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Atomistic analysis of the impact of alloy and well-width fluctuations on the electronic and optical
properties of InGaN/GaN quantum wells
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We present an atomistic description of the electronic and optical properties of In0.25Ga0.75N/GaN quantum
wells. Our analysis accounts for fluctuations of well width, local alloy composition, strain and built-in field
fluctuations as well as Coulomb effects. We find a strong hole and much weaker electron wave function localization
in InGaN random alloy quantum wells. The presented calculations show that while the electron states are mainly
localized by well-width fluctuations, the holes states are already localized by random alloy fluctuations. These
localization effects affect significantly the quantum well optical properties, leading to strong inhomogeneous
broadening of the lowest interband transition energy. Our results are compared with experimental literature data.
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I. INTRODUCTION

Over the last twenty years, research into nitride-based
semiconductor materials (InN, GaN, AlN, and their respective
alloys) has gathered pace. This stems from their potential to
emit light over a wide spectral range, making them highly
attractive for different applications [1]. Despite very high
defect densities, blue emitting InGaN-based devices exhibit
high quantum efficiencies [2,3]. The widely accepted expla-
nation for this is that the carriers are spatially localized due
to alloy fluctuations and are thus prevented from diffusing to
defects [2–5]. The impact of alloy fluctuations on the electronic
and optical properties in c-plane InGaN/GaN quantum wells
(QWs) has been further evidenced experimentally, e.g., by the
“S-shape” temperature dependence of the peak photolumines-
cence (PL) energy [6,7]. It is important to note that in wurtzite
(WZ) InGaN systems the effect of these fluctuations is much
more severe compared to that found, e.g., in zinc-blende (ZB)
InGaAs alloys. This originates from the very different physical
properties (e.g., band gap and lattice spacing) of the binary
constituents (InN and GaN) [1,3]. A further complication is
that InGaN/GaN QWs, compared with InGaAs/GaAs wells,
exhibit much stronger electrostatic built-in fields, arising in
part from the strain dependent piezoelectric response [8]. Thus
alloy fluctuations in InGaN/GaN QWs affect the electronic
structure through a complicated interplay of local alloy, strain,
and built-in field fluctuations.

Even though the importance of alloy fluctuations has been
experimentally evidenced, they have been widely neglected
in the modeling of WZ InGaN/GaN QWs. Previous atomistic
calculations have mainly focused on ZB [9–11] or WZ [12–15]
InGaN bulk alloys. Properties of WZ InGaN/GaN QWs with
realistic dimensions are typically studied using continuum-
based theoretical models, which inherently overlook alloy or
built-in field fluctuations on a microscopic level. However,
there are also some continuum-based approaches to mimic
the impact of alloy fluctuations on the electronic and optical
properties of WZ InGaN/GaN QWs. For example, Funato and
Kawakami [16] modeled alloy fluctuations in a continuum-
based approach by taking lateral confinement effects into

account, leading therefore to quantum dot (QD) like structures.
This introduces, however, the effect that electron and hole
wave functions are spatially localized at the same in-plane
position. In a microscopic description of a random alloy,
this need not necessarily be the case as we will show
here. Watson-Parris and co-workers [17] analyzed, based
on a single-band effective mass approximation (EMA), the
impact of alloy fluctuations on the electronic and optical
properties of c-plane InGaN/GaN QWs by assuming that
the material parameters vary spatially. A similar approach
has been recently applied by Yang et al. [18]. The authors
highlighted the importance of alloy fluctuations for an accurate
modeling of these systems [17,18]. However, these continuum-
based models overlook the underlying atomistic (anion-cation)
structure, a feature that has been shown to be important for,
e.g., AlInN alloys [19]. Also, the chosen single-band EMA
of Ref. [17] does not account for valence-band (VB) mixing
effects. Moreover, the stronger carrier localization expected in
regions containing In chains and clusters [13] is overlooked in
a continuum-based description.

Here, we provide microscopic insight into the impact of
alloy and well-width fluctuations on the electronic and optical
properties of InGaN/GaN QWs. We take as an example a series
of InxGa1−xN/GaN QWs with 25% InN content (x = 0.25).
Our electronic structure model is based on an atomistic tight-
binding (TB) model, taking input (local strain and electrostatic
built-in fields) from our recently established local polarization
theory [20]. This framework has already been validated
against both density functional theory (DFT) and experimental
data [19,20], showing an excellent agreement between our
semiempirical theory, DFT, and experiment. Coulomb effects
are treated in the configuration interaction (CI) scheme based
on the calculated electron and hole TB wave functions, thus
taking mixing between different states into account.

We show here, based on our microscopic approach that
the assumption of a random InGaN alloy in the QW region
leads already to strong hole wave function localization effects.
These effects are less pronounced for electron states. However,
as we demonstrate, the ground-state electron wave function is
strongly affected by the presence of well-width fluctuations
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(WWFs). Our analysis reveals also that local strain effects,
arising from local alloy fluctuations, lead to a situation
where different microscopic alloy configurations lead to very
different orbital mixing effects into the hole ground state.

Additionally, we discuss not only ground-state properties
but also excited states in InGaN/GaN QWs. These excited
states are important for explaining the experimentally observed
“S-shape” temperature dependence of the PL peak energy. We
demonstrate by explicit calculation that also excited hole states
are strongly localized.

Finally, we compare our full model, including Coulomb
effects, with available experimental data. Our theoretical
results and trends are in good agreement with values reported
in the literature.

The paper is organized as follows. In the following section,
we introduce the ingredients of our theoretical framework.
Section III describes, based on available experimental litera-
ture data, the QW structure under consideration. Our results
are presented in Sec. IV. In Sec. V, we compare the obtained
results with experimental data from the literature. Finally, we
summarize our work in Sec. VI.

