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Relevant perturbations at the spin quantum Hall transition
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We study relevant perturbations at the spin quantum Hall critical point using a network model formulation. The
model has been previously mapped to classical percolation on a square lattice, and we use the mapping to extract
exact analytical values of the scaling dimensions of the relevant perturbations. We find that several perturbations
that are distinct in the network model formulation correspond to the same operator in the percolation picture. We
confirm our analytical results by comparing them with numerical simulations of the network model.
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I. INTRODUCTION

Anderson localization of a quantum particle [1] or a
classical wave in a random environment is a vibrant research
field [2]. One of its central research directions is the physics of
Anderson transitions [3], quantum critical points tuned by dis-
order. These include metal-insulator transitions and transitions
of quantum Hall type separating distinct phases of topological
insulators. While such transitions are conventionally observed
in electronic (metallic and semiconductor) structures, there is
also a considerable number of other experimental realizations
actively studied in recent and current works. These include
localization of light [4] and microwaves [5], cold atoms [6]
(see a recent review [7]), ultrasound [8], and optically driven
atomic systems [9].

From the theoretical point of view, symmetries play a
central role in determination of universality classes of critical
phenomena. This idea was applied to Anderson localization by
Altland and Zirnbaueer (AZ) [10] who identified ten distinct
symmetry classes. In three of these classes, classes A, C, and
D in AZ classification, the time-reversal invariance is broken,
and there is a possibility for a quantum Hall transition in two
dimensions.

The transition in class A is the usual integer quantum Hall
(IQH) transition in a two-dimensional (2D) electronic system
in a strong perpendicular magnetic field (see Ref. [11] for
a review). Class A also includes the model of electrons in
a random magnetic field, where all states are believed to be
localized [12].

Class C is one of the four Bogolyubov–de Gennes classes
which describe transport of quasiparticles in disordered su-
perconductors at a mean field level, and possess the particle-
hole symmetry. In this class the spin-rotation invariance is
preserved, the quasiparticles have conserved spin, and one
can study spin transport. The corresponding Hall transition is
known as the spin quantum Hall (SQH) transition [13,14], at
which the system exhibits a jump in the spin Hall conductance
from 0 to 2 in appropriate units.

In spite of tremendous efforts, most models of Ander-
son transitions have resisted analytical treatment. The IQH

transition is one prominent example where only recently some
analytical progress has been achieved [15]. On the other hand,
the SQH transition enjoys a special status, since a network
model of this transition was mapped exactly to classical
percolation on a square lattice [16]. The original mapping used
the supersymmetry (SUSY) method of Efetov [17] adapted to
networks [18,19]. An alternative way to obtain the mapping
was found later [20,21]. It was also extended to network
models in class C on arbitrary graphs [22]. Many exact results
are known for classical percolation. Thus, the mapping has
lead to a host of exact critical properties at the SQH transition
[16,21–24]. However, these results are not exhaustive, since
not all possible relevant perturbations were considered in Refs.
[16,21,23,24]. Several critical exponents have been obtained
numerically in Refs. [13,14,25–27].

In this paper we reexamine the relevant perturbations at the
SQH critical point. As our main tool we use the SUSY method
applied to the simplest network model in class C describing
the SQH effect. We introduce all possible perturbations that
are relevant at the critical point of the SHQ network model.
One of them preserves the symmetries of the model and drives
the SQH transition. Other relevant perturbations break symme-
tries specific to class C and lead to a crossover to class A. We
use the percolation mapping of Ref. [16] to extract analytical
values of the scaling dimensions of all relevant perturbations.
As a result, we find that one of the results of Ref. [16] does not
hold, and find the correct value of the corresponding critical
exponent. In addition, we find that several microscopically
distinct perturbations all have the same scaling dimension
related to a single operator in the percolation picture.

The paper is organized as follows. In Sec. II we describe
the network model appropriate for the study of the spin
quantum Hall transition in class C and relevant perturbations
near it, and summarize our results. In Sec. III we briefly
describe the SUSY method for the network, and derive the
second-quantized supersymmetric transfer matrices. These
matrices are then averaged over quenched disorder. In Sec. IV
we take an anisotropic limit, thereby mapping the network
model to a superspin chain. The superspin chain contains a
critical point, and several relevant perturbations. All terms
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FIG. 1. Two-channel chiral network model. Dots represent scat-
tering matrices on the links (1) and squares represent the nodal
scattering matrices (2).

in the superspin chain Hamiltonian are interpreted in terms
of the classical percolation picture of Ref. [16], and this
interpretation allows us to extract dimensions of all relevant
perturbations and the corresponding critical exponents. In
Sec. V we present our recent numerical results, discuss results
of other numerical simulations of the network model, and
compare all these with our analytical predictions. We then
conclude. For completeness, we review details of the SUSY
method for the class C network model in Appendiix A.

II. THE MODEL AND A SUMMARY OF RESULTS

A scattering theory description of Anderson localization
and Anderson transitions in terms of random network models
was introduced in Ref. [28]. For systems exhibiting quantum
Hall effects one can use semiclassical drifting orbits [29,30]
scattered at saddle points of a smooth random potential
to provide an intuitive derivation for network models. The
resulting networks are chiral, reflecting the breaking of time-
reversal invariance in strong magnetic fields. The simplest such
model is the the Chalker-Coddington (CC) model originally
proposed to describe the IQH effect [31].

Here we consider a generalization of the CC model shown
in Fig. 1. In this network each link supports two co-propagating
channels which we label by σ = ↑,↓. The corresponding
doublets of complex fluxes propagate along links, and their
components get mixed by scattering matrices Slink, which
relate the incoming and outgoing fluxes. In class A, the
symmetry class of the IQH effect, the scattering matrices
on the links are general unitary U (2) matrices, and can be
parametrized as

Sδ = eiδS0, (1)

where the matrix S0 ∈ SU(2). The link matrices are indepen-
dent identically distributed random variables whose distribu-
tion is chosen depending on a specific physical situation.

