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Many-body theory of the neutralization of strontium ions on gold surfaces
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Motivated by experimental evidence for mixed-valence correlations affecting the neutralization of strontium
ions on gold surfaces, we set up an Anderson-Newns model for the Sr:Au system and calculate the neutralization
probability α as a function of temperature. We employ quantum-kinetic equations for the projectile Green
functions in the finite-U noncrossing approximation. Our results for α agree reasonably well with the experimental
data as far as the overall order of magnitude is concerned, showing in particular the correlation-induced
enhancement of α. The experimentally found nonmonotonous temperature dependence, however, could not
be reproduced. Instead of an initially increasing and then decreasing α, we find over the whole temperature range
only a weak negative temperature dependence. It arises, however, clearly from a mixed-valence resonance in the
projectile’s spectral density and thus supports qualitatively the interpretation of the experimental data in terms of
a mixed-valence scenario.
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I. INTRODUCTION

Charge-transferring atom-surface collisions [1–9] are of
great technological interest in surface science. The complex
process of neutral gas heating in fusion plasmas [10], for
instance, starts with the surface-based conversion of neutral hy-
drogen atoms to negatively charged ions. The operation modii
of low-temperature plasmas used, for instance, in flat panel
displays or in surface modification devices depend strongly
on secondary electrons originating from the substrate due to
impact of ions and radicals and thus also on surface-based
charge-transfer processes [11]. Many surface diagnostics,
finally, for instance, ion neutralization spectroscopy [12] and
metastable atom deexcitation spectroscopy [13] utilize charge-
transfer processes to gain information about the constituents
of the surface. At the same time, however, charge-transferring
atom-surface collisions are of fundamental interest as well
because they are particular realizations of a quantum-impurity
system out of equilibrium.

The archetypical quantum impurity is a local spin (more
generally, a local moment) in a metal coupled to the itiner-
ant electrons of the conduction band. Its well-documented
properties [14,15], arising from an emerging resonance at
the Fermi energy of the metal, are however also present in
other quantum systems with a finite number of correlated
internal states interacting via tunneling with a reservoir of
external states. In particular, semiconductor quantum dots
coupled to metallic leads are ideal platforms for studying
local-moment physics in a well-controlled setting [16–23].
By a suitable time-dependent gating the dot can be driven
out of equilibrium. Of particular recent theoretical interest
are the temporal buildup and/or decay of local-moment-type
correlations and how they affect the electron transport through
these devices [24–27]. As pointed out a long time ago by
Shao and co-workers [28] as well as Merino and Marston
[29], similar transient correlations should also occur in charge-
transferring atom-surface collisions where the projectile with
its finite number of electron states mimics the quantum dot
while the target with its continuum of states replaces the lead.

A recent experiment by He and Yarmoff indeed provided
strong evidence for local-moment-type correlations to affect

the neutralization probability of strontium ions on gold sur-
faces [30,31]. They found a nonmonotonous temperature de-
pendence of the neutralization probability which first increases
and then decreases with temperature. The initial increase with
temperature is most probably a thermal single-particle effect,
but the latter could be the long-sought fingerprint for a transient
mixed-valence resonance formed during an electron transfer
from a surface to an atomic projectile [28,29].

In this work, following the lead of Nordlander and co-
workers [28,32–34] as well as Merino and Marston [29], we
analyze He and Yarmoff’s experiment [30,31] from a many-
body theoretical point of view. In particular, we test the claim
that the negative temperature dependence at high temperatures
arises from the local moment of the unpaired electron in the
5s shell of the approaching ion. For that purpose we first
set up, as usual for the description of charge-transferring
atom-surface collisions, an Anderson-Newns Hamiltonian
[5–9,35–41]. To obtain its single-particle matrix elements,
we employ Hartree-Fock wave functions for the strontium
projectile [42], a step-potential description for the gold target,
and Gadzuk’s semiempirical construction [43–45] for the
projectile-target interaction. The model rewritten in terms of
Coleman’s pseudoparticle operators [46,47] is then analyzed
within the finite-U noncrossing approximation employing
contour-ordered Green functions [48,49] as originally sug-
gested by Nordlander and co-workers [28,32–34]. Aside from
the instantaneous occupancies and the neutralization probabil-
ity we also calculate the instantaneous spectral densities. The
latter are of particular interest because if the interpretation of
the experimental findings in terms of a mixed-valence scenario
is correct, the projectile’s spectral density should feature a
transient resonance at the target’s Fermi energy.

For the material parameters best suited for the Sr:Au
system, we find neutralization probabilities slightly above
the experimental data but still of the correct order of mag-
nitude indicating that the single-particle matrix elements of
the Anderson-Newns model are sufficiently close to reality.
Moreover, for the model without correlations the neutralization
probabilities turn out to be too small, showing that agreement
with experiment can be only achieved due to the correlation-
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induced enhancement of the neutralization probability. We
also find a transient resonance in the instantaneous spectral
densities hinting mixed-valence correlations to be present in
certain parts of the collision trajectory. The nonmonotonous
temperature dependence of the neutralization probability, how-
ever, could not be reproduced. Instead, we find the resonance
to lead only to a weak negative temperature dependence over
the whole temperature range.

Due to lack of data for comparison, we cannot judge the
validity of the single-particle parametrization we developed for
the Sr:Au system. At the moment, it is the most realistic one.
We attribute therefore the failure of the present calculation
to reproduce the temperature anomaly of the neutralization
probability while having at the same time mixed-valence
features in the instantaneous spectral densities primarily to the
finite-U noncrossing approximation which seems to be unable
to capture the instantaneous energy scales with the required
precision. A quantitative description of the experiment has thus
to be based either on the dynamical 1/N expansion initially
used by Merino and Marston [29], equation of motions for
the correlation functions of the physical degrees of freedom
instead of the pseudoparticles [39], or on the one-crossing
approximation as it has been developed for the equilibrium
Kondo effect [50–54]. Numerically, this will be rather demand-
ing. But demonstrating that He and Yarmoff have indeed seen
local-moment physics in a charge-transferring atom-surface
collision may well be worth the effort.

The paper is organized as follows. In the next section,
we introduce the Anderson-Newns model, its parametrization
for the Sr:Au system, and its representation in terms of
pseudoparticle operators. In Sec. III, we recapitulate briefly the
quantum kinetics of the Anderson-Newns model as pioneered
by Nordlander and co-workers. Basic definitions and the main
steps of the derivation of the set of Dyson equations for
the analytic pieces of the projectile Green functions within
the finite-U noncrossing approximation, which is the set
of equations to be numerically solved, can be found in an
appendix to make the paper self-contained. Numerical results
are presented, discussed, and compared to the experimental
data in Sec. IV and concluding remarks with an outlook are
given in Sec. V.

II. MODEL

The interaction of an atomic projectile with a surface
is a complicated many-body process. Within the adiabatic
approximation, which treats the center-of-mass motion of
the projectile along the collision trajectory classically [8],
it leads to a position- and hence time-dependent broadening
and shifting of the projectile’s energy levels. The adiabatic
modification of the atomic energy levels as a function of
distance can be calculated from first principles [55–59]. As
in our previous work on secondary electron emission from
metallic [60] and dielectric [61,62] surfaces, we employ,
however, Gadzuk’s semiempirical approach [43,44], based
on classical image shifts and a golden rule calculation of
the level widths, which not only provides a very appealing
physical picture of the interaction process [45], but produces
for distances larger than a few Bohr radii also reasonable level
widths and shifts [57–59].

Indeed, first-principles investigations of Auger neutraliza-
tion of helium ions on aluminum surfaces by Monreal and
co-workers [58,59] showed that for distances larger than five
Bohr radii the level shift follows the classical image shift. Only
for shorter distances chemical interactions lead to a substantial
deviation between the two. Borisov and Wille [57], on the other
hand, found the level width of hydrogen ions approaching an
aluminum surface to be for distances larger than five Bohr radii
also not too far off the widths obtained from Gadzuk’s golden
rule calculation, that is, the widths are perhaps off by a factor 2.
The reason most probably is Gadzuk’s ingenious choice of the
tunneling matrix element (see below) which takes care of the
nonorthogonality of the projectile and target states [44]. Since
the turning point of the strontium ion is sufficiently far away
from the first atomic layer, we estimate it to be around five
Bohr radii, we expect Gadzuk’s semiempirical approach to
also provide a reasonable parametrization of the Sr:Au system
investigated by He and Yarmoff [30,31]. The corrections due
to chemical interactions between the strontium projectile and
the gold surface, occurring at shorter distances and included in
first-principles approaches [55–59], should not yet play a role.

