj

×
∏
i,j

(wi − zj )−pi/q
∏
i �=j

(zi − zj )−ni , (3)

where C is a real normalization constant and δn = 1 for∑N
j=1 nj = (N − ∑Q

j=1 pj )/q and δn = 0 otherwise. Note

that it is not required that
∑Q

j=1 pj is itself divisible by q.
It is therefore possible to have, e.g., models with just one
quasihole with charge 1/q.

The construction above is reminiscent of the corresponding
construction for continuum Laughlin states with quasiholes
proposed in Ref. [37], but there are important differences
in the way charge neutrality is ensured. Note also that if
the lattice is defined on a disk shaped region and the area
per lattice site a is the same for all sites, then the norm
of

∏
i,j (wi − zj )−pi/q

∏
i �=j (zi − zj )−ni approaches the usual

Gaussian factor exp(− 1
4

2π
a

∑Q
i=1

pi

q
|wi |2 − 1

4
2π
a

∑N
i=1 |zi |2) in

the thermodynamic limit (and the phase can be transformed
away if desired) [11,15].

Parent Hamiltonians. The next step is to derive a Hamilto-
nian for which (1) is the exact ground state. Our starting point
is the fact that the field

χ (zi) =
∮

zi

dz

2πi

1

z − zi

[G+(z)V−(zi) − qJ (z)V+(zi)] (4)

is a null field [15]. Here, G+(z) = : ei
√

qφ(z) :, J (z) = i∂zφ(z)/√
q, V−(z) = : e−iφ(z)/

√
q :, and V+(z) =: ei(q−1)φ(z)/

√
q :.

Therefore,

〈Wp1 (w1) · · · WpQ
(wQ)Vn1 (z1) · · ·

Vni−1 (zi−1)χ (zi)Vni+1 (zi+1) · · · VnN
(zN )〉 = 0. (5)

Using standard tools from CFT and complex analysis (the
technical details can be found in the Supplemental Material
[47]), (5) can be rewritten into �i |�〉 = 0, where

�i =
∑
j (�=i)

1

zi − zj

[d†
i dj − ni(qnj − 1)] −

∑
j

pj

zi − wj

ni.

(6)
dj is the hard-core boson/fermion annihilation operator act-
ing on site j for q even/odd and nj = d

†
j dj . In addition,

[
∑N

i=1 ni − (N − ∑Q
j=1 pj )/q]|�〉 = 0 due to the δn factor

in (3). The positive semidefinite operator

H =
∑

i

�
†
i �i + c

⎡
⎣ N∑

i=1

ni −
⎛
⎝N −

Q∑
j=1

pj

⎞
⎠

/
q

⎤
⎦

2

, (7)

where c is a positive constant, is therefore a parent Hamiltonian
of (1). Note that c → ∞ corresponds to fixing the number of
particles in the system. I have confirmed numerically for a
number of small lattices with q = 3 and q = 4 that the ground
state is unique.

The Hamiltonian (7) contains only one-, two-, and three-
body terms. It is quite common that Hamiltonians with FQH
ground states contain three-body or higher interactions, and
this is one of the motivations for the significant current
efforts towards finding suitable ways to realize three-body
interactions in optical lattices [48–50]. The Hamiltonian is
also seen to involve interactions between distant sites in the
system. It has, however, been found for related models that
the Hamiltonian can be transformed into a local Hamiltonian
without significantly altering the ground state [13,51], and this
suggests that there is a chance that the same is true here. One of
the local Hamiltonians has, in addition, been used to propose
an implementation scheme for a FQH lattice model in ultracold
atoms in optical lattices [13,52].