II. THEORETICAL FRAMEWORK

In this section, we introduce the microscopic theoretical
framework we use to study the electronic and optical properties
of InGaN/GaN QWs. In a first step, Sec. II A, we describe our
atomistic strain field and built-in potential model. In Sec. II B,
the electronic structure theory, based on a TB model, is intro-
duced. Finally, Sec. II C deals with the calculation of the optical
properties of InGaN/GaN QWs by means of a CI scheme.

A. Strain field calculations, local polarization theory, and local
built-in potential model

Macroscopic electric polarization in an insulating heteropo-
lar material arises from a nonvanishing sum of electric dipoles
which is, in turn, a consequence of the lack of inversion
symmetry in the material. This lack of inversion symmetry
and the resulting electric polarization can already be present
in the unstrained sample (e.g., spontaneous polarization in the
WZ lattice) but it can also be enhanced by applied strain.
For binary compounds, such as pure GaN, macroscopic strain
induces an equivalent microscopic deformation of the unit
cell, and the link between local and macroscopic electric
polarization can be established [20]. In the case of alloyed
compounds, however, macroscopic strain cannot be directly
related to the local deformation of the crystal. Take as an
example group-III nitrides: since the In–N bond distances
in InN are larger (by about ∼10%) than the Ga–N bond
distances in GaN, each of the atomic tetrahedra with an In
atom in the middle in an InGaN alloy will be compressively
strained, while those with a Ga atom in the middle will undergo
tensile stretching. The exact extent of this local strain varies
throughout the crystal depending on the specific local atomic
configuration. In order to take the effects of local strain and
disorder on electric polarization into account, a local theory
of polarization is needed. We have already presented the
foundations of this theory and an assessment of its degree
of applicability for group-III nitrides [20]. The theory relies

on decoupling the macroscopic and local contributions to
the electric polarization, where the latter can be evaluated
at each atomic site. The corresponding expression for the ith
component of the local polarization vector field is given by

Pi =
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where e
(0)
ij are the clamped-ion piezoelectric coefficients, εj (in

Voigt notation; εij in cartesian notation) are the macroscopic
strain components, P

sp
i is the spontaneous polarization, and

V0 is the volume assigned to each atomic site (for tetrahedrally
bonded crystals, six times the volume of a tetrahedron). The
elementary charge is denoted by e, Z0

i is the Born effective
charge of the atom at whose site the local polarization is
being computed, and N0

coor is its number of nearest neighbors.
The parameter μi arises from a sum over nearest-neighbor
distances (μj,0 is this same parameter before strain) and δij

is the Kronecker delta. The derivation of Eq. (1) and further
detail on the meaning and significance of all the quantities
involved can be found in Ref. [20].

The accuracy that can be attained with Eq. (1) relies
greatly on the level of theory employed to obtain the different
parameters that appear in the expression. Except for εj and
μi , all of them can be calculated independently of the size
of the system and be transferred across calculations. The
parameters for the III-N compounds have been calculated
on the basis of density functional theory (DFT) within the
Heyd-Scuseria-Ernzerhof (HSE) screened exchange hybrid
functional scheme and can be found in Ref. [20]. Macroscopic
strain εj and the asymmetry parameter μi are system specific
and require an explicit evaluation for the system at hand.
For large systems, such as random alloy InGaN/GaN QWs
with WWFs of realistic size as studied here, calculations at
the DFT level are unaffordable and an alternative atomistic
approach is required. For homopolar tetrahedrally bonded
compounds, commonly available force fields are based on
the valence force field (VFF) derived by Musgrave and
Pople for diamond [21], or the Keating potential [22]. For
heteropolar tetrahedrally-bonded compounds, notably ZB,
Martin proposed a generalization of both models to include
electrostatic interactions explicitly [23]. Martin’s expression
for the total energy of atom i in the ZB unit cell, including
VFF and electrostatic contributions, is given by
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The different kr , ki
θ , ki

rθ , and ki
rr denote the force constants.

The angle between atoms i, j and k is given by θijk , Z∗
i

denotes the effective charge of atom i in a point charge model
(that can be positive or negative) and e is the elementary
charge. The permittivity of the vacuum is given by ε0, while εr

denotes the dielectric constant of the material. The Madelung
constant is αM , which in the case of the ZB lattice is given
by αM = 1.6381. The last term in Eq. (2) is a linear repulsion
term, required for the crystal to be stable [23], that counteracts
the linear elements obtained from the power expansion of the
electrostatic part of the energy. All summations run over
the first-nearest neighbors of atom i, except the summation
marked with a prime symbol, corresponding to the long-ranged
Coulomb interaction, which runs over the whole crystal. To
avoid double counting over atoms in the same unit cell, a
factor 1

2 has been introduced for the two summations involving
bond-stretching terms. Martin has also given the relation
between the force constants of the general VFF in Eq. (2)
and Keating’s potential. The main advantage of using Eq. (2)
for WZ is that the inclusion of the electrostatic terms leads
to the important qualitative result of a c/a ratio and internal
parameter u that deviate from the ideal values (

√
8/3 and 3/8,

respectively). We have implemented Eq. (2) in the software
package GULP [24]. Fitting of the different force constants
and the effective charges to structural and elastic properties
of the WZ material in question leads also to good quantitative
description of those quantities. More details of our VFF model
will be given elsewhere.

Having established the local polarization vector field,
Eq. (1), and the underlying VFF, Eq. (2), in a final step one
needs to calculate the corresponding local built-in polarization
potential φ. As discussed in detail in Ref. [20], we perform
these calculations on the basis of a point dipole method. The
point dipole model is a solution to the challenge of solving
Poisson’s equation on an atomistic grid, where abrupt changes
in the polarization occur.

B. Electronic structure calculations

To model the impact of local alloy fluctuations on the
electronic and later on the optical properties of InGaN/GaN
QWs by means of an atomistic approach, we choose here an
sp3 TB model. The TB parameters at each atom site R of the
underlying WZ lattice are set according to the bulk values of
the respective occupying atom. Here, the bulk TB parameters
are obtained by fitting the TB band structures of InN and GaN
to the corresponding HSE hybrid-functional DFT results, as
described in detail in Ref. [20].

