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Scattering of phonons by high-concentration isotopic impurities in ultrathin graphite

Michael Thompson Pettes,1,3 Mir Mohammad Sadeghi,1 Hengxing Ji,1,4 Insun Jo,2 Wei Wu,3 Rodney S. Ruoff,1 and Li Shi1,*

1Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
2Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

3Department of Mechanical Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
4Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and

Technology of China, Hefei 230036, China
(Received 21 January 2014; revised manuscript received 29 November 2014; published 21 January 2015)

As the isotopic concentration of ultrathin graphite is varied from natural abundance to nearly pure 13C,
the thermal conductivity displays a slight dependence on the isotope concentration at temperatures near its
maximum ∼150 K. The strength of phonon-isotope scattering in the high-isotope impurity-concentration regime
is found to be well below that given by a commonly used incoherent and independent isotope impurity scattering
model. This finding is in agreement with some recent theoretical predictions that coherent multiple scattering
of phonons is important in the measured thermal conductivity of low-dimensional materials in the high-isotope
impurity-concentration regime.
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I. INTRODUCTION

Phonon scattering by isotopic impurities is an important
mechanism for manipulating the thermal conductivity κ of
high-κ materials that are actively investigated for thermal man-
agement applications [1,2]. Experiments on three-dimensional
(3D) cubic crystals including diamond, silicon, and germa-
nium [3–5] have shown that isotopic impurities considerably
suppress the thermal conductivity at intermediate temperatures
near the peak in κ . Two-dimensional (2D) hexagonal layered
structures, such as single-layer graphene [6] and hexagonal
boron nitride (h-BN) [7,8], as well as quasi-2D bulk graphite
[9,10] and h-BN [11], are known to possess high in-plane
κ due to large crystallite sizes, light atomic masses, and
strong interatomic bonding in the basal plane. Isotope impurity
scattering in the low-concentration independent scattering
regime [12] is relatively well understood for both 3D [13]
and 2D [14,15] cases, although there is still uncertainty in
the exact scattering rate expression for quasi-2D graphite.
In comparison, a number of coherent scattering phenomena
have been predicted for isotope impurity scattering in the
high-concentration regime [14,16,17] and remain to be better
understood. In this regime, whether and how interference
among the scattered lattice waves can play an important role
in the measured thermal conductivity is one of the central
topics in recent phonon transport investigations [16]. One
issue in question is whether such wave interference can result
in an observable phonon localization phenomenon and a
much stronger isotope-scattering effect than that predicted
by the incoherent independent scattering theories [16]. In
comparison, interference of scattered electromagnetic waves
by particle agglomerates in the dependent multiple-scattering
regime has been shown to result in a smaller scattering cross
section than that predicted by the independent scattering theory
[18–20]. Although it has also been predicted that multiple
scattering of phonons in one-dimensional nanotubes [16] can
result in weaker phonon-isotope scattering than that calculated
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with such a wave interference effect ignored, it is unclear
whether such an effect is important in existing measured
thermal conductivity results of nanotubes [21], graphene [22],
diamond [3], and germanium [4] with high-isotope impurity
concentrations. Clarifying this question is essential not only for
correctly evaluating the impact of phonon isotope scattering
on thermal conductivity, but also for developing the currently
lacking knowledge in coherent phonon transport phenomena,
the study of which has recently been limited mainly to thin-film
superlattice structures [23,24].

Here we report a study of the effects of isotope im-
purity scattering on the measured thermal conductivity of
high-quality ultrathin graphite (UG) samples with both low-
and high-isotope impurity concentrations. The peak thermal
conductivity of the UG samples occurs at a temperature
close to 150 K and is reduced in a UG sample with about
50-at. % 13C and 50-at. % 12C compared to two other UG
samples with 1.1- and 99.2-at. % 13C, respectively. However,
our analysis suggests that the reduction is well below those
predicted by an independent incoherent isotope-scattering
model derived from perturbation theory, although the phonon
dispersion of the isotopically disordered graphite can still
be obtained from the virtual crystal approximation with the
use of an average mass. Such a discrepancy is in agreement
with recent theoretical predictions of the effects of multiple
scattering of phonons by high-concentration isotope impurities
in low-dimensional systems.