We now set up Gadzuk’s approach step by step [43,44]. For
the charge-transfer process we are interested in, the first two
ionization levels of the strontium projectile are most important.
They are closest to the Fermi energy of the gold target and may
hence accept or donate an electron. In terms of the Anderson-
Newns model, the two levels constitute, respectively, the upper
and lower charge-transfer level. The difference of the two can
thus be identified with the time-dependent onsite Coulomb
repulsion. Figure 1 schematically shows the essence of the
Anderson-Newns model for the Sr:Au system. The energy
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5s1

εU (t) 5s2

ε0(t)

I2I1

Sr+Au

z(t)

FIG. 1. Illustration of the time-dependent charge-transferring
scattering of a Sr+ ion on a gold surface. Far from the surface, the
two ionization energies ε0(t) and εU (t) are equal to the first two
ionization energies of a strontium atom and represent the projectile’s
5s1 and 5s2 configurations. They shift upward due to the image
interaction of the projectile with the surface. For simplicity, not shown
is the hybridization between the projectile and surface states as the
projectile closes its distance to the surface which is idealized by a
step potential whose depth is the sum of the work function � > 0 and
the Fermi energy EF > 0. The energies are on scale and the points
indicated along the trajectory z(t) are zTP, the turning point, and zc,
the point where the first ionization level crosses the Fermi energy.
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levels are on scale. Mathematically, the onsite energies are
given by

εU (t) = −I1 + e2

4|z(t) − zi | , (1)

ε0(t) = −I2 + 3e2

4|z(t) − zi | , (2)

where I1 > 0 and I2 > 0 are the first and second ionization
energies far from the surface and zi is the distance of the
metal’s image plane from its crystallographic ending at z = 0.
For simplicity, the projectile is assumed to approach the surface
perpendicularly along the trajectory

z(t) = zTP + v |t | , (3)

where zTP is the turning point and v is the velocity.
The shift of the onsite energies with time can be interpreted

as the negative of the energy gain of a virtual process which
moves the configuration under consideration from the actual
position z to z = ∞, reduces its electron occupancy by one,
and then moves it back to its former position z, taking into
account in both moves possible image interactions due to the
initial and final charge states of the projectile with the metal
[9].

For the upper level εU (z), corresponding to the first
ionization level, this means shifting the charge-neutral 5s2

configuration from z to z = ∞, turning it into a single-charged
5s1 configuration, which is then moved back to z. In the first
leg, no image shift occurs while in the second one the image
shift is −e2/4|z − zi |. The net energy gain of the whole process
is therefore −e2/4|z − zi | leading to a shift of the upper onsite
level of +e2/4|z − zi |. Similarly, for the lower level ε0(z),
which is the second ionization level, one imagines moving a
5s1 configuration from z to z = ∞ and then a 5s0 configuration
from z = ∞ back to z. In both moves, image shifts occur
adding up to −3e2/4|z − zi | because the energy pay in the
first half of the trip is due to a single-charged projectile, while
the energy gain on the return trip arises from a double-charged
one. The shift of the lower onsite level is thus +3e2/4|z − zi |.

Aside from the onsite energies we also need the hybridiza-
tion matrix elements which depend on projectile and metal
wave functions. Ignoring the lateral variation of the surface
potential, we take for the latter simply the wave functions
of a step potential with depth V0 = −� − EF where � > 0
and EF > 0 are the work function and the Fermi energy of
the surface, respectively, measured as illustrated in Fig. 1.
Hence, the energies and wave functions for the conduction
band electrons are

ε�k = �
2

2m∗
e

(
k2
x + k2

y + k2
z

) − |V0| , (4)

ψ�k(�r) = 1

L3/2
ei(kxx+kyy){�(z)Tkz

e−κzz

+ �(−z)
[
eikzz + Rkz

e−ikzz
]}

, (5)

where L is the spatial width of the step, which drops out in the
final expressions, and

Tkz
= 2ikz

ikz − κz

, Rkz
= ikz + κz

ikz − κz

, (6)

with κz = √
2me(|V0| − k2

z )/�2 are, respectively, the transmis-
sion and reflection coefficients of the step potential. More
sophisticated surface potentials are conceivable, but from the
work of Kürpick and Thumm [63] we expect the final result
for the neutralization probability to depend not too strongly on
the choice of the surface potential.

For the calculation of the hybridization matrix element, we
also need 5s wave functions for the neutral and single-charged
projectile. Both are radially symmetric and in the Hartree-Fock
approximation can be written in the general form

ψHF(�r) =
N∑

j=1

cjNj√
4π

|�r |nj −1
e−Cj |�r | (7)

with N , cj , Nj , nj , and Cj tabulated parameters [42].
The transfer of an electron between the target and the

projectile is a rearrangement collision. According to Gadzuk
[43,44], the matrix element for this process which is also the
hybridization matrix element of the Anderson-Newns model
is given by

V�k(t) =
∫

z>0
d3r ψ∗

�k (�r)
Ze2

|�r − �rp(t)|ψHF(�r − �rp(t)), (8)

where the potential between the two wave functions is the
Coulomb interaction of the transferring electron with the
core of the projectile located at �rp(t) = z(t)�ez. This choice of
the matrix element takes into account the nonorthogonality of
the projectile and target states [44]. The charge of the core Ze

is screened by the residual valence electrons of the projectile,
that is, for the lower level Z = Z2 = 2 while for the upper level
Z = Z1 = 2 − s with s = 0.35 the Slater shielding constant
for a 5s electron [64]. Material parameters required for the
modeling of the Sr:Au system are listed in Table I.

The multidimensional integral (8) can be analytically
reduced to a one-dimensional integral by a lateral Fourier trans-
formation of the product of the residual Coulomb interaction
with the Hartree-Fock projectile wave function. The resulting
sum contains modified Bessel functions of the second kind Kα

[65]. Transforming formally back and reversing the order of
integration yields after successively integrating first along the

TABLE I. Material parameters for strontium and gold: I1 and I2

are the first and the second ionization energies, Z1 and Z2 are the
effective charges to be used in the calculation of the hybridization
matrix element [viz., Eq. (8)], � is the work function, EF the Fermi
energy, zi the position of the image plane in front of the surface for
which we take a typical value, and m∗

e is the effective mass of an
electron in the conduction band of gold.

I1 (eV) Z1 I2 (eV) Z2 � (eV) EF (eV) zi (a.u.) m∗
e/me

Sr 5.7 1.65 11.0 2
Au 5.1 5.53 1.0 1.1
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x, y and then along the px , py directions

V�k(t) =
√

2
Ze2

L3/2
T ∗

kz
(θ,φ)

N∑
j=1

(nj −1)/2∑
n=0

(−1)ncjNjC
nj −1−2n

j

× (
C2

j + k2
x + k2

y

)−(nj −1/2−n)/2
Anj n

×
∫ ∞

0
dz e−κzz |z − zp(t)|nj −1/2−n

× Knj −1/2−n

(|z − zp(t)|
√

C2
j + k2

x + k2
y

)
, (9)

where

Anj n =

⎛
⎜⎜⎜⎝

1 0 0
1 0 0
1 1 0
1 3 0
1 6 3

⎞
⎟⎟⎟⎠ (10)

are numerical coefficients (nj ∈ {1, . . . ,5} and n = 0,1,2 for
5s functions [42]) and T ∗

kz
is the complex conjugate of Tkz

.
Inserting the matrix element (9) into the golden rule

expression for the transition rate gives the level width

�ε(t)(t) = 2π

�

∑
�k

|V�k(t)|2δ(ε(t) − ε�k). (11)

It is an important quantity characterizing the strength of the
charge transfer. Turning the momentum summation into an
integral eliminates the width L of the step potential. The
integrals have to be done numerically and lead due primarily
to the modified Bessel functions to level widths exponentially
decreasing with distance as it is generally expected.

In Fig. 2, we show the widths of the first two ionization
levels of the strontium projectile hitting a gold surface as
obtained from Eq. (11) by setting ε(t) to εU (t) and ε0(t),
respectively, and using the material parameters given in Table I.
To demonstrate that the widths we get are of the correct order
of magnitude, we also plot the width of a rubidium 5s level in
front of an aluminum surface and compare it with the width
obtained by Nordlander and Tully using a complex scaling
technique [56]. In qualitative agreement with Borisov and
Wille’s investigation [57] of Gadzuk’s approach, our rubidium
width is a factor 2–3 too small for z > 7aB and a factor 2
too large for z = 5aB . Between 7aB and 9aB , however, the
widths fortuitously agree with each other. The same trend we
found for the other alkaline-metal combinations investigated
by Nordlander and Tully [56]. From this comparison we
expect the widths of the strontium levels to be of the correct
order of magnitude for intermediate distances between 5aB

and 12aB . This is the range required for the description
of the collision process we are interested in. For smaller
and larger distances, the semiempirical approach breaks
down and should be replaced by quantum-chemical methods
[55–59].