Since for the cation sites (Ga, In) the nearest neighbors
are always nitrogen atoms, there is no ambiguity in assigning
the TB on-site and nearest-neighbor matrix elements. This
classification is more difficult for the nitrogen atoms. In this
case, the nearest-neighbor environment is a combination of In
and Ga atoms. Here, we apply the widely used approach of
using weighted averages for the on-site energies according to
the number of In and Ga atoms [25–27].

In setting up the Hamiltonian, one has to include the local
strain tensor εij (r) and the local built-in potential φ(r) to
ensure an accurate description of the electronic properties
of the InGaN alloy. Several authors have shown that strain

effects can be introduced by on-site corrections to the TB
matrix elements HlR′,mR [28,29], where R and R′ denote lattice
sites and l and m are the orbital types. Here, we include the
strain dependence of the TB matrix elements via the Pikus-Bir
Hamiltonian [30,31] as a site-diagonal correction [20]. With
this approach, the relevant deformation potentials for the
highest valence and lowest conduction band states at the
� point are included directly without any fitting procedure.
The deformation potentials for InN and GaN are taken from
HSE-DFT calculations [32]. Again on the same footing as
in the case of the on-site energies for the nitrogen atoms we
use weighted averages to obtain the strain dependent on-site
corrections for InxGa1−xN. Our approach is similar to that used
for the strain dependence in an eight-band k · p model [30],
but has the benefit that the TB Hamiltonian is sensitive to the
distribution of local In, Ga, and N-atoms.

The last ingredient to our TB model for the description of
the electronic structure of InxGa1−xN systems is the local built-
in potential φ(r) arising from piezoelectric and spontaneous
polarization contributions as discussed in Sec. II A. The
built-in potential φ(r) is likewise included as a site-diagonal
contribution in the TB Hamiltonian [33–36].

C. Many-body calculations

Having discussed the TB Hamiltonian used for the descrip-
tion of the QW single-particle states, we now turn our attention
to the investigation of the optical properties of the studied
QW system. In a first step, we discuss the calculation of the
interaction matrix elements. In a second step, we outline the
CI scheme and the calculation of the optical spectra.

1. Calculation of interaction matrix elements

For the calculation of optical spectra, Coulomb and dipole
matrix elements between TB single-particle wave functions
are required. As the atomic orbitals are not explicitly known
in an empirical TB approach, we approximate the Coulomb
matrix elements by [37–39]

Vijkl =
∑
RR′

∑
αβ

ci∗
Rαc

j∗
R′βck

R′βcl
RαV (R − R′) , (3)

with V (R − R′) = e2

4πε0εr |R − R′| for R �= R′

and V (0) = 1

V 2
uc

∫
uc

d3r d3r′ e2

4πε0εr |r − r′| ≈ Ṽ0 .

(4)

The ci
Rα are the expansion coefficients of the i th TB single-

particle wave function ψi(r) = ∑
Rα ci

Rα�Rα(r), in terms of
the atomic orbitals �Rα(r) localized at the position R. In
Eq. (3), the variation of the Coulomb interaction is taken
into account only on a length scale of the order of the lattice
vectors but not inside one unit cell. This is well justified due
to the long-ranged, slowly varying behavior of the Coulomb
interaction. For |R − R′| = 0, the evaluation of the integral
in Eq. (4) can be done quasianalytically by expansion of the
Coulomb interaction in terms of spherical harmonics [40]. The
details can be found in Ref. [38].
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However, in an alloyed system this approach becomes
more difficult for the on-site matrix elements as the size of
the unit cell changes depending on the local environment.
To simplify this approach we work here with ≈16 eV for
the unscreened on-site Coulomb matrix elements [38]. This
value is in accordance with other calculations for this type of
matrix elements [40]. However, when taking screening effects
into account and assuming a linearly interpolated dielectric
constant for InGaN alloys, as assumed in Ref. [16], Ṽ0 is of
the order 1–2 eV. To test the impact of the unscreened on-site
matrix elements on the results we have changed its value by 4
to 12 eV. We find here that the direct Coulomb matrix element
V eh

1111 is affected by less than 0.5 meV when changing the
on-site Coulomb matrix element by 4 eV. The origin of this
is related to the fact that the direct Coulomb interaction is
dominated by long range contributions as discussed above.
Therefore changes and local variations of the on-site Coulomb
matrix elements should be of secondary importance.

Furthermore, the Coulomb interaction is evaluated on one
supercell only. As we will see later, the wave functions of
electrons and holes are strongly localized inside the supercell.

In contrast to the Coulomb matrix elements, the short-range
contributions dominate the dipole matrix elements. Thus it is
necessary to connect the calculated TB coefficients directly
to the underlying set of atomic orbitals. A commonly used
approach is the use of Slater orbitals [41]. These orbitals
include the correct symmetry properties of the underlying TB
coefficients but lack the essential assumption of orthogonality
with respect to different lattice sites, since they have been
developed for isolated atoms. We have previously overcome
this problem by using numerically orthogonalized Slater
orbitals [38]. These orthogonalized orbitals fulfill all basic
requirements, regarding the symmetry, locality, and orthog-
onality of the basis orbitals underlying the TB formulation.
However, in general we can decompose the dipole operator
into an envelope part and an orbital part. Here, we perform
the calculation of the envelope part only, since we are only
interested in getting first insights into the relative strength of
different transitions from different microscopic configurations.

2. Configuration interaction scheme and optical spectra

In this section, we briefly describe the CI approach and
the calculation of the optical spectra. More details on the CI
scheme are given, for example, in Refs. [38,42–44]. Since we
are dealing with strongly localized states, as we will see later,
we use our approaches developed for QD systems [38].