II. EXPERIMENTAL METHODS AND RESULTS

The UG was synthesized with chemical vapor deposition
(CVD) on the surface of commercially available nickel foams
as discussed in Ref. [25]. The isotopic concentration of
each obtained ultrathin graphite foam (UGF) was controlled
through the methane source: (i) 1.1-at. % 13C UGF used
methane with the naturally occurring isotopic concentration
(98.9-at. % 12C), (ii) 50.2-at. % 13C UGF used equal partial
pressures of natural methane and isotopically enriched 13C
methane (99.2-at. % 13C), and (iii) 99.2-at. % 13C UGF used
isotopically enriched 13C methane. The nickel was etched
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FIG. 1. (Color online) SEM images of (a) UGF, (b) the surface
of as-grown UGF, and (c) the surface of UGF after postsynthesis
annealing at 3000 °C. (d) XRD of the annealed UGF shown in
comparison with the reflection positions of highly oriented pyrolytic
graphite (HOPG) [56]. The intensities have been normalized to the
{0002} peak. [(d), inset] High-resolution XRD of the {0004} peak.

using (NH4)2S2O8 (1 M) at 80 °C for about 1 week followed
by HNO3 (0.5 M) at 80 °C for about 3 days. In order to clearly
observe the isotopic effect on thermal conductivity, the sample
should possess high crystalline quality so as to minimize
phonon scattering by defects and grain boundaries. We there-
fore performed postsynthesis annealing of the UGF at 3000 °C
for 1 h in argon at positive pressure. A high-resolution scanning
electron microscope (SEM) was used to examine the condition
of the UGF strut walls before and after annealing. X-ray
diffraction (XRD) was conducted using the Cu Kα1 x-ray line,
λ = 0.154 08 nm. The unit-cell parameters were measured to
be a = b = 2.467 5 and c = 6.745 2 Å before annealing and
a = b = 2.465 9 and c = 6.737 0 Å after annealing. Based on
SEM (Fig. 1) analysis, annealing the UGF had an observable
effect on the surface morphology of the UG constituents,
suggesting mesoscale ordering improvement in the highly
ordered as-grown material was achieved upon annealing.

A high-precision electronic balance was used to determine
the mass density and volume fraction of the UGF. The mass
densities of the UGF samples were (2.74 ± 0.01) × 10−2,
(2.40 ± 0.01) × 10−2, and (2.67 ± 0.01) × 10−2 g cm−3 for

FIG. 2. (Color online) Temperature-dependent electrical proper-
ties of UGF after postsynthesis annealing. The isotopic con-
centration of 13C in 12C for the UGF samples is 1.1% (green
down triangles), 50.2% (red diamonds), and 99.2% (blue circles).
(a) Measured low-bias electrical resistance (RUGF) and (b) normalized
low-bias resistance change with temperature at each temperature
(dRUGF/dT )/RUGF. (c) Electrical resistivity (ρUGF) of the UGF.
(d) Solid electrical resistivity of the ultrathin graphite (ρUG) within
the UGF, calculated using the foam theory of Lemlich [27], ρUG =
(φ/3)ρUGF, where ϕ is the volume fraction. Shown in comparison are
values for highly oriented pyrolytic graphite deposited at 2250 °C
(HOPG, gray crosses) [57], HOPG deposited at 2200 °C, subse-
quently heat-treated HOPG (HT-HOPG) at 3200 °C (gray asterisks)
[10], and single-crystal graphite (SC-G, gray stars) [58]. [(d), inset]
ρUG of the 50.2- and 99.2-at. % 13C samples normalized by that of the
1.1-at. % 13C sample. The legend shown in panel (a) applies to panels
(a)–(d).

1.1%, 50.2%, and 99.2% 13C, respectively. Based on the mea-
sured mass density data, the corresponding volume fractions
ϕ of the UGF in this paper are 1.21 ± 0.05, 1.06 ± 0.05,
and 1.19 ± 0.06 vol. % for the samples with 1.1%, 50.2%,
and 99.2% 13C, respectively. The ϕ values are comparable to
those reported in other recent papers [25,26]. Based on the
measured volume fraction and pore size, the wall thickness of
the synthesized UG is estimated in the range between tens of
nanometers and nearly micrometer scale.

Compared to planar few-layer graphene or UG grown
by CVD on a planar nickel substrate with a comparable
layer thickness, the macroscopic size of the UGF structure
used in this study allows it to be handled and measured
relatively readily by an electrothermal method over a large
temperature range [25] (see Appendix A). The measured
electrical resistance of the UGF RUGF is shown in Fig. 2
along with the electrical resistivities of the UGF ρUGF, the UG
within the UGF ρUG, and the normalized change in electrical
resistance with the temperature of the UGF. The solid electrical
resistivity of the UG strut walls was calculated using the
foam theory of Lemlich [27], ρUG = (φ/3)ρUGF. We note that
the room temperature ρUG of the 50.2- and 99.2-at. % 13C
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FIG. 3. (Color online) (a) Measured thermal conductance of the
UGF samples (GUGF) determined with (filled symbols) and without
(open symbols) the inclusion of radiation in the heat transfer
model, i.e., Eqs. (3) and (5) in Ref. [25], respectively. The isotopic
concentration of 13C in 12C for the UGF samples is 1.1% (green
down triangles), 50.2% (red diamonds), and 99.2% (blue circles).
(b) Measured effective thermal conductivity of the UGF (κUGF)
versus temperature. The legend shown in panel (a) applies to panels
(a) and (b).

samples is approximately 15% higher and 14% lower than
that of the 1.1-at. % 13C sample. Such small variation in the
electrical resistivity can be caused by similar variations in the
charge-carrier concentration or mobility in the three samples.