As in the ordinary CC network there are two sublattices,
A and B, on which the nodes are related by a 90◦ rotation.
Scattering of the fluxes at the nodes (black squares) is described
by orthogonal matrices diagonal in spin indices: SS = SS↑ ⊕
SS↓,

SSσ =
(

rSσ tSσ

−tSσ rSσ

)
, rSσ ≡ (

1 − t2
Sσ

)1/2
, (2)

where S = A, B labels the sublattice. Usually the scattering
amplitudes on the two sublattices tSσ are assumed to be

nonrandom. The network has a critical point at

tA↑ = tB↑ = tA↓ = tB↓. (3)

Depending on the choice of parameters and their probability
distributions, the generalized two-channel network model in
class A can be used to describe various physical systems:
spin-degenerate Landau levels and localization in a random
magnetic field [12], the IQH effect in a double-layer system
[32,33], and the splitting of delocalized states due to the valley
mixing in graphene [34]. Using the SUSY method, in Ref. [35]
we have provided a comparative study of the relevant networks
and related models.

Let us now consider class C, the symmetry class of the SQH
effect. Similar to previous works, we study the SQH transition
in (the mean field description of) a singlet superconductor after
a particle-hole transformation on the down-spin particles [36].
The transformation interchanges the roles of particle number
and z component of spin, and so particle number is conserved
rather than spin. This somewhat obscures the spin-rotation
symmetry, but makes it possible to use a single particle
description and, in particular, a network model. The single-
particle energy (E) spectrum has a particle-hole symmetry
[10], so, when states are filled up to E = 0, the positive-energy
particle and hole excitations become doublets of the global
SU(2) symmetry. In this picture, a uniform Zeeman magnetic
field Bz for the quasiparticles maps onto a simple shift in the
Fermi energy to E ∝ Bz [14], splitting the degeneracy.

In the network model description a particle of either spin
and with E = 0 is represented by a doublet of complex fluxes
that can propagate in one direction along each link (Fig. 1).
The global spin-rotation symmetry of class C requires the
scattering matrices to be unitary symplectic. Thus in the two-
channel model the link matrices belong to Sp(2) ∼= SU(2), and
in the parametrization (1) we have to set the overall phase
δ = 0. The absence of an additional (random or deterministic)
U(1) phase here is crucial. Taking the link matrices S0 to be
uniformly distributed over the Haar measure on SU(2) we
obtain the model that maps to a classical bond percolation on
the square lattice [16]. Both the absence of the overall phase
and the uniform distribution over SU(2) are essential technical
ingredients of the mapping (as explained in Appendix A).

Let us describe how a nonzero energy E enters the network
model description. A state of the network (the collection of
the fluxes on all channels joining scattering matrices) evolves
in discrete time steps under the action of a unitary evolution
operator U which has nonzero matrix elements only between
pairs of incoming and outgoing channels scattered on a link
or at a node, the matrix elements simply being the scattering
amplitudes relating the corresponding fluxes. The main object
of study is the Green’s function, or the resolvent, of the
evolution operator:

G(e′,e; z) = 〈e′|(1 − zU)−1|e〉, (4)

where e and e′ are two channels (edges) of the network. In a
closed network U is unitary, and the resolvent has singularities
on the unit circle in the complex plain of the spectral parameter
z. Roughly speaking, if we write U = eiH and z = ei(E+iη), H
can be thought of as the Hamiltonian for the network, and
E + iη as the energy with a finite level broadening η. The
level broadening may be induced by attaching ideal leads that
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make the network open and break unitarity. Scaling of various
observables with energy E close to the critical point is the
same as with its imaginary part η [21,24]. This fact allows us
to use the real z = e−η.

If we expand the Green’s function (4) into a power series in
z, it is clear that a factor of z is associated with each scattering
event. In fact, it is sufficient to assign the factors of z only to
scattering at the nodes or on the links. We choose the latter
option. This leads to the modified link scattering matrices

Sφ = eiφS0, φ ≡ δ + iη. (5)

The notation we use stresses the fact that the phase δ and
the level broadening η combine to form a single complex
parameter φ = δ + iη where δ plays the role of the energy E.
As expected, the modified scattering matrices are not unitary,
since a finite level broadening leads to decay of the states of
the network and breaks current conservation. We also note
here that while δ can be random, the level broadening η will
be taken the same for every link.

The class C network model can be driven away from its
(multi)critical point given by Eq. (3) (and δ = 0) in different
ways. Taking tAσ = tBσ (but keeping tS↑ = tS↓) is the only
perturbation that preserves the class C symmetries. It drives
the system through a SQH transition between an insulator and
a SQH state. Introducing a uniform Zeeman field (or a nonzero
chemical potential) breaks the global spin-rotation symmetry,
and splits the transition into two ordinary IQH transitions, each
in class A. The same effect is achieved by making tS↑ = tS↓.

To describe these relevant perturbations in a quantitative
way, let us parametrize the node scattering amplitudes in the
vicinity of the critical point (3) as follows:

tA↑ = t(1 + ε + �), tA↓ = t(1 + ε − �),

tB↑ = t(1 − ε + �), tB↓ = t(1 − ε − �). (6)

Then nonzero ε, Zeeman field Bz (or η), and � are all relevant
perturbations that induce finite localization lengths scaling as

ξ ∼ |ε|−ν, ξB ∼ |η|−νB , ξ� ∼ |�|−μ�. (7)

Thus defined critical exponents have been analytically de-
termined in Ref. [16], where the authors suggested that the
parameter � may describe a random Zeeman field. The
exponents were numerically studied in Refs. [13,14,25–27].
The results are summarized in the first three columns of
Table I.

A microscopically distinct perturbation of the class C
network that induces a crossover to class A is the introduction
of a nonzero phase δ in the link matrices (1). The case of
a random extra phase δ with zero mean and variance p2

was numerically studied in Ref. [25], and that of a constant
phase δ0—in Ref. [26]. Both perturbations appeared to be
relevant, as expected on symmetry grounds, and resulted in
finite localization lengths that scaled as

ξp ∼ p−μp , ξδ0 ∼ |δ0|−μδ0 . (8)

From our comments above it should be clear that a constant
phase δ0 is exactly equivalent to a uniform nonzero Zeeman
field, which immediately implies

μδ0 = νB. (9)

TABLE I. A summary of previous and new results for critical
exponents at the SQH transition.