With the single-particle matrix elements at hand, the
Anderson-Newns Hamiltonian [5–8,35–41] describing the
charge transfer between the strontium ion and the gold surface
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Γ 
[a

.u
.]

z [a.u.]
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Rb:Al; complex scaling
Rb:Al; golden rule

FIG. 2. Widths of the first (εU ) and second (ε0) ionization levels
of a strontium projectile approaching a gold surface as computed
from Eq. (11) on the basis of Hartree-Fock wave functions for the
projectile and simple step-potential wave functions for the target.
Atomic units are used, that is, energy is measured in hartrees and
length in Bohr radii. Data are shown only for distances larger than
5 Bohr radii, which is the turning point of the collision trajectory.
The width of a rubidium 5s level is also shown and contrasted with
the width obtained for that level by Nordlander and Tully using the
complex-scaling approach [56]. Notice, in contrast to Nordlander and
Tully’s Eq. (4.1) [56], our widths (11) contain a factor 2π and not a
factor π . For the comparison, we corrected for this difference.

is given by

H (t) =
∑

σ

ε0(t)c†σ cσ +
∑
�kσ

ε�kc
†
�kσ

c�kσ

+ 1

2
[εU (t) − ε0(t)]

∑
σ

c†σ cσ c
†
−σ c−σ

+
∑
�kσ

[V�k(t)c†�kσ
cσ + H.c]. (12)

with c†σ creating an electron with spin polarization σ in the
5s shell of strontium and c

†
�kσ

creating an electron with spin

polarization σ and momentum �k in the conduction band of the
gold surface. Using Coleman’s pseudoparticle representation
[46,47]

cσ = e†pσ + p
†
−σ d , (13)

c†σ = e p†
σ + p−σ d† (14)

with e†, p†
σ , and d† creating, respectively, an empty (Sr2+), a

single-occupied (Sr+) and a double-occupied (Sr0) strontium
projectile (see Fig. 3), the Hamiltonian becomes [33]

H (t) =
∑

σ

ε0(t)p†
σpσ + [ε0(t) + εU (t)]d†d

+
∑
�kσ

ε�kc
†
�kσ

c�kσ
+

∑
�kσ

[V�k(t)c†�kσ
e†pσ + H.c.]

+
∑
�kσ

[V�k(t)c†�kσ
d p

†
−σ + H.c.], (15)
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npσ nd ne

εU

ε0

FIG. 3. Coleman’s pseudoparticle representation for the stron-
tium projectile. Shown are the occupancies of the two ionization
levels ε0 and εU . The two single-occupied configurations npσ

contain
an electron only in the second ionization level. In the double-occupied
state nd both ionization levels are occupied by electrons with opposite
spin, whereas in the empty configuration none of the ionization levels
are occupied.

where the pseudoparticle operators obey the constraint

Q =
∑

σ

p†
σpσ + d†d + e†e = 1 (16)

since only one of the four possible projectile configurations
can be ever realized.

III. QUANTUM KINETICS

To calculate the probability for the neutralization of a
strontium ion on a gold surface, we employ the formalism
developed by Nordlander and co-workers. The formalism,
based on contour-ordered Green functions [48,49], has been
developed in a series of papers [28,32–34]. However, the
finite-U equations, which we have to adopt and solve for
the Sr:Au system, can be found only in the book edited by
Rabalais [33], which may no longer by easily accessible. It is
thus helpful to briefly summarize the finite-U quantum kinetics
as it is applied to the problem at hand. Basic definitions and
the main steps of the derivation of the most relevant equations
can be found in the Appendix.

The central objects of the formalism are the contour-ordered
Green functions for the empty, single-, and double-occupied
projectiles. They are denoted, respectively, by E(t,t ′), Pσ (t,t ′),
and D(t,t ′). The analytic pieces of these functions can be
factorized (� = 1)

H R(t,t ′) = −i�(t − t ′) exp

(
−i

∫ t

t ′
dt̄ ε(t̄)

)
H̄ R(t,t ′), (17)

H≷(t,t ′) = exp

(
−i

∫ t

t ′
dt̄ ε(t̄)

)
H̄≷(t,t ′), (18)

where H (t,t ′) can be any of the three Green functions
and ε(t) is either identical to zero, ε0(t), or ε0(t) + εU (t),
depending on the function. The superscripts R, <, and >

stand for, respectively, retarded, less-than, and greater-than
Green functions.

Using this notation and the noncrossing self-energies
diagrammatically shown in Fig. 4 gives after a projection
to the Q = 1 subspace [18,22,34] and an application of the
Langreth-Wilkins rules [66] the equations of motion for the

t t

k, σ

pσ

t t

k, σ

p−σ

t t

k, σ

e

t t

k,−σ

d

FIG. 4. Self-energies in the noncrossing approximation. Wavy,
dashed, and double-dashed lines denote, respectively, fully dressed
propagators for the empty (e), the single-occupied (p), and the double-
occupied (d) configurations. The solid line is the bare Green function
for the electrons of the surface. Starting at the left upper corner and
proceeding clockwise, the diagrams denote, respectively, the self-
energies �0,σ �U,σ , �d , and �e for the Green functions Pσ , D,
and E.

analytic pieces of the Green functions:

∂

∂t
ĒR(t,t ′) = −

∑
σ

∫ t

t ′
dt̄ K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)ĒR(t̄ ,t ′), (19)

∂

∂t
P̄ R

σ (t,t ′) = −
∫ t

t ′
dt̄ K̄>

ε0
(t,t̄)ĒR(t,t̄)P̄ R

σ (t̄ ,t ′)

−
∫ t

t ′
dt̄ K̄<

εU
(t̄ ,t)D̄R(t,t̄)P̄ R

σ (t̄ ,t ′), (20)

∂

∂t
D̄R(t,t ′) = −

∑
σ

∫ t

t ′
dt̄ K̄>

εU
(t,t̄)P̄ R

−σ (t,t̄)D̄R(t̄ ,t ′), (21)

and

∂

∂t
Ē<(t,t ′) =

∑
σ

∫ t ′

−∞
dt̄ K̄>

ε0
(t̄ ,t)P̄ <

σ (t,t̄)[ĒR(t ′,t̄)]∗

−
∑

σ

∫ t

−∞
dt̄K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)Ē<(t̄ ,t ′), (22)

∂

∂t
P̄ <

σ (t,t ′) =
∫ t ′

−∞
dt̄ K̄<

ε0
(t,t̄)Ē<(t,t̄)

[
P̄ R

σ (t ′,t̄)
]∗

+
∫ t ′

−∞
dt̄ K̄>

εU
(t̄ ,t)D̄<(t,t̄)

[
P̄ R

σ (t ′,t̄)
]∗

−
∫ t

−∞
dt̄ K̄>

ε0
(t,t̄)ĒR(t,t̄)P̄ <

σ (t̄ ,t ′)

−
∫ t

−∞
dt̄ K̄<

εU
(t̄ ,t)D̄R(t,t̄)P̄ <

σ (t̄ ,t ′), (23)

∂

∂t
D̄<(t,t ′) =

∑
σ

∫ t ′

−∞
dt̄ K̄<

εU
(t,t̄)P̄ <

−σ (t,t̄)[D̄R(t ′,t̄)]∗

−
∑

σ

∫ t

−∞
dt̄ K̄>

εU
(t,t̄)P̄ R

−σ (t,t̄)D̄<(t̄ ,t ′) (24)
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with

K̄≷
ε (t,t ′) = √

�ε(t)(t)�ε(t ′)(t ′)f̄ ≷
ε (t,t ′) (25)

and

f̄ ≷
ε (t,t ′) = exp

[
i

∫ t

t ′
dt̄ ε(t̄)

]
f ≷(t − t ′), (26)

where ε(t) is either ε0(t) or εU (t) and f <(t) = 1 − f >(t) is
the Fourier transform of the Fermi function f <(ε) defined by

f <(t) =
∫

dε

2π
f <(ε) exp [−iεt] (27)

with the energy integration taken over the conduction band.
The temperature dependence, which is of main interest, is
contained in the integral kernels K̄

≷
ε (t,t ′) defined by Eq. (25).

In the Appendix, where the details of the derivation of
Eqs. (19)–(24) can be found, we explain how these functions
enter the formalism.