The effective thermal conductance of the UGF GUGF is
shown in Fig. 3 and was obtained from the electrical resistance
RUGF, measured during electrical self-heating of the UGF
by coupling a small ac current (∼10−3 A) to the dc current
and measuring the ac voltage drop using a lock-in amplifier.
When the frequency of the ac current is sufficiently high
compared to the thermal response of the sample [25,28], the
average temperature rise in the suspended UGF θ̄ can be
obtained from the RUGF measured by the lock-in technique
and the measured dRUGF/dT . GUGF can then be obtained
using the following expression incorporating radiation heat
loss from the sample surface [25,29]:

GUGF ≡ κUGFA

L
= − Q̇

m2L2θ̄

[
2

mL
tanh(m L/2) − 1

]
, (1a)

where

m ≡
√

hrP

κUGFA
, (1b)

and

hr = 4εUGF (T0) σ T 3
0 . (1c)

In the above equations, L is the suspended length of the sample,
P = 2(w + t) and A = wt are the effective perimeter and
cross-sectional area, respectively, w and t are the width and
thickness, respectively, εUGF(T ) is the temperature-dependent
total hemispherical emissivity and was measured to be near
unity [25], σ is the Stefan-Boltzmann constant, and T0 is the
environment temperature. The measured thermal conductance
data of the UGF samples suggest that the radiation loss is
not negligible at high temperatures and if not accounted
for can lead to overestimation of GUGF by 17%–21% at
room temperature but only contributes less than 5% to the
total thermal conductance below 200 K. With the radiation
heat loss accounted for, the effective thermal conductivity of
the UGF κUGF reached a maximum of 5.5 ± 0.2, 4.3 ± 0.2,
and 5.4 ± 0.3 W m−1 K−1 for 1.1%, 50.2%, and 99.2% 13C
isotopic concentrations at ∼150 K, respectively (Fig. 3).

To determine the solid thermal conductivity κUG of the
UG within the UGF, we use the approach of Schuetz and
Glicksman [30] to obtain κUG = (3/�)κUGF, which is shown
in Fig. 4. The κUG of the UGF samples reached a maxi-
mum of 1375 ± 85, 1209 ± 86, and 1369 ± 101 W m−1 K−1

for 1.1%, 50.2%, and 99.2% 13C isotopic concentrations at
∼150 K, respectively, illustrating a small effect of isotopic
impurity scattering at temperatures near the peak in thermal
conductivity. We note that the uncertainty expressed in the
above solid thermal conductivity values is mainly due to the
uncertainty in measured density and hence volume fraction,
which is on the order of 4% to 5% and does not affect
the observed temperature-dependent trends. The variation
in room temperature κUG was marginal and comparable
to the measurement uncertainty 880 ± 54, 819 ± 58, and
854 ± 63 W m−1 K−1 for 1.1%, 50.2%, and 99.2% 13C isotopic
concentrations, respectively. Above room temperature, κUG

is found to decrease rapidly with increasing temperature,
suggesting phonon-phonon scattering processes are dominant
at this temperature range in the highly ordered crystalline
materials. In addition, the solid thermal conductivity values for
the three samples are nearly identical at temperatures below
about 50 K, suggesting that the grain sizes are similar for the
three samples because grain-boundary scattering is expected
to be the dominant mechanism in the low-temperature regime.

In order to gain a better understanding of the phonon dy-
namics underlying the observed thermal conductivity results,
the UGF samples were characterized with Raman spectroscopy
at different laser excitation energies of 1.96 eV (632.8 nm),
2.41 eV (514.5 nm), and 2.54 eV (488.0 nm). The Raman mea-
surements were carried out after calibration to the first-order
peak associated with scattering by the zone-center optical-
phonon polarization of crystalline Si (111) at ∼520 cm−1

[31,32]. As shown in Fig. 5, other than the G peak associated
with scattering by the longitudinal-optical (LO) polarization
at the Brillouin-zone center [33], no other first-order peaks
(e.g., D peak) were detected for the UGF. As the D peak
is associated with scattering between excited electrons and
one in-plane transverse-optical (iTO) phonon and one defect,
the absence of the D peak in the Raman spectra reveals the
high crystal quality of the CVD UGF samples. The measured
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(a)
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FIG. 4. (Color online) (a) Solid thermal conductivity of the UG
(κUG) versus temperature for 13C concentration of 1.1% (green down
triangles), 50.2% (red diamonds), and 99.2% (blue circles). The lines
are the calculated thermal conductivity based on the fitting parameters
discussed in the text for different 13C concentrations. (b) Calculated
solid thermal conductivity normalized by the theoretical value for
isotopically pure 12C graphite (κUG/κ12C) as a function of 13C isotopic
concentration at temperatures of 152 K (purple down triangles) and
303 K (orange circles). In one calculation, the isotope-scattering
coefficient B is taken to be Bi = π/4 for the in-plane mode and
Bo = π/2 for the out-of-plane modes. In another calculation, the two
B coefficients are reduced to Bi = π/10.8 for the in-plane mode and
Bo = π/5.4.