In the CI calculation, the microscopically evaluated single-
particle states and Coulomb interaction matrix elements serve
as an input to determine the many-body eigenstates. To this
end, the Hamiltonian is expressed in terms of all possible Slater
determinants that can be constructed for the finite localized
single-particle basis for a given number of electrons and
holes. In the following, we are interested in effects arising
from one electron-hole pair. Therefore, electron-electron and
hole-hole Coulomb interactions are not required. We neglect
here electron-hole exchange contributions since these are small
corrections on the energy scale relevant for the discussion of
our results. The resulting many-body matrix is diagonalized
and Fermi’s golden rule is used to evaluate dipole transitions

between the Coulomb-correlated state [42–44]:

I (ω) = 2π

�

∑
f

|〈φf |HD|φi〉|2 δ(Ei − Ef − �ω). (5)

Here, |φi〉 denotes the correlated initial state with energy Ei

and |φf 〉 and Ef the corresponding quantities of the final
states. A similar equation holds for the absorption spectrum.
The Hamiltonian HD describes the light matter interaction in
dipole approximation

HD = −
∑
n,m

Edeh
nmh†

ne
†
m + H.c., (6)

where h
†
n and e

†
m are hole and electron creation operators,

respectively. In this expression, deh
nm denotes the dipole matrix

elements 〈n|er|m〉 with the single-particle states |n〉 and |m〉
for the electron and hole, respectively. The quantity E is the
electric field at the position of the QW and e is the elementary
charge. Here, we assume that the polarization vector ep of the
electric field is given by ep = 1√

2
(1,1,0)t , which corresponds

to standard experimental setup [6,7]. Fermi’s golden rule,
Eq. (5), shows that the optical field always creates or destroys
electron-hole pairs. From this, it is immediately obvious that
the only nonzero transition will stem from situations where the
initial and final states differ by exactly one electron-hole pair.

III. MODEL SYSTEM

Having described the ingredients of our theory, we now in-
troduce the QW structure being considered. As a model system
we assume an approximately 3.5 nm wide In0.25Ga0.75N/GaN
QW. This structure is similar to the experimentally studied
system in Ref. [45]. All QW calculations have been performed
on supercells containing ≈82 000 atoms (≈10 nm × 9 nm ×
10 nm) with periodic boundary conditions. Following the
experimental data in Refs. [46–51], we treat InGaN as a ran-
dom alloy. To realize different microscopic configurations, our
calculations have been repeated ten times with changing the
atomic distribution. Furthermore, experimental studies reveal
WWFs at the upper QW interface [49,52]. The diameter of
these well-width fluctuations is ≈5–10 nm, while their height
is between one and two monolayers. To treat such fluctuations,
we assume disklike WWFs with a diameter of 5 nm and a
height of two MLs, residing on the In0.25Ga0.75N/GaN QW.

IV. RESULTS

In this section, we analyze strain fields, built-in potentials,
and the electronic and optical properties of the QW structure
under consideration. In a first step, we discuss the strain field
and the built-in potential in the QW structure, including local
effects and WWFs. In Sec. IV B, we address the electronic
structure of the QW, while Sec. IV C deals with the impact of
Coulomb effects on the results.

A. Strain field and built-in potentials

In Fig. 1, we show, following the approach by Pryor
et al. [53], the strain tensor components εxx , εyy , and εzz

along the c axis (z axis) for one of the structures considered.
The data shown here are averaged over the whole supercell.
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FIG. 1. (Color online) Average strain tensor components εxx , εyy ,
and εzz along the z direction (c axis).

Several features are clearly visible. To a first approximation,
the different components reflect the profile one would expect
from a continuum-based description [54]. However, even when
averaging the strain tensor components over the supercell,
the impact of local alloy fluctuations giving rise to local
strain tensor fluctuations is clearly visible. As we have seen
already for random InGaN bulk systems, local strain field
fluctuations significantly affect the valence and conduction
band edges [20]. Also the features arising from the WWFs are
visible in the region of z ≈ 5.5–6 nm.

In a second step, we discuss the result from our local
polarization theory. Figure 2 displays the calculated built-in
potential φ for a slice through the center of the cylindrical-
shaped WWF in the y-z plane for one of the considered
structures. Again, the z direction is parallel to the c axis. As we
can see from Fig. 2, the isolines inside the QW are not straight
lines. This is in contrast to a continuum-based description.
In our atomistic approach, the isolines are affected by the
local strain and alloy fluctuations. In addition, the shape of the
built-in potential is significantly affected by the presence of
the WWF.

To further analyze the impact of WWFs on the built-in
potential φ(r) in c-plane InGaN/GaN QWs, Fig. 3(a) shows
the built-in potential φavg, averaged over the ten different

FIG. 2. (Color online) Contour plot of the built-in potential φ

of an In0.25Ga0.75N/GaN QW for a slice through the center of the
cylindrical shaped WWF in the y-z plane. The dashed lines indicate
the QW interfaces. The z direction is parallel to the c axis.
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FIG. 3. (Color online) (a) Averaged built-in potential for a line-
scan through the QW along the c-axis. Results with (φWW) and
without (φNoWW) WWFs are shown. Dashed-dotted lines indicate
approximately the QW interfaces. (b) φavg = φWW − φNoWW.

configurations, for a line-scan through the QW along the c axis.
The line-scan runs through the center of the disklike WWF.
φavg reflects to a first approximation the capacitorlike behavior
one would expect from a continuum-based description. The
solid line shows the result in the absence of WWFs (φNoWW),
while the dashed line displays the built-in potential in the
presence of WWFs (φWW). The vertical dashed-dotted lines
indicate the QW interfaces along the c axis.

To analyze the impact of alloy and WWFs on the built-in
potential in more detail, Fig. 3(b) depicts φavg = φWW −
φNoWW. From this we can conclude two things. Firstly, even
when averaging over the ten configurations the influence of
the alloy fluctuations on built-in potential is clearly visible
since φavg is clearly not smooth in the QW region. Secondly,
WWFs lead to a reduced built-in field inside the InGaN/GaN
QW and near the upper interface. The change in the slope
of φavg inside the QW leads to the effect that the electron
wave function can leak further into the QW center. The origin
of the built-in field reduction can be explained using linear
continuum elasticity theory. In this approach, the total built-in
potential is the sum of the potential arising from the QW plus
a contribution arising from a disk-shaped QD. By looking at
Fig. 3(b), the profile of φavg reflects the characteristic of
nitride-based QDs [55].