The initial conditions for Eqs. (19)–(24) depend on the
particular scattering process and how it is modeled. In our
case, the initial conditions are

ĒR(t,t) = P̄ R
σ (t,t) = D̄R(t,t) = 1, (28)

and

E<(−∞,−∞) = ne(−∞) = 0, (29)

P <
σ (−∞,−∞) = npσ

(−∞) = δσ,1/2, (30)

D<(−∞,−∞) = nd (−∞) = 0. (31)

Once the equations of motions are solved on a two-
dimensional time grid, the instantaneous (pseudo)occurrence
probabilities for the Sr2+, Sr+, and Sr0 configurations are
simply given by the equal-time Green functions

ne(t) = Ē<(t,t), (32)

npσ
(t) = P̄ <

σ (t,t), (33)

nd (t) = D̄<(t,t). (34)

Hence, in the notation of pseudoparticles, the neutralization
probability

α = nd (∞), (35)

that is, it is the probability of double occupancy after
completion of the trajectory.

Nordlander and co-workers [28,32–34] also derived master
equations for the occurrence probabilities by approximating
the time integrals in the Dyson equations for the Green func-
tions. Depending on the level of sophistication they obtained
what they called simple master equations and generalized
master equations. In the Appendix we state the two sets of
master equations arising from Eqs. (19)–(24) by adapting this
strategy. The reduction of the set of Dyson equations to a
set of master equations utilizes the fact that the functions
f̄

≷
ε (t,t̄) localize the self-energies around the time diagonal.

Thus, provided the Green functions vary not too strongly, they
can be put in front of the time integrals. Mathematically, this
leads to the constraint [34]

R0,U (z) =
∣∣∣∣vα0,U (z) − 2�ε0,εU

(z)

ε0,U (z) − εF

∣∣∣∣ � 1, (36)

where v is the projectile velocity. The functions α0,U (z) are
defined by requiring �0,U (z) = �0,U exp[−α0,U (z)z] which
leads to nearly constant values for α0,U verifying thereby the
exponential dependence of our level widths. For the upper
level, the inequality obviously breaks down at the z = zc

where it crosses the Fermi energy. As shown by Langreth and
Nordlander [34], the master equations can still be used at this
point if essentially no charge is transferred during the time span
the level crosses the Fermi energy. This leads to an additional
criterion at z = zc. In the next section, we will see, however,
that for the upper level of the Sr:Au system investigated by
He and Yarmoff [30,31], the constraint (36) is violated not
only at z = zc but for almost the whole trajectory. Hence, in
order to analyze the correlation-driven local-moment physics
possibly at work in this experiment, the solutions of the full
quantum-kinetic equations are needed.

The physical Green functions G
≶
σ needed for the calculation

of the instantaneous spectral densities can be constructed from
the standard definition of the less-than and greater-than Green
functions [48] by replacing the original electron operators cσ

and c†σ by pseudoparticle operators according to Eqs. (13) and
(14), neglecting vertex corrections, and projecting onto the
physical subspace Q = 1. Thus, G<

σ (t,t ′) = 〈c†σ (t ′)cσ (t)〉, for
instance, becomes

G<
σ (t,t ′) = 〈p†

σ (t ′)e(t ′)e†(t)pσ (t)〉
+ 〈d†(t ′)p−σ (t ′)p†

−σ (t)d(t)〉, (37)

which upon employing ER(t,t ′) = −iθ (t − t ′)eR(t,t ′) and
P R

σ (t,t ′) = −iθ (t − t ′)pR
σ (t,t ′) reduces to

G<
σ (t,t ′) = P <

σ (t,t ′)
[
eR(t ′,t) + E<(t ′,t)

]
+ D<(t,t ′)

[
pR

−σ (t ′,t) − P <
−σ (t ′,t)

]
, (38)

where the products P <
σ (t,t ′)E<(t ′,t) and D<(t,t ′)P <

−σ (t ′,t) are
of order Q2 and must thus be projected out to yield

G<
σ (t,t ′) = P <

σ (t,t ′)eR(t ′,t) + D<(t,t ′)pR
−σ (t ′,t). (39)

A similar calculation leads to

G>
σ (t,t ′) = pR

σ (t,t ′)E<(t ′,t) + dR(t,t ′)P <
−σ (t ′,t), (40)

where DR(t,t ′) = −iθ (t − t ′)dR(t,t ′) has been used. Note, in
the derivation of the formulas for the physical Green functions
we introduced Green functions eR, pR

σ , and dR, which, in
contrast to the Green functions defined in Eq. (17) are retarded
Green functions with only the Heaviside function split off but
the phase factor arising from the onsite energies still included.

The spectral densities for removing or adding at time T a
physical electron with energy ω can be obtained from Eqs. (39)
and (40) by using difference variables T = (t + t ′)/2 and τ =
t − t ′. A Fourier transformation with respect to τ = t − t ′
yields

ρ≶
σ (ω,T ) = 1

2π

∫ ∞

−∞
dτ G≶

σ (T + τ/2,T − τ/2) eiωτ . (41)

The normalization of the spectral densities∫ ∞

−∞
dω ρ<

σ (ω,T ) = npσ
(T ) + nd (T ), (42)
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t

t

<

R

FIG. 5. Sketch of the numerical scheme used to solve the double-
time equations of motion (19)–(24). The triangle marks the region in
the two-dimensional time grid in which the entries of retarded Green
functions have to be known in order to calculate retarded Green
functions at the point indicated by the bullet. Likewise, the rectangle
marks the region in which the entries of (retarded and less-than) Green
functions are required in order to compute less-than Green functions
at the point indicated by the bullet.

∫ ∞

−∞
dω ρ>

σ (ω,T ) = np−σ
(T ) + ne(T ) (43)

is given by the instantaneous occupation of the projectile with
a physical electron or a physical hole, respectively, written in
terms of the occurrence probabilities introduced above. This
follows directly from the equal-time limit of Eqs. (39) and (40)
by using eR(t,t) = dR(t,t) = pR

σ (t,t) = 1.
At the end of this section, let us say a few words about

the numerics required to solve the two-dimensional integro-
differential equations (19)–(24). The discretization strategy
proposed by Shao and co-workers [32] for U = ∞ can be
also employed for finite U . The main difference is that two
more Green functions have to be calculated on the time grid:
D̄R and D̄<. The particular structure of the time integrals
leads to the numerical strategy shown in Fig. 5. First, the
retarded Green functions are calculated, starting from the time
diagonal where their values are simply set to unity because of
the initial condition and then working through the grid points
which are on lines parallel to the time diagonal. To compute
retarded Green functions at (t,t ′), only the points in the dark
triangle depicted in Fig. 5 have to be sampled. The calculation
of the less-than Green functions requires a slightly different
scheme. Here, the computation first proceeds in the t and then
in the t ′ direction, starting from (−tmax,−tmax) where the initial
condition can be employed and redoing this until one arrives at
the desired grid point. Only grid points in the bright rectangular
region of Fig. 5 contribute then to the calculation of less-than
functions at the point (t,t ′).

The computations are time and memory consuming. We
employ grid sizes of up to 3000 × 3000. Taking advantage of
the symmetry of the Green functions, the Green functions in the

upper half of the grid can be obtained from the Green functions
of the lower half by complex conjugation which reduces
memory space and number of calculations by one-half. Even
then, however, the calculation of one trajectory requires on a
2000 × 2000 time grid including the computation of the level
widths eight hours of processing time and 400 Mb memory
on a single core. To obtain the temperature dependence of the
neutralization probability, we let the projectile run through the
trajectory for 50 different temperatures. Fortunately, the final
charge state is surprisingly robust against a reduction of the
size of the time grid. Empirically, we found the neutralization
probability (but not necessarily the occurrence probabilities at
intermediate times) to be converged already for a 1000 × 1000
time grid. A run for a single temperature requires then only
half an hour, making an investigation of the temperature
dependence of the neutralization process feasible.

IV. RESULTS

We now present numerical results. Aside from the material
parameters listed in Table I which should be quite realistic for
the Sr:Au system investigated by He and Yarmoff, we need the
turning point zTP and the velocity v of the strontium projectile.
The radius of a strontium atom is around 2.2 Å. It is thus
very unlikely for the strontium projectile to come closer to the
surface than 4–5 Bohr radii. In atomic units, measuring length
in Bohr radii and energy in hartrees, which we use below if not
indicated otherwise, we set therefore zTP = 5. For the velocity,
we take the experimentally determined post-collision velocity
for the whole trajectory since it is known that due to loss of
memory [40] the outgoing branch determines the final charge
state of the projectile. In atomic units, v = 0.134 [31].