Exponent ν νB μ� μp μδ0

Analytical predictions
Ref. [16] 4/3 4/7 3/2 – –

≈1.33 ≈0.57 =1.5
This work – – 8/7 8/7 4/7

≈1.14 ≈1.14 ≈0.57
Numerical results

Ref. [13] 1.12 – 1.45 – –
Ref. [14] 1.32(2) 0.55(1) – – –
Ref. [25] 1.12 – 1.45 1.17 –
Ref. [26] 1.12 – 1.45 – 0.7
Ref. [27] 1.33(1) – – – –
This work – – – 1.15 –

By the same token, a random phase δ is equivalent to a random
Zeeman field. In the rest of the paper we assume that the
phases δ on the links are independent identically distributed
random variables with the mean δ0 and variance p2, where
both quantities are small: δ0,p � 1. In the following sections
we will show that the small parameters η, δ0, and p always
appear in the combination

λ ≡ η − iδ0 + p2. (10)

This immediately implies that

μp = 2μδ0 = 2νB. (11)

In subsequent sections we will use the SUSY method and
the mapping to percolation to obtain the exact values of the
exponents μδ0 and, therefore, μp. In addition, our analysis
uncovers a subtle mistake made in Ref. [16] that led to a wrong
prediction for the exponent μ�. After correcting the mistake,
we obtain the values of the exponents shown in Table I. We
also show in the Table a numerical value for the exponent μp

obtained by a direct computer simulation of the class C network
model with an additional random phase δ on the links.

III. SUPERSYMMETRIC TRANSFER MATRICES

In this section we apply the SUSY method [18,19] to our
network model in the vicinity of its critical point to map it to
classical percolation. Before we describe the technical steps,
let us present our strategy. As we mentioned in the previous
section, the mapping to percolation is only possible when the
scattering on the links is described by SU(2) matrices. Thus, a
direct application of this method to our system, where the link
matrices are given by Eq. (5), is impossible. We circumvent
this difficulty as follows. We can always remove the factors
eiφ = eiδ−η from the link scattering matrices and reassign them
to the nodal matrices in such a way that the Green’s function
(4) is not affected. The redefined nodal matrices become

SSσ =
(

rSσ eiφ tSσ eiφ′

−tSσ eiφ rSσ eiφ′

)
. (12)

Here δ and δ′ in φ and φ′ are independent, since they come
from two different links incoming at a node, see Fig. 2. Having
shifted the factors eiφ onto the nodes, we are now free to
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FIG. 2. The scattering amplitudes at the nodes on the two
sublattices. The node scattering matrices are diagonal in the spin
indices, so we only show one channel per link.

perform the SU(2) average on the links. Subsequently, we can
perform the average over the phases δ.

In the SUSY method the vertical direction in Fig. 1 is
regarded as the (imaginary) time τ . The vertical zigzags of
links that go up (along the time direction) correspond to sites
of a quantum one-dimensional chain with an odd label i. The
down-going links correspond to even sites. At each odd site i

there is a Fock space Fi = Fi↑ ⊗ Fi↓ of fermions and bosons,
and at each even site the Fock space is F̄i = F̄i↑ ⊗ F̄i↓. The
spaces on the odd and even sites differ by the commutation
relations for creation and annihilation operators of the up and
down particles, see Appendix A.

Scattering of fluxes on links of the network is represented
by the second-quantized transfer matrices T2i−1 and T2i which
describe the evolution of states in F2i−1 or F̄2i between two
discrete imaginary time slices through the lower and upper

half-link. Scattering at a node on sublattice A is represented
by the transfer matrix T2i−1,2i which evolves states in the
tensor product F2i−1 ⊗ F̄2i between two discrete imaginary
time slices (below and above the node), and similarly for
the B sublattice. All second-quantized transfer matrices are
exponentials of quadratic forms in creation and annihilation
operators, see details in Appendix A.

As is known from Ref. [16] (and reviewed in Appendix A),
in the spin-rotation invariant case (tS↑ = tS↓ and δ = 0), the
transfer matrices commute with the sum over sites of the
eight generators (superspin components) of the superalgebra
osp(2|2) ∼= sl(2|1). The eight generators of osp(2|2) on each
site appear as all bilinears in the fermions and bosons and their
adjoints, which are singlets under the random SU(2). These
are denoted by [37] B, Q3, Q±, V±, W± for the up sites (and
with bars for the down sites) and have similar expressions for
the two types of sites. We combine the generators on each site
into a single eight-component object, a superspin, and call it
J2i−1 and J̄2i for up and down sites. Breaking the spin-rotation
invariance by either of the symmetry-breaking perturbations,
breaks the SUSY of the transfer matrices down to gl(1|1)
generated on each up site by K = {B,Q3,V−,W+} (similarly
for the down sites).

Averaging over the random SU(2) matrices on the links
projects each Fock space F2i−1 (F̄2i) onto a three-dimensional
subspace which is the fundamental (dual to the fundamental)
representation of osp(2|2). In the notation of Ref. [38] these
irreducible representations (irreps) are π (± 1

2 , 1
2 ). For a single

transfer matrix the projection (see Appendix A3 for details)
results in

P̂ T P̂ = 1 + (r↑r↓e2iφ − 1)(B + Q3) − (r↑r↓e2iφ̄ − 1)(B̄ + Q̄3) − (r↑r↓e2iφ − 1)(r↑r↓e2iφ̄ − 1)(B + Q3)(B̄ + Q̄3)

+ e2i(φ̄+φ)

[
t2
↑t2

↓(B + Q3)(B̄ + Q̄3) − t2
↑ + t2

↓
2

(K · K̄ − B − Q3 + B̄ + Q̄3)

]

− t↑t↓e2iφ̄(Q+Q̄− + V+W̄−) − t↑t↓e2iφ(Q−Q̄+ − W−V̄+). (13)

Here we have suppressed the sublattice index for brevity, and
also used the gl(1|1)-invariant product of the superspins K and
K̄:

K · K̄ = 2Q3Q̄3 − 2BB̄ − V−W̄+ + W+V̄−. (14)

We can now carry out averages (that we denote by angular
brackets) over the independent random phases δ. Using the
notation