B. Single-particle properties

Figure 4 shows the ground-state emission spectrum without
Coulomb interaction for ten different random configurations.
The intensities are all normalized to the maximum intensity
of configuration 5 (Config5). Several interesting features are
clearly visible in the spectra.

Firstly, when looking at Fig. 4, we observe that different
microscopic configurations give significantly different tran-
sition energies. This can also be seen from Table I, where
the single-particle transition energies E0

GS are summarized.
Without Coulomb effects, the difference between the lowest
(Config3) and the highest (Config1) transition energy is
128.7 meV.

Secondly, a striking observation is that six out of ten
configurations have an oscillator strength of less than 20%
of the oscillator strength of configuration 5 (Config5). This
indicates a weaker spatial wave function overlap of ground-
state electron and hole levels. The main contribution to the
emission spectrum arises here from the configurations 1, 4,
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FIG. 4. (Color online) Single-particle ground-state emission
spectrum of an In0.25Ga0.75N/GaN QW for different configurations
including random alloy and well-width fluctuations.

5, and 7. But even these four configurations have a spread of
73.7 meV in their transition energies.

The broadening of the PL peak is usually attributed to
wave function localization effects. To gain insight into the
microscopic origin of such wave function localization effects
and to elucidate the difference between different microscopic
configurations, Fig. 5 shows the calculated single-particle
electron and hole ground-state charge densities |ψe

1 |2 and
|ψh

1 |2, respectively, for Config1, Config5, and Config8. The
charge densities for electrons (holes) are shown in red (green).
A top view (‖ c axis) and a side view (⊥ c axis) are given. The
dashed lines indicate approximately the QW interfaces. The
dark isosurfaces correspond to 50% of the maximum value of
the charge density, while the light isosurfaces correspond to 5%
of the maximum value. Based on Fig. 4, these configurations
have been chosen to represent the situation of a configuration
with (i) a very large oscillator strength (Config 5), (ii) a very
low oscillator strength (Config 8), and (iii) a system (Config 1)
that can be regarded as an intermediate situation between (i)
and (ii).

These charge density plots have several features in com-
mon. Firstly, the strong electrostatic built-in field leads to a
spatial separation of electron and hole wave functions along the
c axis. However, and in contrast to standard continuum-based

TABLE I. Ground-state transition energies with (EX
GS) and with-

out (E0
GS) Coulomb effects included for the different configurations.

For each configuration, the excitonic binding energy EX is given.

Config. E0
GS (eV) EX

GS (eV) EX (meV)

1 2.0344 2.0017 32.7
2 2.0119 1.9835 28.4
3 1.9057 1.8789 26.8
4 2.0184 1.9850 33.4
5 1.9607 1.9289 31.8
6 1.9198 1.8905 29.3
7 1.9997 1.9642 35.5
8 1.9560 1.9295 26.5
9 2.0149 1.9881 26.8
10 1.9431 1.9182 24.9
Average 1.9765 1.9469 29.6

descriptions, which treat InGaN/GaN QWs as homogenous
structures described by average parameters, we find a very
strong (nm scale) hole wave function localization. Our results
indicate therefore that already a random alloy is sufficient to
lead to strong hole wave function localization effects. The
electron wave functions are mainly localized by the presence
of the WWF and show a larger localization length. It should
also be noted that the electron wave functions are affected
by local effects, since the charge density does not display a
circular symmetry within the WWF. The localization length is
here, to a first approximation, given by the dimensions of the
WWF. The difference in the observed localization behavior
can be attributed to the much higher hole effective mass
compared to the electron effective mass [56]. Thus a much
stronger hole wave function localization could be expected,
consistent with our calculations. Our findings are in agreement
with the results reported in Ref. [17] for the hole states, but
show that the electron charge density is also impacted by alloy
fluctuation effects. Additionally, both electron and hole charge
densities reflect the anion-cation structure of the underlying
WZ lattice, with hole (electron) states preferentially located at
anion (cation) planes/sites.

There are also differences clearly visible between the
chosen configurations. In contrast to configurations 1 and 5,
the hole wave function in configuration 8 is localized far away
from the well width fluctuation (localization region of the
electron) in and perpendicular to the c plane. Consequently,
one is left with a very weak spatial overlap and thus a very
low oscillator strength. Configurations 1 and 5, however, are
very similar with the hole wave function localizing near the
WWF in the c plane. However, configuration 5 seems to
have a slightly higher overlap in the c plane in comparison
with configuration 1. This observation is also reflected in the
transition strength displayed in Fig. 4.

Having discussed that electron and hole wave functions
are strongly localized for different reasons, we focus in the
next step on the variation of the electron and hole ground-
state energies between different configurations. This analysis
reveals which of the two carrier types determines the variation
in the transition energies shown in Fig. 4. The variation
of the electron and hole ground-state energies is displayed
in Figs. 6(a) and 6(b), respectively. Here the energies are
calculated with respect to the ground-state energy of configu-
ration 1 [E

e,h
GS (Configi) = E

e,h
GS (Configi) − E

e,h
GS (Config1)].