Quasiholes. In the following, I use the Metropolis
Monte Carlo algorithm to investigate important properties of
the quasiholes in the models. I shall consider q = 3 and the
square lattice in Fig. 1 with N = 156 throughout, and since
the state (3) is invariant under scale transformations, I shall
arbitrarily set the lattice constant to one. I start with the
internal structure and charge of the quasiholes. Figure 1 shows
the difference between the particle density of the state with
three quasiholes and the particle density of the state without
quasiholes for different choices of w1→3. It is seen that the
quasiholes are screened and have a diameter of a few lattice
constants. The figure also illustrates how the difference in
density changes when two of the quasiholes are brought close
together and fused to a single quasihole.

If the fermionic particles are imagined to have charge −1
as in the FQH effect, then the density difference is minus
the excess charge, and the charges of the quasiholes can be
determined by adding up the excess charges in a region around
wi . Quasiholes with pi = 1 (pi = 2) are expected to have a
charge of 1/3 (2/3), and this is consistent with the results
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(a)

−0.2 −0.1 0 0.1 0.2

# Charge† Charge††

4 0.4724(1) 0.9059(1)
12 0.3095(2) 0.6237(2)
16 0.3032(2) 0.6098(2)
24 0.3299(3) 0.6620(3)
32 0.3382(2) 0.6788(3)

(b) (c)

†

††

FIG. 1. (Color online) (a) Difference 	nj ≡ 〈nj 〉Q=3 − 〈nj 〉Q=0

between the particle density of the state with three quasiholes with
pi = 1 and the state without quasiholes for q = 3. The red crosses
mark the positions of the quasiholes, each ring is a lattice site, and
the color is the density difference. (b), (c) Illustration of how the
density difference changes when two quasiholes are brought together
to fuse to a single quasihole (see also the video of the fusion process
in the Supplemental Material [47]). The table shows minus the sum
of 	nj over the # lattice sites closest to the quasihole marked with †
(††). This quantity approaches the charge of the quasihole for # large.
(The numbers in parentheses are the uncertainties on the last digit
estimated from the Monte Carlo simulations.)

obtained in the figure. It is also interesting to note that the
charge distribution of the quasihole with pi = 2 is not just two
times the charge distribution of the quasihole with pi = 1.

Braiding. When braiding quasiholes, one adiabatically
moves the coordinates w1→Q along some closed path. This
transforms the wave function as |�q〉 → Meiθ |�q〉, where
Meiθ is the Berry phase factor [41,53],

θ = i

Q∑
j=1

∮
c

(〈
�q

∣∣∣∣∂�q

∂wj

〉
dwj +

〈
�q

∣∣∣∣∂�q

∂w̄j

〉
dw̄j

)
, (8)

and M is the monodromy, i.e., the change obtained from
analytical continuation alone.

The monodromy can be determined by inspection of (3).
When the ith quasihole is moved in the counterclockwise
direction around the j th quasihole, the wave function picks
up the factor e2πipipj /q , and when the ith quasihole is moved
in the counterclockwise direction around a lattice site, the
wave function picks up the factor e−2πipi/q . The former is the
expected braiding statistics of the quasiholes, and the latter
is the Aharonov-Bohm phase of a particle with charge pie/q

moving around a loop enclosing a magnetic flux of −h/e,
where h is Planck’s constant and e is the elementary charge.
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∂x1
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FIG. 2. (Color online) Normalization constant C2 and the deriva-
tives (2C2)−1∂C2/∂y1 and (2C2)−1∂C2/∂x1 appearing in (9) for the
state with q = 3 and three quasiholes with charge 1/3 when the
quasihole at w1 = x1 + iy1 is moved along the path from A to B to
C, as shown in the inset. The x1 derivative along the path from A to
B is zero due to symmetry.