Raman spectra contain second-order peaks associated with
double-resonance scattering by two LO phonons near the zone
center, by two iTO phonons near the zone boundary, and by
one iTO phonon and one longitudinal-acoustic (LA) phonon
near the zone boundary [33–35]. Whereas the first-order peaks
are insensitive to excitation energy, these second-order peaks
exhibit apparent dependence on the laser excitation energy
as shown in Fig. 5. Such dependence can be used to extract
the phonon dispersion of the UGF samples with different
isotope impurity concentrations as discussed below and in
Appendix C.

III. THEORETICAL ANALYSIS

One critical question is on the effect of isotopic disorder
on the phonon dispersion of the UGF samples. In particular,
it is important to evaluate whether the phonon dispersion of
the high-isotope impurity-concentration sample can still be
described with the virtual crystal approximation [36] where the

(a)

(b)

(c)

(d)

FIG. 5. (Color online) (a) Raman spectra normalized to the G

peak intensity using 2.41-eV laser energy. The isotopic concentration
of 13C in 12C for the UGF samples is 1.1% (green line), 50.2% (red
line), and 99.2% (blue line). [(a), inset] The Raman peak positions
(ω) normalized by those for 1.1-at. % 13C UGF exhibit the predicted
dependence on the average atomic mass for Raman-active phonon

modes, i.e., ω/ω1.1% 13C = (
M/M1.1% 13C

)−1/2
. The Raman peaks are

labeled on the 1.1-at. % 13C spectra in the main panel where circles
and down triangles correspond to near-zone-center LO and 2LO
processes, respectively, and asterisks, diamonds, and stars denote
near-zone-boundary iTO + LA, 2iTO along �–K, and 2iTO along
K–M processes, respectively. (b)–(d) Raman spectra of graphite
foams with (b) 1.1%, (c) 50.2%, and 99.2% 13C excited by 2.54-eV
(blue), 2.4-eV (green), and 1.96-eV (red) laser energies. Legend in
(b) applies to all panels (b)–(d).

system is approximated as a homogeneous crystal with a single
average mass (M) of the actual crystal with isotope impurities.
To address this question, we have first calculated the phonon
dispersions for each isotopic concentration at which κUG is
calculated, from pure 12C to pure 13C, using the virtual crystal
approximation and ab initio density functional perturbation
theory (QUANTUM ESPRESSO) [37]. In accordance with a prior
paper [38], the phonon-dispersion calculations were based
on fixed lattice constants of a = 2.458 and c = 6.701 Å, the
generalized gradient approximation, and a plane-wave basis
set with a wave-function cutoff of 60 Ry and a charge-density
cutoff of 600 Ry with ultrasoft pseudopotentials for carbon
created by the Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ)
method. The plane-wave self-consistent calculations were
carried out on a k-point grid of 8 × 8 × 4. The interatomic
force constants were calculated from dynamic matrices on a
5 × 5 × 4 Monkhorst-Pack q-vector phonon grid that allowed
for determination of the phonon frequencies at arbitrary wave
vectors q. As shown in Fig. 6, the obtained zone-boundary
optical-phonon frequency and sound velocities exhibit the
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FIG. 6. (Color online) (a) Calculated phonon dispersion for bulk
graphite with 1.1-at. % 13C (green solid lines), 50.2-at. % 13C (red
dashed-dotted lines), and 99.2-at. % 13C (blue dashed lines) isotopic
concentrations using the virtual crystal approximation. Experimental
dispersion data obtained from first-order (filled symbols) and derived
from second-order (open symbols) Raman scattering using an
ab initio electron band-structure calculation for graphite is shown
for UGF with 13C concentrations of 1.1% (green down triangles),
50.2% (red diamonds), and 99.2% (blue circles). (b) Near-zone-center
phonon group velocity (sound velocity, vs ≡ limq→0∇qω) taken along
�-M for the LA and in-plane transverse acoustic (iTA) polarizations
as a function of 13C isotopic concentration. [(b), inset] The sound
velocities normalized by that for 12C graphite exhibit the expected

dependence on atomic mass, i.e., vs/vs, 12C = (
M/M12C

)−1/2
. (c)

Calculated volumetric specific heat c versus temperature for 13C
concentrations of 1.1 at. % (green solid line), 50.2 at. % (red dash-dot
line), and 99.2 at. % (blue dashed line). [(c), inset] Due to the reduced
group velocity of isotopically enriched graphite, c for 50.2- and
99.2-at. % 13C is higher than that for pure 12C at the temperature
range of calculation, i.e., below 500 K.

expected M
−1/2

dependence. In addition, it is worth noting
that the specific heat calculated from the obtained dispersion
for 50.2- and 99.2-at. % 13C is higher than that for pure 12C
at low temperatures due to the reduced group velocity of the
isotopically enriched material.