〈e2iφ〉 = 〈e2iφ̄〉 ≡ , (15)

and the osp(2|2)-invariant product

J · J̄ = 2Q3Q̄3 − 2BB̄ − V−W̄+ + W+V̄−

+ V+W̄− − W−V̄+ + Q+Q̄− + Q−Q̄+, (16)

we can write the average of the projected transfer matrix on
the sublattice S as

〈P̂ TSP̂ 〉 = 1 + cS1J · J̄ + cS2K · K̄ + cS3(B + Q3)(B̄

+ Q̄3) + cS4(B + Q3 − B̄ − Q̄3), (17)

where the coefficients are given by

cS1 = −tS↑tS↓,

cS2 = − 1
22(t2

S↑ + t2
S↓

) + tS↑tS↓,

cS3 = 2t2
S↑t2

S↓ − (rS↑rS↓ − 1)2,

cS4 = 1
22

(
t2
S↑ + t2

S↓
) + rS↑rS↓ − 1. (18)

When the extra phases φ vanish ( = 1), the coefficients
in this expression simplify, and it reduces to the one studied
before in Ref. [16]:

〈P̂ TSP̂ 〉=1−tS↑tS↓J · J̄ − (tS↑−tS↓)2

2
K · K̄− (rS↑−rS↓)2

2

× [2(B + Q3)(B̄ + Q̄3) + B + Q3 − B̄ − Q̄3].

(19)

In particular, if no class C symmetries are broken (tS↑ = tS↓),
the average transfer matrix reduces to

〈P̂ TSP̂ 〉 = 1 − t2
SJ · J̄ , (20)
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an expression that was interpreted in terms of classical bond
percolation on a square lattice in Ref. [16].

IV. SUPERSPIN CHAIN AND CRITICAL EXPONENTS

So far everything was exact. Now we will perform an
additional step that is useful in the study of network models.
This is to consider an anisotropic limit, when all amplitudes tSσ

are small [which can be achieved by taking t � 1 in Eq. (6)]. In
this case the disorder-averaged product of all transfer matrices
can be written as an evolution operator in continuous imaginary
time τ :

U = exp

(
−

∫
dτ H1D

)
, (21)

where the effective Hamiltonian H1D describes a 1D superspin
chain, with alternating π (± 1

2 , 1
2 ) representations (superspins)

on each site along the chain. The spin chain has a critical
point, and various deviations from it appear at this step as
perturbations of the critical Hamiltonian.

When passing to the anisotropic limit, we will expand the
coefficients in expressions for average transfer matrices to
leading order in all small parameters (t,ε,�,η,δ0,p).

First, consider the maximally symmetric case (20):

〈P̂ T2i−1,2i P̂ 〉 ≈ 1 − t2(1 + 2ε)J2i−1 · J̄2i ,

〈P̂ T2i,2i+1P̂ 〉 ≈ 1 − t2(1 − 2ε)J̄2i · J2i+1. (22)

Combining all transfer matrices, we obtain the effective 1D
Hamiltonian

H1D = H0 + H1, (23)

where

H0 = t2
∑

i

(J2i−1 · J̄2i + J̄2i · J2i+1) (24)

describes the critical superspin chain, and the staggered term

H1 = 2t2ε
∑

i

Di, Di = J2i−1 · J̄2i − J̄2i · J2i+1, (25)

represents a relevant perturbation. As was argued in Ref. [16],
the dimer operator Di represents the two-hull operator in the
critical percolation picture, with dimension x2 = 5/4. The
corresponding critical exponent is

ν = (2 − x2)−1 = 4
3 . (26)

Having identified the role of the sublattice asymmetry ε, let
us turn to the general case, Eqs. (17) and (18). The terms with
the coefficients cS2 and cS3 contain bilinears in the superspins,
and can be thought of as introducing two kinds of anisotropy in
the superspin space. The last term (with the coefficient cS4) is
linear in superspins, and corresponds to the one-hull operator
in the critical percolation picture, with dimension x1 = 1/4.
This is the lowest among the dimensions of operators in
critical percolation. Thus, even without the knowledge of the
dimensions of the anisotropic terms, we can claim that the last
term in Eq. (17) is the most relevant perturbation. We will
see that all symmetry-breaking perturbations couple to this
term, and it, therefore, determines the corresponding critical
exponents.

In the anisotropic limit and close to the critical point we
have, first of all

 ≈ 1 − 2λ, (27)

where λ is given in Eq. (10). Expanding the coefficients cS1 in
Eq. (17) we have

cA1 ≈ −t2(1 + 2ε − �2 − 2λ),
(28)

cB1 ≈ −t2(1 − 2ε − �2 − 2λ).

We see that the symmetry-breaking perturbations simply
renormalize the coupling constant t2 of the critical Hamil-
tonian H0.

In the other terms it is sufficient to set ε = 0. Then
the coefficients on the two sublattices coincide, and their
expansions look like

cS2 ≈ −2t2(�2 − λ),

cS3 ≈ −4t4�2 − 4t2λ,

cS4 ≈ −2t4�2 − 2(1 + t2)λ. (29)

The last expression confirms the conclusion of Ref. [16] that
the nonzero energy η couples to the most relevant perturbation,
the one-hull operator B + Q3 − B̄ − Q̄3 (that happens to
represent the local density of states), and leads to a localization
length that has a power-law behavior with the exponent

νB = (2 − x1)−1 = 4
7 . (30)

Moreover, since η enters all expressions in the combination
λ = η − iδ0 + p2, we immediately obtain the equalities be-
tween critical exponents given in Eq. (11).

Next we see that the square of the spin-rotation symmetry-
breaking parameter � also couples to the one-hull operator.
This immediately implies that

μ� = μp = 8
7 . (31)

This value is different from the result μ� = 3/2 obtained in
Ref. [16]. The reason for this difference is that �2 enters
the coefficient of the one-hull term B + Q3 − B̄ − Q̄3 in the
combination t4�2. In taking the anisotropic limit t → 0 this
term was neglected in Ref. [16]. Instead, in that reference
the authors argued that the exponent μ� is determined by
the dimension of the superspin anisotropy operator K · K̄ ,
which was conjecturally found (and was larger than x1 = 1/4).
However, since the one-hull term is the most relevant scaling
operator, this term really determines the scaling behavior of
the localization length ξ� for any finite t .

V. NUMERICAL RESULTS

In this section we compare the exact values of critical ex-
ponents obtained above with results of numerical simulations.