First, we investigate if the He-Yarmoff experiment [30,31]
can be described by the numerically less demanding master
equations (either the simple or the generalized set, see
Appendix). As pointed out in the previous section, the master
equations should provide a reasonable description of the
charge transfer if R0,U (z) � 1. In Fig. 6, we plot R0,U (z)
for v = 0.0134 and the level widths and energies obtained
in Sec. II. For the second ionization level ε0 master equations
could be in fact used all the way down to z ≈ 6. For the first
ionization level εU master equations break down not only at
the point where the level crosses the Fermi energy, but also
close to the turning point, where the level width turns out
to be too large, and far away from the surface, where the
projectile velocity is too high for the master equations to be
applicable. Only in a narrow interval around z ≈ 9, where the
high velocity is compensated by the level broadening leading
to a small numerator in Eq. (36), RU is small enough to justify
master equations also for εU . Since the two ionization levels
are coupled and the charge transfer occurs not only in the
narrow range where master equations are applicable to both
levels this implies that neither the simple nor the generalized
master equations can be used to analyze the Sr:Au system
investigated by He and Yarmoff. Instead, the full double-time
quantum kinetics has to be implemented.

Let us now trace, based on the numerical solution of the
double-time Dyson equations, for a fixed surface temperature
Ts = 400 K important physical quantities while the projectile
is on its way through the trajectory. Figure 7 shows in
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FIG. 6. The constraints R0 and RU as a function of z for the Sr:Au
system investigated by He and Yarmoff [30,31]. The approximations
reducing the double-time quantum kinetics of the Dyson equations to
either a set of simple or generalized master equations (see Appendix)
are valid only for R0,U � 1. Hence, for ε0 master equations could be
used for z > 6. But, for εU master equations break down for almost the
whole trajectory except for the narrow interval around z ≈ 9 where
the vanishing of the numerator in Eq. (36) leads to small values
for RU . The peak in RU around z ≈ 12 signals the point where εU

crosses the Fermi energy.

the upper panel the shift and broadening of the ionization levels
εU and ε0 while the middle panel depicts the instantaneous
occurrence probabilities ne, np±1/2 , and nd for the Sr2+, Sr+,
and Sr0 configurations, respectively. The projectile starts at
z = 20 on the left, moves along the incoming branch towards
the turning point z = 5 from which it returns on the outgoing
branch again to the distance z = 20. The strontium projectile
starts in the Sr+ configuration. Thus, only the ε0 level is
occupied while the εU level is empty. During the collision,
both levels shift upward and broaden. The upper level crosses
the Fermi energy at z = zc ≈ 12. In the course of the collision,
the occupation probabilities change and the projectile has a
certain chance to be at the end in a different charge state than
initially. For the run plotted in Fig. 7 the probability for double
occupancy at the end, that is, the probability for neutralization
is α = nd (20) = 0.185. For comparison, we show in the lower
panel the instantaneous occupation of εU as it is obtained when
only this level is kept in the modeling, that is, for a single-level,
uncorrelated U = 0 model. In this case, the neutralization
probability α = 0.01, that is, one order of magnitude smaller.

The physics behind the results shown in Fig. 7 is as follows.
Let us first focus on the first ionization level. Initially, εU is
below the Fermi energy. Hence, energetically, not the ionic Sr+

but the neutral Sr0 configuration is actually favored. However,
as can be seen from the vanishing broadening of the level,
far away from the surface charge transfer is negligible. The
approaching ion is thus initially stabilized due to lack of
coupling. When the coupling becomes stronger for smaller
distances εU crosses, however, the Fermi energy. The ion
is then energetically stabilized. Roughly speaking, the first
ionization level has a chance to capture an electron from the
metal only when |EF − εU (t)| < �U (t); in the notation of
Sosolik and co-workers, the Sr:Au system is in the coupling-
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FIG. 7. Instantaneous physical quantities along the trajectory.
The strontium projectile starts on the left as an ion at a distance
z = 20 with a velocity v = 0.0134, reaches the turning point at
zTP = 5, and approaches z = 20 again thereafter on the right.
(a) Energy-level diagram. Both levels (solid lines) are broadened
according to ε ± � (dashed lines) with the instantaneous � shown in
Fig. 2. (b) Occurrence probabilities at Ts = 400 K for Sr+ (dashed
and dashed-dotted lines), Sr0 (solid line), and Sr2+ (dotted line) as
obtained from the finite-U model. The neutralization probability in
this case is α = nd (20) = 0.185. (c) Occurrence probability of Sr0

as obtained from the uncorrelated U = 0 model which keeps only
the first ionization level, that is, the upper onsite energy εU . In this
case the α = 0.01. For other surface temperatures Ts the results look
similar.

dominated regime [67]. From the upper panel in Fig. 7, we
see that this is the case only for a very small portion of
the trajectory, close to the turning point. As a result, the
neutralization probability α should be in any case much smaller
than unity as indeed it is. Due to the thermal broadening
of the target’s Fermi edge, the efficiency of electron capture
into the first ionization level increases with temperature. Thus,
if this was the only process involved in the charge transfer, the
neutralization probability should monotonously increase with
temperature, contrary to the experimental data which initially
increase and then decrease (see below). The charge transfer
must be thus more involved. Indeed, as can be seen in the
upper panel in Fig. 7, the second ionization level ε0 comes
also close to the Fermi energy. In those parts of the trajectory
where |EF − ε0(t)| < �0(t), it is thus conceivable that the
electron initially occupying ε0 may leave the projectile. That
is, holes may transfer from the surface to the second ionization
level thereby compensating the electron transfer into the first.
The hole transfer, absent in the uncorrelated U = 0 model,
tendentiously favors the ion with increasing temperature and
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should by itself lead to a neutralization probability decreasing
with temperature.

That during the collision the ionization levels of strontium
come so close to the Fermi energy of the gold target, with the
first one crossing it and the second one coming so close to
it to enable hole transfer, led He and Yarmoff to suggest that
the neutralization process is driven by electron correlations.
The experimentally found negative temperature dependence
of α above Ts = 600 K strengthened their conclusion. It
agrees qualitatively with what Merino and Marston predicted
theoretically on the basis of a correlated-electron model for
the neutralization of calcium ions on copper surfaces [29]. The
work of Shao and co-workers [28] suggested moreover that
the negative temperature dependence of α is caused by a
mixed-valence resonance transiently formed in the course of
the collision.

After these qualitative remarks, we now discuss the
temperature dependence of the neutralization probability
quantitatively. In Fig. 8, we show the experimental data of He
and Yarmoff [31] and compare it with our theoretical results.
For the parameters of Table I, the theoretical neutralization
probability (solid line) turns out a bit too large but it is still
of the correct order of magnitude indicating that the material
parameters as well as the procedures for calculating the level
widths are reasonable. In contrast to the experimental data we
find, however, over the whole temperature range only a weak
negative temperature dependence. Also plotted in Fig. 8 is
the temperature dependence of the neutralization probability
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FIG. 8. Temperature dependence of the neutralization probability
α = nd (20) for a Sr+ ion hitting with v = 0.0134 a gold surface.
The turning point zTP = 5. Also shown are the data of He and
Yarmoff [31]. The solid and long-dashed lines are for the finite-U and
the uncorrelated U = 0 model, respectively, showing that correlations
enhance the neutralization probability to the experimental order of
magnitude. By moving the turning point farther away from the
surface, we could make the results for U �= 0 to overlap with the
experimental data. However, we do not use zTP as a fit parameter for
reasons explained in the main text. The nonmonotonous temperature
dependence of the experimental data cannot be reproduced regardless
of the value of the turning point. The dashed-dotted and the dotted
lines are the neutralization probabilities arising, respectively, from
the numerical solution of the set of simple or the set of generalized
master equations given in the Appendix.

arising from the uncorrelated U = 0 model (long-dashed line)
and, for completeness, the one obtained from the numerical
solution of either the set of simple (dashed-dotted line) or the
set of generalized master equations (dotted lines) listed at the
end of the Appendix.

Clearly, without correlations the neutralization probability
is too small indicating that correlations play an important role
in the charge transfer from the gold target to the strontium
projectile. The chosen turning point zTP = 5 is in fact most
favorable for the uncorrelated model. In reality, the turning
point may be farther away from the surface. A larger value
of zTP leads, however, to smaller neutralization probabilities.
Hence, the results for the uncorrelated model would be
pushed farther away from the experimental data, while the
results for the correlated model would come closer to it. We
hesitate, however, to use zTP as a fit parameter because of
the shortcomings of the finite-U noncrossing approximation
discussed in the next section.