In order to evaluate the accuracy of the phonon dispersion
calculated with the virtual crystal approximation, the first-
and second-order Raman peak positions obtained at different
laser energies were analyzed according to an approach similar
to those reported recently [33–35] to obtain the phonon
energies at different phonon wave vectors. Instead of making
the isotropic linear dispersion assumption at the K and K′
points, we obtained the excited and scattered electron wave
vectors using an ab initio electron band structure for graphite
calculated by density functional theory [37] in a method similar

FIG. 7. (Color online) First-order (left panel) and second-order
(right panel) Raman modes measured in the UGF samples with
(a) 1.1%, (b) 50.2%, and (c) 90.2% 13C in comparison with ab initio
phonon dispersions. Red, green, and blue symbols indicate experi-
mental data obtained using laser exitations at 1.96 eV (632.8 nm),
2.41 eV (514.5 nm), and 2.54 eV (488.0 nm), respectively.

to Ref. [38] (see Appendix B). In addition, the electron energy
loss by phonon scattering is accounted for in our analysis as
explained in Appendix C. As shown in Fig. 7, the mapping
of the measured 2LO, 2iTO, and iTO + LA Raman modes
along the �–K direction and the first-order mode all match
well with the ab initio phonon dispersion calculated with the
virtual crystal approximation. The mapping of the measured
2iTO frequency along K–M is just somewhat lower than the
ab initio phonon dispersion.

We note that the virtual crystal approximation does not take
into account the exact atomic positions of atomic impurities.
However, the mass difference between 12C and 13C is small
so that the calculated phonon dispersions for nearly pure
12C and 13C graphite are still rather similar. In addition, our
measured Raman G peak and 2D peaks even for the 50% 13C
graphite sample are still rather similar to those of low-isotopic
impurity concentrations. Moreover, the measured Raman peak
positions for both near-zone-center and near-zone-boundary

phonons clearly exhibit the M
−1/2

dependence predicted by
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the virtual crystal approximation [Fig. 5(a), inset], in agree-
ment with earlier measurements of graphene with different
isotope concentrations [22,39]. Hence, even the 50% impurity
concentration sample can still be treated as a virtual crystal
with clearly defined phonon dispersion of graphite as opposed
to a highly disordered system or amorphous solid. As such, the
thermal conductivity of the isotopically disordered graphite
samples should still be described by that established for crys-
tals with well-defined lattice vibration modes, instead of with
the Allen-Feldman diffusion model [40] for describing random
walks of thermal energy in disordered or amorphous solids.

Hence, we have analyzed the measurement results with a
theoretical model for in-plane bulk graphite thermal conductiv-
ity based on the following solution to the Boltzmann transport
equation under the relaxation time approximation (RTA) [41]
and with the use of the full phonon dispersion calculated for
the entire Brillouin zone of graphite [42]:

κUG =
6∑

p=1

κp = �
2

8π3kBT 2

6∑
p=1

qmax∑
q=0

τpv2
x,pω2

p

× e�ωp/kBT

(e�ωp/kBT − 1)2 �q3, (2)

where � and kB are the reduced Planck constant and Boltzmann
constant, respectively, T is the temperature, τ is the relaxation
time, ω and q are the phonon angular frequency and wave
vector, respectively, �q3 is the volume of each element within
the discretized Brillouin zone, and vx is the component of
phonon group velocity (v) parallel to the transport direction.
The subscript p denotes each of the six lowest-lying phonon
polarizations of AB stacked graphite. The direct contribution
of the six remaining optical modes to the thermal conductivity
is expected to be small due to low occupation probability
in the temperature range considered here as well as strong
scattering of high-frequency modes [15]. This model does not
include the Callaway term for correcting normal scattering
[4,5,43] because such a correction is found to be important
only for highly pure low-defect samples and is deemed to be
unnecessary for the polycrystalline samples with appreciable
isotope impurity concentrations [4].

To calculate the total relaxation times τ for each phonon po-
larization, we consider the contributions of phonon-boundary
(τb), phonon-impurity (τi), and anharmonic phonon-phonon
(τanh) scattering processes. These contributions are combined
according to Matthiessen’s rule τ−1 = τ−1

b + τ−1
i + τ−1

anh.
Phonon-boundary scattering for a given mean-free path for all
polarizations lb is obtained as τb

−1 = |v|/lb. In the incoher-
ent independent scattering regime, phonon-isotope impurity
scattering has been obtained according to a commonly used
analytical model derived by Tamura [13], based on the original
model of Klemens [12] and perturbation theory, and later
refined by Lindsay et al. for graphene as [15]

τ−1
i = Bg2V0ω

2D(ω), g2 =
∑

j

cj (1 − Mj/M)
2
, (3)

where g2 is the second-order mass variance parameter, cj

is the j th impurity concentration, Mj and M are the j th
impurity and average atomic masses in a crystal with mixed
isotopes, respectively, V0 = 33/2a2

c−c δ/4 is the volume per

atom, ac−c and δ are the carbon-carbon nearest-neighbor
distance and interlayer spacing, respectively, D(ω) is the
polarization-specific phonon density of states, and B is a
polarization-independent constant. The value of B has been
derived as π/6 for a three-dimensional cubic crystal [13]
and becomes π/4 and π/2 for the in-plane and flexural (out-
of-plane) phonon polarizations of two-dimensional graphene
[15].