When looking at Fig. 6, in terms of its energy, configuration 1
seems to be an average configuration for the electrons. For the
holes, it is a more extreme case, since the energy difference
is most of the times very large. More specifically, we find
that the electron energies vary in the range of 2–45 meV,
while the hole ground-state energies for different microscopic
configurations scatter between 10 and 150 meV. For Ee

GS,
the standard deviation is σ e

GS = 14.23 meV. For the holes,
we find σh

GS = 48.08 meV. This reflects the much stronger
dependence of the hole ground-state energies on the specific
microscopic random alloy configuration. However, it should
be noted that we have considered here a specific size and shape
for the WWF. To shed more light on the impact of WWFs on
E

e,h
GS , we have performed calculations without WWFs. Since

the hole states are localized by the random alloy fluctuations,
when removing the WWF, the spread in Eh

GS is similar to
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Config 1 Config 5 Config 8

Side View

|ψe
1|2

|ψh
1 |2
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1 |2

|ψh
1 |2
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1 |2
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1 |2

Top View

|ψe
1|2

|ψh
1 |2

|ψe
1|2

|ψh
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1 |2
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1 |2

FIG. 5. (Color online) Ground-state electron (red) and hole (green) charge densities without Coulomb interaction for different configurations
and different view points [first row (side view) ⊥ c axis; second row (top view): ‖ c axis]. Light (dark) isosurfaces correspond to 5% (50%) of
the maximum charge density value. Dashed lines indicate the QW interfaces.

the situation with WWFs. However, the interband transition
energies are modified when we exclude WWFs. This arises
from the fact that the electrons are now effectively localized
in a narrower well, with a reduced potential drop across the
well, as illustrated in Fig. 3, where the total potential drop is
calculated to decrease by about 40 meV when the WWFs are
removed. The distribution of WWF sizes and heights in actual
samples should therefore also contribute to the experimentally
observed broadening of InGaN QW absorption and emission
spectra. A full treatment of the influence of WWFs on the
transition energy would require a range of calculations, taking
account both of variations in WWF sizes and also of the
general reduction in electron-hole overlap with increasing
well width and potential drop. This is beyond the scope of
the present study. We can, however, conclude that random
alloy fluctuations predominantly affect the hole ground-state
energies, with WWFs affecting the electrons states, and with
both factors then contributing to the overall broadening of the
experimental absorption and emission spectra.

In addition, since our analysis reveals that local alloy effects
significantly modify the valence band structure, we study
in a further step the orbital character of electron and hole
ground states. This analysis is important when investigating
the optical polarization characteristic of InGaN/GaN QWs.
This study goes beyond the capabilities of a single-band
effective mass approximation. We note that with standard
continuum-based approaches, which treat c-plane InGaN QWs
as homogenous structures described by average parameters,

the topmost valence state would have a charge density,
independent of the In content, with 50% px- and 50% py-like
character. Table II shows the contributions of the px , py ,
pz, and s orbitals to the hole and electron ground state on
average and for the different configurations. The dominant
orbital contribution in each configuration is highlighted. The
electron ground state shows the expected behavior that the
wave function is mainly given by s-orbital contributions
with much weaker pz contributions and negligible px and
py character. For the hole ground state, we observe strong
variations in the px- and py-like orbital contributions. The
fluctuations in these quantities can be attributed to local strain
effects, explicitly taken into account in our model. However,
on average our result is similar to the result expected from a
multiband continuumlike description.

So far, we have focused our attention on ground-state prop-
erties. Since excited states make also a significant contribution
to the optical properties, e.g., when describing the “S shape”
of the temperature dependence of the PL peak energies [6,7],
we turn now to discuss excited states.

1. Excited states

In a first step, we look at the energetic sep-
aration Ee

GS−FE(Config i) = Ee
FE(Config i) − Ee

GS(Config i)
and Eh

GS−FE(Config i) = Eh
GS(Config i) − Eh

FE(Config i), re-
spectively, of the ground state (GS) and the first excited
(FE) state for electrons Ee

GS−FS(Config i) and also for holes
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FIG. 6. (Color online) Variation of the electron and hole ground-
state energies as a function of the microscopic configuration i.
All energies are given with respect to the ground-state energies of
configuration 1 (E

e,h
GS = E

e,h
GS,i − E

e,h
GS,1). Results for the electron

ground-state energies are shown in (a), while (b) shows the results
for the hole ground-state energies.

Eh
GS−FE(Config i) as a function of the configuration i. Fig-

ure 7(a) shows Ee
GS−FE(Config i), while Fig. 7(b) depicts

Eh
GS−FE(Config i). From this figure, one can infer again

a strong difference between the results for the electrons

TABLE II. Orbital character of the hole ground-state wave
function. The results are given for the different configurations. The
dominating contributions are indicated in bold.

Orbital Contribution (%)

Hole Electron
Ground State Ground State

Config. px py pz s px py pz s

1 82.29 15.73 1.63 0.35 1.15 1.10 4.57 93.18
2 75.67 20.85 2.82 0.66 0.67 0.85 4.46 94.02
3 27.19 69.48 2.69 0.64 0.88 1.07 4.79 93.26
4 85.90 10.98 2.50 0.62 1.28 1.35 4.66 92.71
5 73.55 24.49 1.60 0.36 1.04 1.03 4.63 93.29
6 17.33 79.36 2.66 0.65 1.05 1.11 4.68 93.16
7 87.83 9.35 2.26 0.56 0.88 0.91 4.61 93.60
8 41.63 55.19 2.55 0.63 1.54 1.19 4.75 92.52
9 14.71 83.02 1.76 0.51 1.09 0.89 4.66 93.36
10 22.66 74.82 2.00 0.51 1.17 0.95 4.74 93.14
Average 52.88 44.33 2.25 0.55 1.08 1.05 4.66 93.22
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FIG. 7. (Color online) (a) Splitting between the electron ground
state and first excited state as a function of the microscopic
configuration i. (b) Same as in (a) but here for the hole states.

and the holes. For the electrons Ee
GS−FE(Config i) scatters

between 60–90 meV, while Eh
GS−FE(Config i) varies from

3–35 meV. The calculated mean value for electrons is
Ee

GS−FE = 75.60 meV and for holes Eh
GS−FE = 15.04 meV.

The calculated standard deviations σ e
GS−FE = 8.55 meV and

σh
GS−FE = 9.12 meV are very similar. However, when looking

at σ/EGS−FE, we find a much smaller value for electrons
(σ e/Ee

GS−FE = 0.11) than for holes (σh/Eh
GS−FE = 0.61).