The neutralization probabilities arising from the master
equations are also much smaller than those obtained from
the full quantum kinetics. Decreasing the turning point would
push them of course closer to the experimental data (without
reproducing the nonmonotonous temperature dependence).
However, the numerical values for R0,U (z) shown in Fig. 6
indicate that the approximations leading to the master equa-
tions cannot be justified. Hence, the results for α obtained from
the master equations should not be artificially pushed towards
experimental data by manipulating the turning point. Instead,
one should, if at all, try to push the correlated U �= 0 data
closer to the experimental data by changing the parameters of
the Sr:Au system within physically sensible bounds.

Any attempt, however, to improve the theoretical data
by changing the material parameters and hence the single-
particle matrix elements of the Anderson-Newns Hamiltonian
was unsuccessful. A slight increase of the metal’s work
function from φ = 5.1 to 5.15 eV, for instance, decreased
the neutralization rate but eliminated at the same time the
weak negative temperature dependence. Decreasing the work
function from φ = 5.1 to 5.05 eV, on the other hand, increased
the theoretical neutralization rate but did also not lead to
a stronger negative temperature dependence let alone to a
nonmonotonous one. Changing the turning point zTP affects
the neutralization probability as indicated in the previous
paragraph but again wipes out the weak negative temperature
dependence. The effect of the Doppler broadening [3,67,68]
we did not investigate. We take all this as an indication that
the correlation effects encoded in the finite-U noncrossing ap-
proximation are too fragile. Going beyond this approximation
is thus unavoidable.

Another observation should be mentioned. The starting
point z = 20 can be relatively freely chosen. If it is closer
to the surface, the slopes of the instantaneous occurrence
probabilities in Fig. 7 are steeper so that there is hardly
any difference in the probabilities at the turning point and
no difference at the end of the trajectory. As a result, the
final neutralization probability is independent of the precise
starting conditions. The loss of memory in charge-transferring
atom-surface collisions has been also found by Onufriev and
Marston [40]. It justifies using the precollision velocity for the
whole trajectory.
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In the region where charge transfer is strongest, the two
ionization levels overlap. The absence of energy separation
together with the conditional temporal weighting due to the
dynamics of the collision process makes it very hard to tell a
priori whether electron or hole transfer dominates the outcome
of the collision. Simply changing the matrix elements of
the Anderson-Newns model in the hope to reproduce the
experimentally found temperature anomaly is pointless as
we have indeed seen. Even more so, since the hypothesized
electron correlations of the local-moment type strongly distort
the projectile’s density of states in the vicinity of the target’s
Fermi energy. Any attempt to guess the projectile’s final charge
state on the basis of the single-particle quantities shown in
the upper panel of Fig. 7 has thus to fail. In order to see
whether the weak negative temperature dependence of α is
already a qualitative hint for a mixed-valence scenario to be at
work in the neutralization of strontium ions on gold surfaces,
we calculated therefore the instantaneous spectral densities
for the projectile. If local-moment physics is present, these
functions should feature transient resonances at the target’s
Fermi energy.

In Fig. 9, we present for a selected set of distances along
the outgoing branch of the trajectory and for Ts = 400 K the
instantaneous spectral densities summed over the two spin
orientations. The occupied part of the spectral densities (solid
black lines), that is, the spectrally resolved probability for
removing a physical electron, as well as the total spectral

densities (dashed black lines), which, in addition, contain also
the spectrally resolved probability for adding an electron,
are shown. For orientation we also plot the equilibrated
spectral densities (solid and dashed orange lines) which we
obtained by fixing the widths and energetic positions of
the levels to the values at that particular distance and then
letting the system evolve in time up to the point where it
reaches a quasistationary state. The negative values of the
instantaneous spectral densities close to and at the turning
point should not be interpreted too literally. First, we cannot
rule out that in the numerical Fourier transformation the
Gibbs phenomenon occurs although the results for the equili-
brated spectral densities speak against it. Second, and most
importantly, the instantaneous spectral densities ρ

≶
σ (ω,T )

are Wigner distributions in energy ω and time T . These
two quantities, however, cannot be measured simultaneously.
Usually, Wigner distributions deal with quantum-mechanical
uncertainties by becoming negative in some regions of the
space in which they are defined [69]. Integrated over energy,
that is, the zeroth-order moments of the Wigner distributions
ρ

≶
σ (ω,T ) give, however, always the correct occupancies at

the particular time as can be easily checked by a comparison
with the data obtained from the integration of the equations of
motion.

Let us start with Fig. 9(a) which shows the spectral densities
at the closest encounter. The overlapping ionization levels are
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FIG. 9. (Color online) Projectile spectral densities summed over the two spin orientations, respectively, at z = 5.0, 5.5, 6.0, 6.5, 7.0, and
7.5 on the outgoing branch of the trajectory [panels (a) to (f)] for a Sr+ ion hitting with v = 0.0134 a gold surface at temperature Ts = 400 K.
For other surface temperatures in the range relevant for the experiment, the spectral functions look qualitatively similar. The black lines
correspond to the instantaneous spectral densities at the given positions with the solid lines denoting the occupied and the dashed lines the total
spectral densities. The vertical dotted lines indicate the instantaneous positions of the onsite energies ε0 and εU while the orange lines give
the equilibrated occupied (solid lines) and total (dashed lines) spectral densities at the corresponding positions. The target’s Fermi energy is
located at ω = 0.

035440-10



MANY-BODY THEORY OF THE NEUTRALIZATION OF . . . PHYSICAL REVIEW B 91, 035440 (2015)

very broad at this point leading, however, to a spectral density
which due to electronic correlations is enhanced at the Fermi
energy ω = 0. The uncorrelated model would not give this
enhancement. Moving outwards [Figs. 9(b)–9(f)], the spectral
densities change, because of the decreasing widths and the
shifting of the ionization levels, developing in addition to
the resonance at ω = 0 features in the vicinity of the two
instantaneous ionization levels which are indicated by the
two vertical dotted lines. Although the additional structure due
to the upper ionization level is only a high-energy shoulder to
the peak at ω = 0, the spectral densities develop the shape
expected from a quantum impurity: two charge-transfer peaks
and a resonance at the Fermi energy. This can be most
clearly seen in Fig. 9(f). Since close to the surface the upper
charge-transfer peak merges more or less with the peak at the
Fermi energy to form a mixed-valence resonance, the Sr:Au
system is in the mixed-valence regime.

The dominating spectral feature at all the distances shown in
Fig. 9 is the enhancement at the target’s Fermi energy. Despite
the quantitative discrepancies between the measured and the
computed neutralization probabilities, our theoretical results
for the spectral densities suggest, for realistic single-particle
parameters and without any fit parameter, that local-moment
physics is present in the Sr:Au system and may thus control the
neutralization of Sr+ on Au surfaces as anticipated by He and
Yarmoff [31]. More specifically, from Fig. 7 we read off that
most of the charge transfer occurs between the turning point
zTP = 5 and the crossing point zc ≈ 12, whereas from Fig. 9
we see that for these distances the Sr:Au system develops at
the Fermi energy of the Au target a mixed-valence resonance
with a high-energy tail varying on the scale of the thermal
energy. The weak negative temperature dependence we obtain
for α is thus due to the mixed-valence resonance in the
projectile’s spectral density in accordance with what Merino
and Marston predicted for the correlated Ca:Cu system [29].
The comparison in Fig. 8 with the results obtained from the
uncorrelated U = 0 model suggests moreover that it is also the
mixed-valence resonance which enhances the neutralization
probabilities to the experimentally found order of magnitude.

Obviously, our results support He and Yarmoff’s mixed-
valence scenario [30,31] only qualitatively but not quantita-
tively. Either the transient local-moment correlations are too
weak, occur at the wrong distance, or are simply too short
lived. It requires further theoretical work to tell which one of
these possibilities applies.

V. CONCLUSIONS

We presented a realistically parametrized Anderson-Newns
model for charge-transferring collisions between a strontium
projectile and a gold target and used the model to analyze
from a many-body theoretical point of view the experiment of
He and Yarmoff [30,31] which indicated that in this type of
surface collision, a mixed-valence resonance affects the final
charge state of the projectile.