Compared to the original model by Klemens [12], the
models of Tamura [13] and Lindsay et al. [15] do not
assume the Debye approximation and allowed for the use
of the actual phonon dispersion and density of states, which
are calculated from first principles and incorporated into the
isotope-scattering model with a numerical approach in this
paper. The validity of these different versions of the Klemens
model in the high-isotope impurity-concentration regime is the
focus of this paper and examined in a subsequent section.

The umklapp phonon-phonon scattering rate is calculated
according to the relaxation time approximation of Klemens
and Pedraza [44],

τ−1
anh = 2γ 2 kBT

Munit cellv2

ω2

ωmax
, (4)

where γ is the polarization-specific Grüneisen parameter,
Munit cell is the mass of the graphite unit cell, and ωmax is
the zone-boundary frequency for each phonon polarization
[45]. The Grüneisen parameters in Eq. (4) are modeled as in
Ref. [25] γ = aT n, where a and n are polarization-specific
adjustable parameters made in observance of the wave-vector
dependence of γ reported in Ref. [38]. The calculated
Grüneisen parameters for the out-of-plane transverse polariza-
tions [out-of-plane transverse-acoustic (oTA) and out-of-plane
transverse-optical (oTO′) in Fig. 7] and high-frequency optical
polarizations are much larger in magnitude than for the in-
plane transverse and longitudinal modes [38]. Consequently,
Eq. (4) results in strong phonon-phonon scattering of these
polarizations, and the calculated κUG is dominated by the in-
plane acoustic and low-lying optical (LA, iTA, LO′, and iTO′)
polarizations in graphite.

By fitting the theoretical model with the low-temperature
experimental κUG, the phonon-boundary scattering mean-free
path lb was found to be 3.83 μm for all samples. This value
is 2.6 times larger than lb for the unannealed thick-layered
samples reported in Ref. [25] and indicative of the beneficial
effect of postsynthesis thermal treatment at 3000 °C. Grüneisen
parameters of γLA = γLO′ = 0.136T 0.568 and γiTA = γiTO′ =
0.055T 0.568 were used to match the calculation results with the
high-temperature thermal conductivity values for all samples.
As shown in Fig. 4, although the calculated κUG values based
on B = π/4 for the in-plane polarized modes fit well over the
entire temperature range for the low-impurity-concentration
regimes, this B value considerably overpredicts the strength
of isotope scattering in the 50% 13C sample compared to the
experimental results. The isotope-scattering strength needs to
be reduced by nearly a factor of 2.75 by using B = π/11 for
the in-plane polarized modes in order to match the calculation
result to the measured κUG of the 50% 13C sample. At this
reduced B value, the largest thermal conductivity reduction
for isotopic impurity scattering with respect to pure 12C, about
19%, occurs for 50% 13C at a temperature of ∼125 K. For other
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temperatures, the maximum reduction in κ in comparison with
isotopically pure 12C is about 18%, 14%, 8%, and 6% at 100,
200, 300, and 400 K, respectively.

In the above calculation, the RTA expressions of Klemens
and Pedraza [44] yield a negligible thermal conductivity con-
tribution from the oTA branch. However, the oTA polarization
dominates the specific heat at low temperatures. A recent
first-principles calculation by Lindsay et al. has suggested that
the thermal conductivity contribution from the oTA branch in
graphite is not as important as that in suspended graphene but is
not negligible [15]. Hence, in addition to the above calculation
for the limit of negligible oTA contribution to the thermal
conductivity, we have adjusted the Grüneisen parameters for
each polarization to obtain another limit where the relative
contribution from the oTA polarization in graphite is as large as
that calculated by Lindsay et al. for five-layer graphene. In this
case, although the independent isotope-scattering model can
fit the measured thermal conductivity of the two low-isotope
concentration samples, the isotope-scattering rate needs to be
reduced by a factor of 12.5 from the independent scattering
model in order to fit the sample with 50% 12C and 50% 13C as
shown in Appendix D.