FIG. 3. (Color online) Braiding of two quasiholes with charges
1/3 and 2/3 in the model with q = 3. The quasiholes are moved
along the path shown with a dashed line. First, w1 is moved one
lattice spacing to the left with w2 fixed, then w2 is moved one lattice
spacing to the right with w1 fixed, and so on, following the moves
listed on the right (the dots stand for another 36 moves following the
same pattern as the first 12 moves but with the figure rotated 90◦,
180◦, and 270◦, respectively). The plot shows the contributions to the
integral in (9) for the first six moves (x‖ is the coordinate along the
curve, x⊥ is the coordinate perpendicular to the curve in the inward
direction, and I have chosen |dx‖| = 0.02). Due to symmetry, the
integral over the complete path is eight times the integral over the
first six moves. Adding up the contributions and multiplying by 8, I
get θ = −0.0017(5) × 2π , where the error is the statistical error of
the Monte Carlo computations.
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FIG. 4. (Color online) The effective magnetic field seen by a quasihole at the position w1 = x1 + iy1 for q = 3 when the charge of the
quasihole is (a) 1/3 or (b) 2/3 and the quasihole is well separated from the other quasiholes in the system. w1 is chosen to be within one unit
cell as shown, and the integral of B over the unit cell is −1.000B0 for both plots.

For the state (3), (8) simplifies to

θ = 1

2

Q∑
j=1

∮
c

(
1

C2

∂C2

∂yj

dxj − 1

C2

∂C2

∂xj

dyj

)
, (9)

where wj = xj + iyj . Computing the derivatives analytically
[using (3)], one can express the integrant in terms of 〈nk〉,
which is easily evaluated with Monte Carlo. Monte Carlo can
also be used to compute C2 up to a constant factor that does
not depend on w1→Q.

The results provided in Fig. 2 show that the integrant in (9)
is practically zero and C2 varies with the period of the lattice
as long as the quasihole that is being moved stays well inside
the sample, is sufficiently far from the other quasiholes, and
moves along lines midway between the lattice sites. Under
these conditions, the Berry phase factor hence equals the
monodromy.

I next consider braiding explicitly as shown in Fig. 3.
Here, a quasihole with charge 1/3 moves around 32 lattice
sites, a quasihole with charge 2/3 moves around 32 lattice
sites, and a quasihole with charge 1/3 moves around a
quasihole with charge 2/3. For this process, I also get that θ

is practically zero (up to expected finite size effects), and the
Berry phase factor is therefore practically the monodromy,
i.e., exp[2πi(−32 + 2/3)].

Effective magnetic field. It follows from the results above
that the magnetic flux through one unit cell is −h/e. As
opposed to the continuum case, however, the magnetic field
does not need to be uniform. To get a more detailed picture,
consider a quasihole that moves around a loop that does

not enclose other quasiholes. From the divergence theorem,
θ = −(1/2)

∫∫ ∇2 ln[C(x1,y1)2]dx1dy1, where the integral is
over the area enclosed by the loop. On the other hand, if the
Berry phase is interpreted as an Aharonov-Bohm phase of a
charged particle in a magnetic field B, then θ − i ln(M) =
(p1e/q)(2π/h)a

∫∫
B(x1,y1)dx1dy1. Therefore, after using

(3) to rewrite ∇2 ln(C2),

B

B0
= −qp1

π

∑
j,k

〈njnk〉 − 〈nj 〉〈nk〉
(w1 − zk)(w1 − zj )∗

, (10)

where B0 = h/(ea). Results for p1 = 1 and p1 = 2 are shown
in Fig. 4. Despite the presence of the lattice, it is observed that
the magnetic field is not too far from uniform with variations
of up to 4% for the quasihole with p1 = 1 and up to 23% for
the quasihole with p1 = 2. It is also interesting that although
the fields are the same on average, the local fields seen by the
two types of quasiholes differ, which is a result of the different
ways in which the quasiholes affect their environment.

Conclusion. Due to the complexity of many-body systems,
analytical models are particularly helpful to gain insight. Here,
I have constructed a model with an analytical ground state and
Hamiltonian, which makes it possible to study lattice Laughlin
anyons in great detail with simple numerical computations. In
future work, I plan to extend the above construction to build
different fractional quantum Hall lattice models with Abelian
and non-Abelian anyons.