First we report our numerical results for the exponent μp.
We have simulated the SQH network model with only one
relevant perturbation: extra random phases on the links with
the mean δ0 = 0 and variance p. The other perturbations
(ε, η, �) were set to zero. We used the standard transfer
matrix method in the quasi-one-dimensional geometry with
periodic boundary conditions in the transverse direction
(cylinder) [39,40]. Our system lengths reached 106, and the
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FIG. 3. (Color online) Deviation from Kramer’s degeneracy as
function of pM1/μp with μp = 1.15 for ε = � = 0.

circumferences M ranged from 32 to 192 with various random
phase variances p.

Without symmetry-breaking perturbations, all Lyapunov
exponents of the transfer matrix product are doubly degenerate
due to the presence of time-reversal invariance (Kramers
degeneracy). It was suggested in Ref. [13] that when the
time-reversal symmetry is broken by a small perturbation, the
renormalized localization length (the inverse of the smallest
positive Lyapunov exponent) and the deviation from Kramers
degeneracy ξ̄ (the difference between the two smallest positive
Lyapunov exponents multiplied by the circumference M)
exhibit scaling behavior characterized by the same exponent.
This idea was further supported in Refs. [25] and [26]. It turns
out that the deviation from Kramers degeneracy ξ̄ is a superior
way to extract critical exponents in this case, since we know
its exact value ξ̄ = 0 at the critical point.

Thus, in Fig. 3 we present a one-parameter scaling results
for ξ̄ ≡ (λM/2−1 − λM/2))M as a function of the scaling vari-
able x ≡ pM1/μp : ξ̄ = f (x). In order to improve the accuracy
we do not use data for systems with small circumferences, and
obtain the value of the critical exponent using an optimization
program that ensures the best scaling collapse. The routine
determines the least-squares approximation to the scaling
function f (x) in terms of the Chebyshev polynomials by
minimizing the sum of squares of the deviations of the
data points from the corresponding values of the polyno-
mial, while also varying the exponent μp. The result μp =
1.15 is in excellent agrement with our analytical prediction
μp = 8/7 ≈ 1.14.

Now we comment on previously published numerical
results for various critical exponents. In this paper we find
a perfect agreement between the analytical prediction and the
numerical value of μp. As we have shown above, the values of
μp and μ� must be the same. On the other hand, a numerical
result found in Ref. [13] was μ� ≈ 1.45. We believe that the
reason for this discrepancy is that only large values of � were

used in Ref. [13]. Indeed, in that paper it was impossible to
resolve two separate critical states for � � 0.5.

A similar discrepancy exist between the numerical values
of the exponent ν reported in different papers. In the original
paper [13] a broad range of ε ∈ [0,1] was used (including
the values of ε far from the critical point), and the result
was ν ≈ 1.12. In a more recent study [27] the authors used
only data for ε < 0.05 (very close to the critical point),
and obtained ν ≈ 1.335, in excellent agreement with the
analytical prediction ν = 4/3. The same arguments explain the
discrepancy between the exact value μB = μδ0 = 4/7 ≈ 0.57
and the numerical result μδ0 ≈ 0.7 [26]. Convincing arguments
for the necessity to use only the data very close to the critical
point for accurate results on critical phenomena are presented
in Ref. [41].

VI. CONCLUSIONS

In conclusion, we have studied relevant perturbations at
the spin quantum Hall (SQH) transition critical point. Many
critical exponents at the transition have been found before. We
have derived several new exponents, and corrected a subtle
error in an earlier prediction. All (present and older) results
are summarized in Table I. Our analysis demonstrates that
several symmetry-breaking perturbations, which are distinct
in the microscopic network model of the SQH transition,
correspond to the same relevant perturbation at the critical
point. In particular, the variance p of the extra random phase of
the scattering matrices on the links plays exactly the same role
as the spin-rotation symmetry-breaking parameter �. Both
happen to represent the effect of a random Zeeman magnetic
field and drive the system to a localized phase.

Our results allow us to represent the phase diagram for
our system in the three-dimensional space of parameters ε,
�, and p. Indeed, the last two parameters appear in the
combination a�2 + bp2 with some nonuniversal coefficients.
By the standard scaling argument, the critical surface is

FIG. 4. (Color online) Schematic plot of the phase boundary ε =
±(a�2 + bp2)ϕ/2.
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described by the equation

ε = ±(a�2 + bp2)ϕ/2, (32)

where the crossover exponent

ϕ = μp/ν = 6/7. (33)

The critical surface is schematically shown in Fig. 4, where,
for illustration purposes, we chose a = 1, b = 2.

Finally, it is interesting to note that when we set ε = 0 in our
model, then for any nonzero p it becomes formally equivalent
to the network model proposed in Ref. [12] as a tool to study
localization of electrons in a random magnetic field. While the
physics of the random magnetic field problem and the spin
quantum Hall effect is very different, the equivalence of the
models is seen, in particular, in the absence of extended states
in the �-p plane except for the critical point at the origin.
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APPENDIX: SUSY METHOD FOR
THE SU(2) NETWORK IN CLASS C

In this Appendix we provide details of the SUSY method
for the class C network.

Usually in the SUSY approach one needs two types of
bosons and fermions, retarded and advanced, to be able to
obtain two-particle properties. However, the particle-hole sym-
metry relates retarded and advanced Green’s functions [14].
Hence, for the study of mean values of simple observables,
we need only one fermion and one boson per spin direction
per site. Let us now consider transfer matrices on the up- and
down-going links separately.

1. Up links

Let us denote the single boson and fermion per spin
direction σ for an up site i as fiσ ,biσ . In our scheme of
labeling the up sites have an odd index i. Propagation of a
doublet of complex fluxes on a link is governed by an SU(2)
scattering matrix S0, which relates the doublets of incoming I

and outgoing O fluxes:(
o↑
o↓

)
= S0

(
i↑
i↓

)
=

(
α β

−β∗ α∗

)(
i↑
i↓

)
. (A1)

This propagation looks identical to the propagation of fluxes on
two adjacent links of a directed network which was considered
in detail in Ref. [19]. Thus, we can easily borrow the second-
quantized supersymmetric form of the transfer matrix from that
reference by omitting the advanced particles and replacing the
site indices by the spin indices:

T = : exp

(
β

α∗ (f †
↑f↓ + b

†
↑b↓) − β∗

α
(f †

↓f↑ + b
†
↓b↑)

)
:

× αnf ↑+nb↑ (α∗)nf ↓+nb↓ , (A2)

where nbσ = b†σ bσ , etc., and the colons stand for normal
ordering.