Hence, the two calculations for both negligible and sig-
nificant oTA contributions suggest that the isotope-scattering
rate in the high-concentration sample is considerably smaller
than that calculated by the independent scattering model. This
discrepancy can be either caused by the inaccuracy in the
calculation of the phonon-defect or phonon-phonon scattering,
or suggest the failure of the independent isotope-scattering
model in the high-isotope concentration regime. For example,
the isotope effect is expected be small in samples with a high
concentration of other point defects, such as vacancies besides
isotope impurity. However, such point defects are expected
to yield an observable Raman D peak, which is absent for
our samples. Another possibility is that the ignorance of the
correction term for the normal processes in the two calculations
results in an underestimation of the thermal conductivity con-
tribution from the low-frequency long-wavelength phonons,
which are not scattered much by isotope impurities. However,
increasing the relative contribution from these low-frequency
phonons is expected to alter the temperature dependence of
the calculated thermal conductivity.

Although it remains a question whether the discrep-
ancy is caused by the inaccuracy in the phonon-phonon
scattering model used in the calculation, the discrepancy
is in agreement with a recent theoretical finding of the
lower-isotope-scattering rate in the high-concentration regime
[16] than the independent scattering model [13]. In arriving
at the independent scattering expression of Eq. (3) [13],
Tamura assumed randomly distributed isotope impurities and
dropped the phase factor and higher-order variance parameter
terms gn ≡ ∑

j cj (1 − Mj/M)
n
, in agreement with Klemen’s

assumption that interference terms cancel in the average for
randomly distributed defects [46]. Even at these high-isotope
concentrations, the difference between the atomic mass of
any isotope from the average mass is still small so that gn’s
decrease rapidly with increasing n above 2. Tamura considered
corrections due to higher-order contributions to account for
effects of wave interference due to multiple scattering by
the same or different isotope sites [13] and concluded that

such a correction was negligibly small for the case of a Ge
sample with g2, g3, and g4 being 5.87 × 10−4, 7.1 × 10−7, and
7.57 × 10−7, respectively. Therefore, it has been assumed in
most prior reports that such independent scattering expressions
are still adequate in describing the experimental thermal
conductivity data of 3D crystal structures in the high-isotope
impurity regime. For example, such independent scattering
models have been used for calculating the isotope impurity
scattering rate in the high-isotope impurity regime for Ge, BN,
and SiC [4,5] with g2 values of 1.53 × 10−3, 1.61 × 10−3, and
1.45 × 10−3, respectively. As one exception, Berman et al.
[47] noted that their measured thermal conductivity results
of LiF crystals at high-isotope concentrations were higher
than those predicted by Klemens’s independent scattering
model, although they stated that the validity of the independent
scattering expression is not limited explicitly to a particular
range of concentrations, provided that the imperfections scatter
only through their mass deviation. However, in a subsequent
paper, Berman and Brock [48] stated that Klemens’s isotope-
scattering rate model could explain their LiF data even in the
high-isotope impurity-concentration regime.

In comparison, g1 = g3 = 0, g2 = 1.6 × 10−3, and g4 =
2.56 × 10−6 for the 50% 13C sample. The g2 value is still
comparable to those for the reported Ge, BN, and SiC samples
[4,5]. In addition, the g4/g2 is as small as 1.6 × 10−3, which
would still result in negligible higher-order corrections based
on Tamura’s analysis [13]. However, with wave interference
effects due to multiple scattering accounted for in a Green’s
function calculation of the phonon transmission function,
Savić et al. obtained the isotope-scattering rate was lower
than the incoherent approximation by a factor of 2 or larger
in carbon nanotubes and boron nitride nanotubes with isotope
impurity concentration larger than 10% [16]. Although such
a first-principles calculation remains an unresolved compu-
tational challenge for the complex UG samples measured in
this experiment, the factor of 2 or larger difference found by
Savić et al. for nanotubes is rather close to the reduction in the
Bi parameter from π/4 to π/11 in order to match the above
calculation with the experimental κUG values of the 50% 13C
sample. This similarity suggests that multiple scattering is an
important factor of the reduced B parameter.

IV. SUMMARY

The enhanced crystal quality of the annealed 2D UG
structures has enabled the experimental finding of the sup-
pressed isotope-scattering rate in the high-isotope concentra-
tion regime compared to the incoherent independent isotope-
scattering model, which has been assumed in most prior
investigations to be adequate for analyzing experimental ther-
mal conductivity data for crystals with high-isotope impurity
concentrations. This finding is in agreement with two recent
theoretical predictions [16,17] that wave interference effects
due to multiple scattering are important in the high-isotope
impurity regime in low-dimensional high-κ materials where
isotope scattering is an important mechanism. Hence, while
phonon coherence effects have recently been suggested to be
observable in the measured thermal conductivity of some thin-
film superlattice structures [23,24], the experimental results
reported in this paper emphasize another phonon transport
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process where consideration of coherent phonon transport is
necessary. Additionally, our Raman measurement results show
that the virtual crystal approximation is still accurate for the
calculation of the phonon distribution in graphite with large
isotope impurity concentrations. These findings are expected
to motivate further investigations of theoretical computational
models to accurately evaluate the coherence isotope-scattering
effects in ultrathin graphite and other materials.
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APPENDIX A: THERMAL CONDUCTIVITY
MEASUREMENT