In contrast to the measured neutralization probability
which initially increases and then decreases with tempera-
ture, the computed data show only the correlation-induced
enhancement, making the calculated neutralization probability
of the correct order of magnitude, and a weak negative

temperature dependence. The analysis of the projectile’s
instantaneous spectral densities revealed, however, that both
the enhancement and the negative temperature dependence
arise from a mixed-valence resonance at the target’s Fermi
energy in qualitative agreement with what Merino and Marston
found for the Ca:Cu system [29], which is another projectile-
target combination which could display local-moment physics.
Thus, qualitatively, our results support He and Yarmoff’s
interpretation of their data in terms of a mixed-valence
resonance.

We followed the theoretical approach of Nordlander and
co-workers [28,32–34]. It is based on the noncrossing ap-
proximation for Anderson-impurity–type models and contour-
ordered Green functions. That we do not find the anomalous
temperature dependence of the neutralization probability
while having a transient mixed-valence resonance in the
instantaneous spectral densities could have two reasons. First,
the accuracy of the semiempirical estimates we developed for
the single-particle matrix elements of the Anderson-Newns
Hamiltonian may be not enough. The shift of the two ionization
levels was obtained from classical considerations based on
image charges while the width of the levels was computed
from Hartree-Fock and step-potential wave functions. Ab initio
calculations or measurements of these two quantities would
be very helpful, in particular, for distances close to the
turning point. Second, the finite-U noncrossing approximation
most probably does not yield the correct energy scale of the
resonance transiently formed at the Fermi energy of the target.
Indeed, for finite U the noncrossing approximation does not
self-consistently sum up all leading terms in 1/N where N = 2
is the degeneracy of the 5s level. In equilibrium, it is known
that the noncrossing approximation underestimates due to this
inconsistency the width of the Kondo resonance considerable
[54]. Systematically summing up all diagrams to leading
order by the one-crossing approximation [50–54] remedies
this shortcoming as does the dynamical 1/N approximation
used by Merino and Marston [29] and equation-of-motion
approaches working directly with the physical Green functions
defining the spectral densities [39]. It should be also noted that
the temperature anomaly occurs over an interval of only 600 K
corresponding to an energy interval �E ≈ 0.002 in atomic
units. The spectral features in the vicinity of the Fermi energy
which drive the anomaly have thus to be known with an energy
resolution better than 10−3.

Specifically, our results for the spectral densities make
us adhere to the mixed-valence scenario. Aside from the
above-mentioned improvements on the theoretical side, further
experimental analysis would be, however, also required to
clarify the issue. The velocity dependence of the effect,
for instance, would be of great interest because it is the
projectile velocity which determines whether the instanta-
neous correlations get frozen in and manifest themselves
in the final charge state of the projectile. We would thus
expect the experimentally observed temperature anomaly to
depend strongly on the projectile’s velocity. Changing the work
function and the collision geometry would be also of interest.
The former manipulates the point where the upper ionization
level crosses the target’s Fermi energy, whereas the latter
changes the effective temperature via Doppler broadening. The
temperature anomaly of the neutralization probability should
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hence also depend on the work function of the surface and the
angle of incident.

It may be easier to realize local-moment physics in electri-
cally biased semiconductor nanostructures but demonstrating
it to be also present in charge-transferring atom-surface
collisions may open up avenues for further research which
are not yet anticipated. The Sr:Au system investigated by He
and Yarmoff may well be a very promising candidate.
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APPENDIX

In this Appendix, we lay out the basic definitions and
notations we used in setting up the quantum kinetic equations
(19)–(24) of Sec. III. The equations have been originally
derived by Shao and co-workers [33]. As in our previous work
on the deexcitation of metastable molecules at surfaces [61],
we stay as closely as possible to the notation of Nordlander and
co-workers [32–34] and deviate from it only when it improves
the readability of the equations.

Contour-ordered Green functions [48,49] describing the
empty, the single-occupied, and the double-occupied projec-
tiles

iE(t,t ′) = 〈TC e(t) e†(t ′)〉, (A1)

iPσ (t,t ′) = 〈TC pσ (t) p†
σ (t ′)〉, (A2)

iD(t,t ′) = 〈TC d(t) d†(t ′)〉, (A3)

as well as metal electrons

iG�k,σ (t,t ′) = 〈TC c�k,σ
(t) c

†
�k,σ

(t ′)〉, (A4)

where the brackets denote the statistical average with respect to
the initial density matrix, constitute the basis of the formalism.
The functions D and E are bosonic propagators while Pσ

and G�k,σ are fermionic. For any of the four Green functions
listed above, the analytic pieces, that is, the less-than and the
greater-than functions, are given by

iH (t,t ′) = �C(t − t ′) H>(t,t ′) ∓ �C(t ′ − t) H<(t,t ′), (A5)

where H stands for E, Pσ , D, or G�k,σ and �C is the Heaviside
function defined on the complex time contour. The upper sign
holds for fermionic and the lower sign for bosonic Green
functions. As usual, the corresponding retarded functions read
as

iHR(t,t ′) = θ (t − t ′)[H>(t,t ′) ± H<(t,t ′)], (A6)

where again the upper (lower) sign holds for fermionic
(bosonic) functions and θ is now the Heaviside function on
the real-time axis.

Similarly, the self-energies �σ , �e, and �d for the single-
occupied, the empty, and the double-occupied projectiles can

be split into analytic pieces which in turn give rise to retarded
self-energies

i�R
σ (t,t ′) = θ (t − t ′)[�>

σ (t,t ′) + �<
σ (t,t ′)], (A7)

i�R
e,d(t,t ′) = θ (t − t ′)[�>

e,d(t,t ′) − �<
e,d(t,t ′)]. (A8)

Within the noncrossing approximation, the metal electrons are
undressed. Hence, below G�k,σ is always the bare propagator
and no self-energy has to be specified for the metal electrons
[28,32–34].

On the real-time axis the analytic pieces of the Green
function obey the set of Dyson equations (� = 1):

i
∂

∂t
ER(t,t ′) = δ(t − t ′) +

∫ ∞

−∞
dt̄ �R

e (t,t̄)ER(t̄ ,t ′), (A9)

[
i

∂

∂t
− ε0(t)

]
P R

σ (t,t ′) = δ(t − t ′) +
∫ ∞

−∞
dt̄ �R

σ (t,t̄)P R
σ (t̄ ,t ′),

(A10)[
i

∂

∂t
− ε0(t) − εU (t)

]
DR(t,t ′)

= δ(t − t ′) +
∫ ∞

−∞
dt̄ �R

d (t̄ ,t)DR(t̄ ,t ′), (A11)

i
∂

∂t
E<(t,t ′)

=
∫ ∞

−∞
dt̄ �R

e (t,t̄)E<(t̄ ,t ′) +
∫ ∞

−∞
dt̄ �<

e (t,t̄)EA(t̄ ,t ′),

(A12)[
i

∂

∂t
− ε0(t)

]
P <

σ (t,t ′)

=
∫ ∞

−∞
dt̄ �R

σ (t,t̄)P <
σ (t̄ ,t ′) +

∫ ∞

−∞
dt̄ �<

σ (t,t̄)P A
σ (t̄ ,t ′),

(A13)[
i

∂

∂t
− ε0(t) − εU (t)

]
D<(t,t ′)

=
∫ ∞

−∞
dt̄ �R

d (t,t̄)D<(t̄ ,t ′) +
∫ ∞

−∞
dt̄ �<

d (t,t̄)DA(t̄ ,t ′).

(A14)

The self-energies in the noncrossing approximation are
shown in Fig. 4, where the self-energy �σ for the single-
occupied projectile is split into two pieces �σ,0 and �σ,U ,
depending on whether the empty or the double-occupied state
appears as a virtual state. Applying standard diagrammatic
rules [70] together with the Langreth-Wilkins rules [66] given
in our notation in Ref. [61] yields after projection to the Q = 1
subspace [18,22,34] the following mathematical expressions
for the analytic pieces of the self-energies:

�
≷
d (t,t ′) =

∑
σ

∫
dε

2π
K≷

ε (t,t ′)P ≷
−σ (t,t ′), (A15)

�R
d (t,t ′) =

∑
σ

∫
dε

2π
K>

ε (t,t ′)P R
−σ (t,t ′), (A16)
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�≷
e (t,t ′) =

∑
σ

∫
dε

2π
K≶

ε (t ′,t)P ≷
σ (t,t ′), (A17)

�R
e (t,t ′) =

∑
σ

∫
dε

2π
K<

ε (t ′,t)P R
σ (t,t ′), (A18)

�
≷
σ,0(t,t ′) =

∫
dε

2π
K≷

ε (t,t ′)E≷(t,t ′), (A19)

�R
σ,0(t,t ′) =

∫
dε

2π
K>

ε (t,t ′)ER(t,t ′), (A20)

�
≷
σ,U (t,t ′) =

∫
dε

2π
K≶

ε (t ′,t)D≷(t,t ′), (A21)

�R
σ,U (t,t ′) =

∫
dε

2π
K<

ε (t ′,t)DR(t,t ′) (A22)

with

K≷
ε (t,t ′) =

√
�ε(t)�ε(t ′)f ≷(ε)e−iε(t−t ′), (A23)

where ε is an energy variable to be integrated over.
In obtaining the self-energies we took advantage of the

fact that the propagator of the metal electrons is undressed
and spin independent. As a result, �σ,0 and �σ,U (and thus
�σ ) are independent of the electron spin. Furthermore, we
assumed the tunneling matrix element V�k(t) to factorize in
the variables t and �k. In our case, this is approximately true
since the strongest time dependence in Eq. (9) comes from the
modified Bessel function Kα giving rise to a nearly exponential
time dependence of V�k(t). The function

�ε(t,t ′) = 2π
∑

�k
V�k(t)V ∗

�k (t ′)δ(ε − ε�k) (A24)

initially appearing in the self-energies can thus be approxi-
mately rewritten as [32,34]

�ε(t,t ′) �
√

�ε(t)�ε(t ′) (A25)

with �ε(t) defined by Eq. (11) leading eventually to the
expressions for the self-energies given above.