It is easy to obtain the commutation relations between T

and fermions and bosons:

T c
†
↑ = (αc

†
↑ − β∗c†↓)T , T c

†
↓ = (α∗c†↓ + βc

†
↑)T ,

T c↑ = (α∗c↑ − βc↓)T , T c↓ = (αc↓ + β∗c↑)T . (A3)

Here and later by c,c† we denote either b or f and their
conjugates. These relation are conveniently interpreted as
giving the evolution of states created by c†σ in the Schrödinger
representation, or the operators c†σ themselves in the Heisen-
berg representation, where the operators are time ordered from
right to left. Equations (A3) may be written in a short form as

T c†σ = c
†
σ ′Sσ ′σ T , T cσ = S†

σσ ′cσ ′T . (A4)

Relations (A4) imply that under the commutation with T the
bosons and fermions transform as spinors (in the fundamental
representation) of the SU(2) group of the scattering matrices
S0. Then the SU(2) singlet bilinear combinations of our
fermionic and bosonic operators commute with the T . There
are eight such combinations, which we denote following Ref.
[37] as

B = 1

2
(b†↑b↑ + b

†
↓b↓ + 1), Q3 = 1

2
(f †

↑f↑ + f
†
↓f↓ − 1),

Q+ = f
†
↑f

†
↓ , Q− = f↓f↑,

V+ = 1√
2

(b†↑f
†
↓ − b

†
↓f

†
↑ ), W− = (V+)†,

V− = − 1√
2

(b†↑f↑ + b
†
↓f↓), W+ = −(V−)†. (A5)

We combine these generators into a single eight-component
object J , or superspin. These operators satisfy the (anti)
commutation relations of the osp(2|2) Lie superalgebra:

[B,Q3] = [B,Q±] = 0,

[B,V±] = 1
2V±, [B,W±] = − 1

2W±,

[Q3,Q±] = ±Q±, [Q+,Q−] = 2Q3,

[Q3,V±] = ± 1
2V±,

[Q3,W±] = ± 1
2W±,

[Q+,V−] = V+, [Q+,W−] = W+,

[Q−,V+] = V−, [Q−,W+] = W−,

[Q+,V+] = [Q+,W+] = [Q−,V−] = [Q−,W−] = 0,

{V+,V−} = {W+,W−} = 0,

{V+,W+} = Q+, {V+,W−} = B − Q3,

{V−,W−} = −Q−, {V−,W+} = −B − Q3. (A6)

The components B and Q3,Q± of the superspin generate the
even subalgebra u(1) ⊕ su(2). An important sub-superalgebra
is the gl(1|1) formed by Q3,B,V−,W+, which we will call
collectively the components of the superspin K .

The algebra osp(2|2) has rank two (it has two Cartan
generators: B and Q3), and its representations are labeled
by two quantities. We use the u(1) “charge” (the value of B
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−1/2

3

V+

V−W−

W+

B

Q+

Q−

1/2

1/2

−1/2

Q

FIG. 5. The weights of the adjoint representation of osp(2|2). We
show two doublets and the adjoint of the subalgebra gl(1|1).

in a representation) b, and the value q of the “spin” of su(2)
generated by the Qi . Representation with the highest weight
(b,q) is denoted by π (b,q) [38]. For example, the adjoint
representation of osp(2|2) is π (0,1), and it is shown in Fig. 5.

The quadratic Casimir of osp(2|2) is

C2(J ) = Q2
3 − B2 + 1

2 (Q−Q+ + Q+Q− + V+W−

− W−V+ − V−W+ + W+V−), (A7)

and in the representation π (b,q) it takes the value q2 − b2.
The quadratic Casimir of the gl(1|1) subalgebra is

C2(K) = Q2
3 − B2 + 1

2 (W+V− − V−W+). (A8)

As follows from Eqs. (A4) the action of T decomposes
the Fock space of the bosons and fermions into irreducible
representations of SU(2). When we average over the SU(2),
any nontrivial representation is projected out. Thus, the
averaged link transfer matrix acts as the projection operator
to the subspace of the SU(2) singlets:

〈T 〉SU(2) = P. (A9)

There are only three singlets in this subspace which we denote
as |m〉, m = 0,1,2, and define as

|0〉 = |vacuum〉, (A10)

|1〉 = V+|0〉 = 1√
2

(b†↑f
†
↓ − b

†
↓f

†
↑ )|0〉, (A11)

|2〉 = Q+|0〉 = f
†
↑f

†
↓|0〉. (A12)

These singlets form the fundamental representation π ( 1
2 , 1

2 ) of
the osp(2|2) algebra. It is shown in Fig. 6 together with its dual
π (− 1

2 , 1
2 ).

FIG. 6. The weights of the fundamental representation π ( 1
2 , 1

2 ) of
osp(2|2) and its dual π (− 1

2 , 1
2 ).

It is easy to find the action of the generators of osp(2|2) on
the states in the fundamental representation:

Q3|0〉 = − 1
2 |0〉, Q3|1〉 = 0, Q3|2〉 = 1

2 |2〉,
B|0〉 = 1

2 |0〉, B|1〉 = |1〉, B|2〉 = 1
2 |2〉,

Q+|0〉 = |2〉, Q−|2〉 = |0〉,
V+|0〉 = |1〉, V−|2〉 = −|1〉,
W+|1〉 = |2〉, W−|1〉 = |0〉. (A13)

2. Down link

Consider next a down-going link. Fermions and bosons on
such links will be denoted by bars: f̄σ ,b̄σ . On a down link the
incoming and outgoing channels are interchanged. Then if we
want to think of the evolution of the states on the link as going
up in the vertical time direction, we need to relate the doublet
I to the doublet O. Inverting relations (A1), we get(

i↑
i↓

)
= S†

link

(
o↑
o↓

)
=

(
α∗ −β

β∗ α

)(
o↑
o↓

)
. (A14)

Then the bosonic part of the transfer matrix on a down link is

T̄b̄ = : exp

(
−β

α
b̄
†
↑b̄↓ + β∗

α∗ b̄
†
↓b̄↑

)
: (α∗)nb̄↑αnb̄↓ . (A15)

This transfer matrix gives the following commutation
relations for the bosons:

T̄b̄b̄
†
σ = b̄

†
σ ′S†

σ ′σ T̄b̄, T̄b̄b̄σ = Sσσ ′ b̄σ ′ T̄b̄. (A16)

These relations are again easily interpreted from the point of
view of evolution of states. Comparing them with Eq. (A4), we
see that on the down links the states at later times are related to
the states at earlier times in the opposite way to what happens
on the up links, which is natural.