Acknowledgments. The author would like to thank J.
Ignacio Cirac and Germán Sierra for discussions on related
topics.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559 (1982).

[2] X.-G. Wen, Int. J. Mod. Phys. B 04, 239 (1990).
[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[4] A. S. Sørensen, E. Demler, and M. D. Lukin, Phys. Rev. Lett.

94, 086803 (2005).
[5] M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin, Phys.

Rev. A 76, 023613 (2007).

[6] E. Kapit and E. Mueller, Phys. Rev. Lett. 105, 215303
(2010).

[7] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.
Lett. 106, 236804 (2011).

[8] D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Nat. Commun. 2,
389 (2011).

[9] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. N. Sheng, Phys. Rev.
Lett. 107, 146803 (2011).

[10] N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).

041106-4

http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1142/S0217979290000139
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1103/PhysRevLett.105.215303
http://dx.doi.org/10.1103/PhysRevLett.105.215303
http://dx.doi.org/10.1103/PhysRevLett.105.215303
http://dx.doi.org/10.1103/PhysRevLett.105.215303
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1103/PhysRevLett.106.236804
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1038/ncomms1380
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevLett.107.146803
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/PhysRevX.1.021014
http://dx.doi.org/10.1103/PhysRevX.1.021014


RAPID COMMUNICATIONS

ANYON BRAIDING IN SEMIANALYTICAL FRACTIONAL . . . PHYSICAL REVIEW B 91, 041106(R) (2015)

[11] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Phys. Rev. Lett. 108,
257206 (2012).

[12] H.-H. Tu, Phys. Rev. B 87, 041103 (2013).
[13] A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4,

2864 (2013).
[14] L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).
[15] H.-H. Tu, A. E. B. Nielsen, J. I. Cirac, and G. Sierra, New J.

Phys. 16, 033025 (2014).
[16] B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal, S. Trebst,

and A. W. W. Ludwig, Nat. Commun. 5, 5137 (2014).
[17] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106, 236802

(2011).
[18] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372

(1985).
[19] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[20] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Lett. A 337, 22

(2005).
[21] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71, 022315

(2005).
[22] Y. Hatsugai, J. Phys. Soc. Jpn. 74, 1374 (2005).
[23] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[24] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[25] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
[26] H. Wang, B. Bauer, M. Troyer, and V. W. Scarola, Phys. Rev. B

83, 115119 (2011).
[27] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and

A. Vishwanath, Phys. Rev. B 85, 235151 (2012).
[28] H.-C. Jiang, Z. Wang, and L. Balents, Nat. Phys. 8, 902 (2012).
[29] H.-H. Tu, Y. Zhang, and X.-L. Qi, Phys. Rev. B 88, 195412

(2013).
[30] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Phys.

Rev. Lett. 99, 097202 (2007).
[31] R. Thomale, E. Kapit, D. F. Schroeter, and M. Greiter, Phys.

Rev. B 80, 104406 (2009).

[32] E. Kapit, P. Ginsparg, and E. Mueller, Phys. Rev. Lett. 108,
066802 (2012).

[33] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[34] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[35] B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).
[36] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[37] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[38] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53,

722 (1984).
[39] V. Gurarie and C. Nayak, Nucl. Phys. B 506, 685 (1997).
[40] B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 87, 010402 (2001).
[41] N. Read, Phys. Rev. B 79, 045308 (2009).
[42] P. Bonderson, V. Gurarie, and C. Nayak, Phys. Rev. B 83, 075303

(2011).
[43] Y.-L. Wu, B. Estienne, N. Regnault, and B. A. Bernevig, Phys.

Rev. Lett. 113, 116801 (2014).
[44] J. I. Cirac and G. Sierra, Phys. Rev. B 81, 104431 (2010).
[45] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, J. Stat. Mech.: Theor.

Exp. (2011) P11014.
[46] P. D. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field
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