Inserting the self-energies (A15)–(A22) into the Dyson
equations (A9)–(A14) and rewriting the equations in terms
of the reduced Green functions defined by Eqs. (17) and (18)
yields after an approximate ε integration Eqs. (19)–(24) of
Sec. III.

Due to the approximate ε integration, the functions K̄
≷
ε (t,t ′)

enter the formalism. In the definition (25) of these functions
the subscript ε denotes not an energy variable, but the
functional dependence on ε(t). To see this, consider the Dyson
equation (A9). In terms of reduced Green functions it reads as

∂t Ē
R(t,t ′) = −

∑
σ

∫ t

t ′
dt̄

∫
dε

2π

√
�ε(t)�ε(t̄)f <(ε)

× exp

[
−i

∫ t

t̄

dτ (ε0(τ ) − ε)

]
P̄ R

σ (t,t̄)ĒR(t̄ ,t ′)

(A26)

� −
∑

σ

∫ t

t ′
dt̄

√
�ε0(t)(t)�ε0(t̄)(t̄)f

<(t̄ − t)

× exp

[
−i

∫ t

t̄

dτ ε0(τ )

]
P̄ R

σ (t,t̄)ĒR(t̄ ,t ′) (A27)

= −
∑

σ

∫ t

t ′
dt̄

√
�ε0(t)(t)�ε0(t̄)(t̄)f̄

<
ε0

(t̄ ,t)

× P̄ R
σ (t,t̄)ĒR(t̄ ,t ′) (A28)

= −
∑

σ

∫ t

t ′
dt̄K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)ĒR(t̄ ,t ′) (A29)

with K̄<
ε0

(t̄ ,t) as defined in Eq. (25). The step from the first to
the second line involves the approximate ε integration resulting
in the Fourier transformation of the Fermi function and in
fixing the energy variables of the level widths as indicated. We
did not attempt to derive it mathematically by an asymptotic
stationary-phase analysis [71]. Instead, we followed Shao
and co-workers [33] and adopted a qualitative, physics-based
reasoning. It yields the very intuitive equation (A27) and
reduces moreover the numerical effort considerably because
it is no longer necessary to perform at each time-grid point
(t,t ′) an ε integration. Alternatively, �ε(t) could be replaced in
(A26) by an average over the energy range of the conduction
band and then put in front of the ε integral [32]. But, this seems
to be even more ad hoc.

Similar manipulations can be performed for the other Dyson
equations. At the end, one obtains Eqs. (19)–(24) of Sec. III.
The equations are identical to the ones given by Shao and
co-workers in the book edited by Rabalais [33] if, as we did,
the pseudoparticle operator pσ is taken to be fermionic.

The kinetic equations (19)–(24) are a complicated set
of two-dimensional integrodifferential equations. Nordlander
and co-workers [32–34] showed, however, that in situations
where the functions f̄

≷
ε (t,t̄) and hence the self-energies are

sufficiently peaked at t = t̄ the Dyson equations for the
less-than Green functions can be reduced to master equations
for the occurrence probabilities which are numerically less
expensive. Depending on whether retarded Green functions
are taken at equal times and hence pushed in front of the time
integrals or not, two sets of master equations can be derived:
the simple and the generalized master equations [32–34].
Applying this reasoning to Eqs. (19)–(24) yields at the level
where retarded Green functions are taken at equal times a set
of simple master equations

d

dt
ne(t) = −2�0(t)f <(ε0(t))ne(t) + �0(t)

× f >(ε0(t))
(
np1/2 (t) + np−1/2 (t)

)
, (A30)

d

dt
npσ

(t) = −(
�0(t)f >(ε0(t)) + �U (t)f <(εU (t))

)
npσ

(t)

+�0(t)f <(ε0(t))ne(t) + �U (t)f >(εU (t))nd (t),

(A31)

d

dt
nd (t) = −2�U (t)f >(εU (t))nd (t)

+�U (t)f <(εU (t))
(
np1/2 (t) + np−1/2 (t)

)
, (A32)
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and at the advanced level, where retarded Green functions are kept nondiagonal in time, a set of generalized master equations

d

dt
ne(t) = −2ne(t)

∑
σ

∫ t

−∞
dt̄ Im

(
K̄<

ε0
(t̄ ,t)P̄ R

σ (t,t̄)
) + 2

∑
σ

npσ
(t)

∫ t

−∞
dt̄ Im

(
K̄>

ε0
(t̄ ,t)[ĒR(t,t̄)]∗

)
, (A33)

d

dt
npσ

(t) = −2npσ
(t)

∫ t

−∞
dt̄ Im

(
K̄>

ε0
(t,t̄)ĒR(t,t̄) + K̄<

εU
(t̄ ,t)D̄R(t,t̄)

)

+2ne(t)
∫ t

−∞
dt̄ Im

(
K̄<

ε0
(t,t̄)

[
P̄ R

σ (t,t̄)
]∗) + 2nd (t)

∫ t

−∞
dt̄ Im

(
K̄>

εU
(t̄ ,t)

[
P̄ R

σ (t,t̄)
]∗)

, (A34)

d

dt
nd (t) = −2nd (t)

∑
σ

∫ t

−∞
dt̄ Im

(
K̄>

εU
(t,t̄)P̄ R

σ (t,t̄)
) + 2

∑
σ

npσ
(t)

∫ t

−∞
dt̄ Im

(
K̄<

εU
(t,t̄)[D̄R(t,t̄)]∗

)
(A35)

with occurrence probabilities ne(t), npσ
(t), and nd (t) as defined in Eqs. (32)–(34). The retarded Green functions required in the

generalized master equations can be obtained by utilizing the localization of f̄
≷
ε (t,t̄) around the time diagonal also in the Dyson

equations for the retarded Green functions. As a result, one obtains

ĒR(t,t ′) = exp

[
−

∑
σ

∫ t

t ′
dτ

∫ τ

t ′
dt̄ K̄<

ε0
(t̄ ,τ )P̄ R

σ (τ,t̄)

]
, (A36)

P̄ R
σ (t,t ′) = exp

[
−

∫ t

t ′
dτ

∫ τ

t ′
dt̄

(
K̄>

ε0
(τ,t̄)ĒR(τ,t̄) + K̄<

εU
(t̄ ,τ )D̄R(τ,t̄)

)]
, (A37)

D̄R(t,t ′) = exp

[
−

∑
σ

∫ t

t ′
dτ

∫ τ

t ′
dt̄ K̄>

εU
(τ,t̄)P̄ R

−σ (τ,t̄)

]
. (A38)

A rigorous determination of the range of validity of
these equations by asymptotic techniques [71] is complicated
because the functions f̄

≷
ε (t,t̄) are not only localized around

the time diagonal, but also strongly oscillating. Simple saddle-
point arguments are thus not sufficient but have to be aug-
mented by a stationary-phase analysis. Analyzing moreover
the whole set of Dyson equations by these techniques seems
to be impractical. Langreth and Nordlander [34] investigated

therefore the validity of the approximations empirically and
developed qualitative criteria which have to be satisfied for
master equations to provide a reasonable description of the
charge transfer between the projectile and the target surface.
As shown in Sec. IV, the basic constraint (36) they developed
is not satisfied for the Sr:Au system investigated by He
and Yarmoff [30,31]. The full double-time quantum-kinetic
equations have thus to be solved to analyze this experiment.
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