Now we want to add fermions. This is somewhat tricky,
since the cancellation of closed loops in the SUSY formalism
requires the presence of negative norm states in the same way
as in the case of the Chalker-Coddington model. So far we
used the canonical bosons b̄. Then the fermions on the down
links should satisfy

{f̄ ,f̄ †} = −1. (A17)

Then the states with odd number of f̄ will have negative
(squared) norms. For such fermions the operator counting the
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number of them in a state has to be defined as

nf̄ = −f̄ †f̄ . (A18)

We also want the fermions to satisfy the same commutation
relations (A16) with T̄ as the bosons. This is achieved by the
following transfer matrix:

T̄ = : exp

(
−β

α
(f̄↓f̄

†
↑ + b̄↓b̄

†
↑) + β∗

α∗ (f̄↑f̄
†
↓ + b̄↑b̄

†
↓)

)
:

× (α∗)nf̄ ↑+nb̄↑αnf̄ ↓+nb̄↓ . (A19)

Notice that the bosonic part of this operator is the same as
Eq. (A15). It is now easy to check that the commutators with
bosons and fermions have the same form:

T̄ c̄†σ = c̄
†
σ ′S†

σ ′σ T̄ , T̄ c̄σ = Sσσ ′ c̄σ ′ T̄ . (A20)

As on the up links, these relations imply that the fermions
and bosons on the down links transform as SU(2) spinors under
commutation with T̄ . Their singlet bilinear combinations again
form the generators of the osp(2|2) superalgebra, and we define
them as

B̄ = −1

2
(b̄†↑b̄↑ + b̄

†
↓b̄↓ + 1), Q̄3 = 1

2
(f̄ †

↑ f̄↑ + f̄
†
↓ f̄↓ + 1),

Q̄+ = f̄↓f̄↑, Q̄− = f̄
†
↑ f̄

†
↓ ,

V̄+ = − 1√
2

(b̄↑f̄↓ − b̄↓f̄↑), W̄− = (V̄+)†,

V̄− = 1√
2

(f̄ †
↑ b̄↑ + f̄

†
↓ b̄↓), W̄+ = −(V̄−)†. (A21)

These operators satisfy the same commutation relations (A6)
as the ones on the up links.

The quadratic Casimirs for the dual superspins J̄ and K̄

are defined in the same way as for J and K , see Eqs. (A7)
and (A8). Using the quadratic Casimirs we can introduce the
invariant products of superspins:

J · J̄ ≡ J̄ · J = C2(J + J̄ ) − C2(J ) − C2(J̄ )

= 2Q3Q̄3 − 2BB̄ − V−W̄+ + W+V̄−

+ V+W̄− − W−V̄+ + Q+Q̄− + Q−Q̄+, (A22)

K · K̄ ≡ K̄ · K = C2(K + K̄) − C2(K) − C2(K̄)

= 2Q3Q̄3 − 2BB̄ − V−W̄+ + W+V̄−. (A23)

The transfer matrix T̄ averaged over random SU(2) scatter-
ing matrices again gives the projector

〈T̄ 〉SU(2) = P̄ (A24)

onto the space of SU(2) singlets |m̄〉, m = 0,1,2:

|0̄〉 = |vacuum〉, (A25)

|1̄〉 = −W̄−|0̄〉 = 1√
2

(b̄†↑f̄
†
↓ − b̄

†
↓f̄

†
↑ )|0̄〉, (A26)

|2̄〉 = −Q̄−|0〉 = −f̄
†
↑ f̄

†
↓|0̄〉. (A27)

These singlets form the representation π (− 1
2 , 1

2 ) of the osp(2|2)
algebra dual to the fundamental π ( 1

2 , 1
2 ). Note that the state |1̄〉

contains odd number of fermions, and, therefore, has negative
square norm:

〈1̄|1̄〉 = −1. (A28)

The action of the generators on the states in the representa-
tion π (− 1

2 , 1
2 ) is easily found to be

Q̄3|0̄〉 = 1
2 |0̄〉, Q̄3|1̄〉 = 0, Q̄3|2̄〉 = − 1

2 |2̄〉,
B̄|0̄〉 = − 1

2 |0̄〉, B̄|1̄〉 = −|1̄〉, B̄|2̄〉 = − 1
2 |2̄〉,

Q̄+|2̄〉 = −|0̄〉, Q̄−|0̄〉 = −|2̄〉,
V̄+|1̄〉 = |0̄〉, V̄−|1̄〉 = −|2̄〉,
W̄+|2̄〉 = −|1̄〉, W̄−|0̄〉 = −|1̄〉. (A29)

3. Nodal transfer matrices

With our choice of the scattering at the nodes to be diagonal
in the spin index, the node evolution operators Ti,i+1 are simple
generalizations of the ones used in the SUSY formulation of
the CC model. Essentially, we just have to drop the advanced
particles and take the product over the spin indices. As we
mentioned in Sec. III, the phase and the damping factors eiφ =
eiδ−η have been moved to the nodes, so we use the nodal
scattering matrices (12). This gives the following expression
for T12:

T12 =
∏

σ=↑,↓
{exp[tAσ eiφ̄2 (f †

1σ f̄
†
2σ + b

†
1σ b̄

†
2σ )]

× (rAσ eiφ1 )nf1σ
+nb1σ (rAσ eiφ̄2 )nf̄2σ

+nb̄2σ

× exp[−tAσ eiφ1 (f̄2σ f1σ + b̄2σ b1σ )]}, (A30)

and a similar expression for T23 (obtained by replacing all
subscripts 1 by 3, and the changing the sublattice index A

to B).
We now simplify notation by dropping the site indices, since

the fermions and bosons on the two sites (as well as the phases
φ) are differentiated by the overbar. Likewise, we drop the
sublattice index. Then we can rewrite the evolution operators
for both sublattices as

T = T+T0T̄0T−, (A31)

T+ =
∏
σ

etσ eiφ̄A
†
σ , A†

σ = b†σ b̄†σ + f †
σ f̄ †

σ , (A32)