This difference can be related to the difference in the impact
of local alloy fluctuations and QW confinement effects on the
electronic structure. We have already seen that the hole wave
functions are significantly affected by local alloy fluctuations,
while the electron wave functions, to a first approximation are
localized by the WWFs. As discussed above, this difference
arises from the difference in the effective masses. Therefore
the electrons are mainly affected by the overall confinement
potential of the QW. Given the low electron effective mass,
compared to the holes, a large splitting between ground and
first excited electron state can be expected. The hole wave
functions, due to their high effective mass, however, can
localize in different potential minima/maxima originating from
alloy fluctuations. This means that not only the hole ground
state is expected to be highly localized but also excited states.
To confirm this, we have calculated the charge densities of
the first five hole states for a given random supercell. As an
example we have chosen configuration 1 (Config1) here, and
the results are depicted in Fig. 8. One can clearly see that not
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FIG. 8. (Color online) Single-particle charge densities for the
hole ground state and the first four excited states. The light (dark)
isosurfaces correspond to 5% (50%) of the maximum probability
densities. The results are shown for configuration 1. The dashed lines
indicate the QW interfaces.

only the hole ground state (ψh
1 ) reveals a strong localization

but also the shown excited states. This behavior is not a
particularity of configuration 1, all the other configurations
show a similar behavior. The presence of localized excited
states is consistent with the experimental observation of
the “S-shape” temperature dependence in the PL spectra of
InGaN/GaN QWs.

All the above highlighted factors shed further light on the
features observed in the calculated emission spectrum [cf.
Fig. 4]. The presence of the strong built-in field combined with
the strong hole wave function localization, arising from local
alloy fluctuations, and the electron wave function localization
due to WWFs leads to small wave-function overlaps of electron
and hole ground states. Thus the ground-state electrons and
holes are likely to be localized at spatially separated positions
in and perpendicular to the c plane. This explains that the
ground-state transition strength in six out of ten configurations
is weak. It should be noted that therefore a QD-like description
of random alloy fluctuations in a continuum-based model
might fail, since it does not account for the effect that the
charge carriers are likely to be localized in different in-plane
spatial positions.

So far, we have not taken into account Coulomb effects,
which could increase the spatial overlap of electron and hole
wave functions by compensating localization and built-in
potential effects. Thus we focus on the impact of Coulomb
effects on the results in the next section.

C. Coulomb effects

To include Coulomb effects in the description, we use the
CI scheme described in Sec. II C. Since we have seen in the
previous section that the energetic separation between different
hole states is small, we include the first 15 hole states in the CI
expansion. For the electrons we include the five energetically
lowest single-particle states.

Figure 9 shows the calculated excitonic ground-state emis-
sion spectrum for the here considered ten different random

FIG. 9. (Color online) Excitonic ground-state emission spectrum
of an In0.25Ga0.75N/GaN QW for different random configurations
including alloy and WWFs.

configurations. The intensities are all normalized to the
maximum intensity of configuration 5 without Coulomb effects
[cf. Fig. 4]. Compared to Fig. 4, the (attractive) Coulomb
interaction seems to introduce mainly an energetic shift of the
whole emission spectrum. When including Coulomb effects
the oscillator strength is, for the different transitions, only
slightly increased. This indicates that the spatial separation of
the electron and hole wave functions due to the presence of
built-in potential and localization effects is much stronger than
the attractive Coulomb interaction between the carriers. Sim-
ilar to the situation without Coulomb effects we observe that
different microscopic configurations give significantly differ-
ent transition energies. The excitonic transition energies EX

GS
are summarized in Table I. With Coulomb effects the difference
between the lowest (Config3) and the highest (Config1) transi-
tion energy is 122.8 meV, which is only slightly different to the
result in the absence of the Coulomb interaction (128.7 meV).

Also, Table I summarizes the calculated excitonic shifts
for the different configurations. On average we find a shift of
29.6 meV, corresponding to the exciton binding energy. Re-
cently, Wei and co-workers [57] analyzed the excitonic binding
energy in the framework of a single-band effective mass
description, but neglecting alloy or well-width fluctuations.
The authors find an excitonic binding energy of approximately
25 meV for a 3.5 nm wide In0.25Ga0.75N/GaN QW. The
continuum-based calculations by Funato and Kawakami [16],
give for an In0.25Ga0.75N/GaN QW with 3 nm width approxi-
mately 23 meV. However, these continuum-based QW calcu-
lations neglect the effect of in-plane carrier localization due
to alloy fluctuations or WWFs. Such an in-plane confinement
would increase the in-plane wave function overlap and conse-
quently leads to an increase of the excitonic binding energy. As
discussed before, the single-particle wave functions, as shown
in Fig. 4, reveal not only a strong confinement along the c-axis
but also in-plane. While for configurations 1 and 5 electron and
hole wave functions are almost localized at the same in-plane
position, in configuration 8 they are not. This is also reflected
in the excitonic binding energies. Configurations 1 and 5 have
almost identical excitonic binding energies (32.7 meV versus
31.8 meV), while for configuration 8 the excitonic binding
energy is much smaller (26.5 meV).
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Config 1 Config 5 Config 8

Side View

Top View

FIG. 10. (Color online) Ground-state electron (green) and hole (blue) charge densities with Coulomb interaction for different configurations
and different view points [first row (side view) ⊥ c axis; second row (top view): ‖ c axis]. Light (dark) isosurfaces correspond to 5% (50%) of
the max. charge density value. Dashed lines indicate the QW interfaces.

Funato and Kawakami [16] calculated also the excitonic
binding energies of cylindrical InGaN/GaN QDs, therefore
including lateral confinement effects. In the case of a
cylindrical InGaN/GaN QD with a height of 3 nm and
a diameter of 6 nm, the excitonic binding energies were
increased, compared to a QW with an identical height and
composition, by approximately 13 meV. For 25 % In, this gives
approximately an excitonic binding energy of 36 meV. This
value is comparable to our average excitonic binding energy
of 29.6 meV, which also includes, due to alloy and WWFs,
lateral confinement effects.