T0 =
∏
σ

(rσ eiφ)nfσ +nbσ , T̄0 =
∏
σ

(rσ eiφ̄)nf̄σ +nb̄σ , (A33)

T− =
∏
σ

e−tσ eiφAσ , Aσ = b̄σ bσ + f̄σ fσ . (A34)

We need to project T to the the tensor product π ( 1
2 , 1

2 ) ⊗
π (− 1

2 , 1
2 ). Let us now denote the projection operator by

P̂ ≡ P ⊗ P̄ . We note, first of all, that due to irreducibility
of π (± 1

2 , 1
2 ), the projected transfer matrix must be a linear

combination of products of superspin components J or J̄ (and
identity operators) on the two sites. Next we note that when
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projecting T±, we need to expand the exponentials in T± only to linear order in each A and A† (since higher orders only contain
triplet combinations of bosons and fermions on each site, and would take us out of the spaces of interest):

P̂ T P̂ = P̂ (1 + t↑eiφ̄A
†
↑ + t↓eiφ̄A

†
↓ + t↑t↓e2iφ̄A

†
↑A

†
↓)T0T̄0(1 − t↑eiφA↑ − t↓eiφA↓ + t↑t↓e2iφA↑A↓)P̂ . (A35)

T0 and T̄0 act diagonally in the respective irreps, and can be written as 1 + (r↑r↓e2iφ − 1)(B + Q3) and 1 − (r↑r↓e2iφ̄ − 1)(B̄ +
Q̄3), respectively. Then when we develop the products in the last expression, linear and cubic terms in A and A† do not contribute,
and neither do products of the type A†

σ T0T̄0A−σ , so we have

P̂ T P̂ = P̂ (T0T̄0 − t2
↑ei(φ̄+φ)A

†
↑T0T̄0A↑ − t2

↓ei(φ̄+φ)A
†
↓T0T̄0A↓ + t↑t↓e2iφ̄A

†
↑A

†
↓T0T̄0 + t↑t↓e2iφT0T̄0A↑A↓

+ t2
↑t2

↓e2i(φ̄+φ)A
†
↑A

†
↓T0T̄0A↑A↓)P̂ . (A36)

Let us number terms in this expression (1) through (6), and consider them one by one. First we have

(1) = 1 + (r↑r↓e2iφ − 1)(B + Q3) − (r↑r↓e2iφ̄ − 1)(B̄ + Q̄3) − (r↑r↓e2iφ − 1)(r↑r↓e2iφ̄ − 1)(B + Q3)(B̄ + Q̄3). (A37)

We rearrange the next two terms in Eq. (A36) noticing that commutation of T0 or T̄0 with fermions or bosons changes one of the
number operators by one. Then we have

P̂A†
σ T0T̄0Aσ P̂ = e−i(φ+φ̄)

r2
σ

P̂ (b†σ bσT0T̄0b̄
†
σ b̄σ − b†σ fσT0T̄0b̄

†
σ f̄σ + f †

σ bσT0T̄0f̄
†
σ b̄σ + f †

σ fσT0T̄0f̄
†
σ f̄σ )P̂ . (A38)

Here we need to represent bilinears in bosons and fermions on each site as linear combinations of a singlet and a triplet bilinear,
and then the projection operators P̂ allow us to drop the triplets. This gives

P̂A†
σ T0T̄0Aσ P̂ = e−i(φ+φ̄)

r2
σ

P̂

[(
Q3 + 1

2

)
T0T̄0

(
Q̄3 − 1

2

)
−

(
B − 1

2

)
T0T̄0

(
B̄ + 1

2

)
− 1

2V−T0T̄0W̄+ + 1
2W+T0T̄0V̄−

]
P̂ .

(A39)

This expression contains products of superspin components on each site. Due to irreducibility of π (± 1
2 , 1

2 ), such products can
be replaced by linear combinations of superspin components. The easiest way to find these combinations is to use the matrix
representations of the superspin components. The result is

P̂A†
σ T0T̄0Aσ P̂ = ei(φ+φ̄)r2

−σ

[(
Q3 + 1

2

)(
Q̄3 − 1

2

) − (
B − 1

2

)(
B̄ + 1

2

) − 1
2V−W̄+ + 1

2W+V̄−
]

(A40)

and

(2) + (3) = (2t2
↑t2

↓ − t2
↑ − t2

↓)e2i(φ+φ̄)
[(

Q3 + 1
2

)(
Q̄3 − 1

2

) − (
B − 1

2

)(
B̄ + 1

2

) − 1
2V−W̄+ + 1

2W+V̄−
]
. (A41)

In the same way we treat the other terms:

P̂A
†
↑A

†
↓T0T̄0P̂ = P̂ (−f

†
↑f

†
↓ f̄

†
↑ f̄

†
↓ + f

†
↑b

†
↓f̄

†
↑ b̄

†
↓ + b

†
↑f

†
↓ b̄

†
↑f̄

†
↓ + b

†
↑b

†
↓b̄

†
↑b̄

†
↓)T0T̄0P̂ = −Q+Q̄− − V+W̄−,

P̂ T0T̄0A↑A↓P̂ = −Q−Q̄+ + W−V̄+ (A42)

and

(4) + (5) = −t↑t↓e2iφ̄(Q+Q̄− + V+W̄−) − t↑t↓e2iφ(Q−Q̄+ − W−V̄+). (A43)

Finally, we need

P̂A
†
↑A

†
↓T0T̄0A↑A↓P̂ = Q+Q−Q̄−Q̄+ − Q+W−Q̄−V̄+ + V+Q−W̄−Q̄+ + V+W−W̄−V̄+

= 3
(
B − 1

2

)(
B̄ + 1

2

) − (
Q3 + 1

2

)(
Q̄3 − 1

2

) − W+V̄− + V−W̄+

+ (
Q3 + 1

2

)(
B̄ + 1

2

) + (
B − 1

2

)(
Q̄3 − 1

2

)
. (A44)

The first four terms here are very similar to Eq. (A41), which leads to

(2) + (3) + (6) = e2i(φ̄+φ)

[
t2
↑t2

↓(Q3 + B)(Q̄3 + B̄) − t2
↑ + t2

↓
2

(K · K̄ − B − Q3 + B̄ + Q̄3)

]
. (A45)

Collecting all six terms together, we arrive at Eq. (13).
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