Having discussed the impact of Coulomb effects on the
emission spectrum, we focus in the next step on the impact
of the Coulomb interaction on the charge densities. In the
CI scheme, the excitonic many-body wave function |ψX〉 is
not a simple product of electron and hole wave functions, but
it is written as a linear combination of electron-hole basis
states:

|ψX〉 =
∑
i,j

cX
ij ê

†
i ĥ

†
j |0〉 . (7)

Here, |0〉 is the vacuum state, cX
ij the expansion coefficient and

ê
†
i (ĥ†

i ) denotes the electron (hole) creation operator [58]. To
visualize the electron and hole contribution to |ψX〉 separately
we use a reduced density matrix for electrons and holes [58].

For the electrons, the density operator ρ̂e is given by

ρ̂e =
∑
i,i ′

|i〉
∑

j

cX
ij c

X∗
i ′j 〈i ′| =

∑
i,i ′

|i〉ρe
ii ′ 〈i ′| . (8)

One can now calculate the electron and hole densities 〈R|ρ̂e|R〉
and 〈R|ρ̂h|R〉, respectively. Following Fig. 5, Fig. 10 depicts
the calculated electron [〈R|ρ̂e|R〉] and hole [〈R|ρ̂h|R〉] densi-
ties for the configurations 1, 5, and 8. When comparing Figs. 5
and 10, we infer that the position of the charge densities along
the c axis are only slightly affected by the Coulomb interaction
for the here considered In0.25Ga0.75N/GaN QW. This shows
that the spatial separation of the charge carriers is dominated by
the built-in field, explaining that the oscillator strength is only
very slightly modified by the attractive Coulomb interaction
[cf. Fig. 4]. This situation could change with decreasing In
content due to reduced built-in fields.

Similar to the effect along the c axis, we find that electron
and hole charge densities are only slightly modified by the
Coulomb interaction in the c plane. Based on the above
effective mass argument, one could expect that the hole state is
less affected by the Coulomb interaction, and that the electron
wave function mainly changes and localizes near the hole.
All the displayed configurations show that localization effects
due to random alloy and well-width fluctuations are stronger
than Coulomb effects. Only slight effects in the shape of the
electron and hole wave functions are visible.
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V. COMPARISON WITH EXPERIMENTAL DATA

Our finding of localization effects on the nanometer scale is
in good agreement with the experimental analysis by Graham
et al. [45] Graham and co-workers used the Huang-Rhys
factor to analyze the localization length for the carriers
in InGaN/GaN QWs. For varying In content, the authors
estimated localization lengths of 1.1–3.1 nm [45]. Our results
are consistent with these experimental findings. However,
Graham et al. assumed that the localization length is the
same for electrons and holes. Our results reveal that the
experimentally estimated localization length is consistent with
the hole wave function localization, since the localization
length of the electrons will be mainly determined by the size
of in-plane WWFs, at least for the here considered 25% InN
system. It should also be noted that we have studied here
the lower limit (5 nm) of the experimentally reported values
(5–10 nm) [49]. Thus one could expect that when increasing
the in-plane dimension of the WWFs, the localization length
of the electrons is of the order 5–10 nm.

Next, we compare our calculated excitonic transition
energies with available experimental data and analyze also the
emission spectrum in terms of the experimentally available
data on the full width half maximum (FWHM) of the PL peak.
Here we have only a small number of different microscopic
random alloy configurations. Thus, a detailed comparison is
difficult. However, the present analysis allows us to study if
our approach gives numbers of the right order of magnitude.
For the here studied 3.5 nm wide In0.25Ga0.75N/GaN QW, we
estimate an average excitonic transition energy of ≈1.95 eV
[cf. Table I]. Graham et al. [45] extracted for a 3.3 nm wide
In0.25Ga0.75N/GaN QW a PL peak energy of 2.162 eV, which
is in good agreement with our calculations, given that our well
is slightly wider and that we neglect also electron-phonon
coupling effects.

We have also seen in Sec. IV C, that the main contribution
to the calculated excitonic emission spectrum (cf. Fig. 9)
arise from the configurations 1, 4, 5, and 7. The ground-state
emission energy for those configurations is spread over a
range of 72.8 meV. This value can now be compared to the
experimental study of the FWHM of the PL peak in Ref. [45]
(cf. Ref. [17]). The experimental data for a 3.3 nm wide
In25Ga0.75N/GaN QW gives a FWHM of about 63 meV.

As discussed above, for a more detailed comparison
with experimentally available data, the analysis of more

microscopic structures, different well width, WWFs and In
contents would be required. This is beyond the scope of the
present study, since we are here interested in the discussion
of the general features of c-plane InGaN/GaN QWs when
taking alloy and WWFs explicitly into account. Nevertheless,
our first results for the localization length, excitonic transition
energies and their energetic variation give already values in
very reasonable agreement with those reported in literature
experimental studies.

VI. CONCLUSION

In conclusion, we have presented an atomistic approach,
including local alloy, well-width, strain and built-in field
fluctuations, to analyze the electronic and optical properties
of c-plane In0.25Ga0.75N/GaN QWs. Our calculations show
that random alloy fluctuations lead to a very strong hole
wave function localization (on the nm scale) which affects the
QW optical properties significantly. The observed hole wave
function localization is consistent with the experimentally
estimated localization lengths of 1–3 nm [45]. Additionally,
we find that the electron wave functions are mainly localized
by WWFs, with some contributions from the local alloy
fluctuations. Moreover, by treating the optical properties in
the CI frame, we were able to show that the emission
spectra is dominated by the localized single-particle states
due to well-width and alloy fluctuations and that the Coulomb
interaction mainly affects the carrier wave functions in the
growth plane and leads to overall energetic shifts of the
emission spectrum. However, it should be noted that this
behavior could be significantly different for systems with low
In content or structures grown on non- or semi-polar planes.
These systems will be analyzed in future studies.
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