UGF samples, approximately 33–38-mm long, 4.9–5.8-mm
wide, and 1.58–1.62-mm thick, were fixed at each end to a
copper heat sink using a high thermal conductivity electrically
insulating epoxy. Four electrodes were attached to the two ends
of the suspended sample using an electrically conducting silver
epoxy as shown in Fig. 8. The suspended length of the UGF
samples was 25.0–25.5 mm. The samples were then placed

FIG. 8. (Color online) Top-view photograph of the experimental
setup for measuring the electrical and thermal properties of UGF.
Units of integers printed on ruler are in centimeters.

FIG. 9. (Color online) ab initio electron band structure of
graphite. The red lines indicate the π and π∗ bands, i.e., valence
and conduction bands, respectively, along the �–K–M direction used
in the electron-scattering analysis. Dashed lines indicate σ and σ ∗

bands.

into a vacuum cryostat connected to a turbomolecular pumping
system, which maintained a vacuum level of ∼10−6 Torr. The
local environment temperature surrounding the UGF samples
was actively controlled through a cryogenic temperature
controller. A direct current power supply and high power
resistors were used to source a dc current Idc through the
suspended UGF, raising its temperature through Joule heating
Q = I 2

dcRUGF.

APPENDIX B: COMPUTATIONAL METHOD

The electron band structure of graphite was calculated using
the ab initio calculation package QUANTUM ESPRESSO [37]. In
accordance with Ref. [38], fixed lattice constants of a = 2.458
and c = 6.701 Å, the generalized gradient approximation, and
a plane-wave basis set with a wave-function cutoff of 60 Ry and
a charge-density cutoff of 600 Ry were used for all calculations
with ultrasoft pseudopotentials for carbon created by the RRKJ
method [49]. The plane-wave self-consistent calculations were
carried out on a k-point grid of 8 × 8 × 4. The electron band
structure is shown along high-symmetry points in Fig. 9.

APPENDIX C: RAMAN SPECTROSCOPY ANALYSIS

In order to obtain information about the phonon dispersion
of isotopically disordered graphite, we have used Raman
spectroscopy combined with an ab initio electron band-
structure calculation. Quantitative analysis was conducted
using multienergy Raman spectroscopy based on methods
reported previously [33–35,50–53], which extract the phonon
frequency-wave-vector relationship by varying the momentum
of electron-hole pairs generated using multiple laser excitation
energies.

Raman spectroscopy was conducted using a Ramascope
System 2000 (Renishaw plc) with three different laser wave-
lengths after calibration to the first-order peak associated with
scattering by the zone-center optical-phonon polarization of
crystalline Si (111) at ∼520 cm−1 [31,32]. Laser excitation
wavelengths of 488.0 nm (2.54 eV) and 514.5 nm (2.41 eV)
were generated with an argon-ion source (Stellar-Pro Select
150, Modu-Laser, LLC), and the laser excitation wavelength
of 632.8 nm (1.96 eV) was generated with a helium neon

035429-8



SCATTERING OF PHONONS BY HIGH- . . . PHYSICAL REVIEW B 91, 035429 (2015)

source (Research Electro-Optics, Inc.). The UG samples
were supported on a glass substrate, and Raman spectra
were collected for around 1 h each in order to increase the
signal-to-noise ratio. The Raman G peak, corresponding to
scattering with a single zone-center LO phonon, does not
display excitation energy dependence, whereas the 2D peaks,
corresponding to scattering by two phonons with nonzero wave
vectors, display noticeable excitation energy dependence since
the wave vector of the participating phonons is dependent
on the wave vector of the excited electron-hole pair. This
feature allows us to map the phonon frequency-wave-vector
relationship of the isotopically engineered UG as discussed
below.

1. First-order Raman modes

Graphite’s G peak arises from the E2g vibrational mode
and is associated with the LO phonon polarization near the �

point in the Brillouin zone so that the corresponding phonon
wave vector of G-mode phonons is assigned at the � point
[33]. Graphite’s D peak is associated with scattering between
excited electrons and one iTO phonon and one defect. In this
study, no D mode was observed. This finding is indicative
of the highly ordered nature of the CVD grown samples as
evidenced by x-ray-diffraction analysis.

2. Second-order Raman modes

The second-order process associated with an excited elec-
tron scattered by two phonons, instead of one phonon and
one defect, comes from the double-resonant Raman-scattering
processes shown in Fig. 10. The incident laser energy E1

stimulates an electron from the valence band to the conduction
band creating an electron-hole pair with a certain wave vector
k1. The excited electron’s wave vector k1 was determined
by finding the electron-hole pair with energy difference E1

around the K or K′ points of the ab initio electronic π and
π∗ bands depicted schematically in Figs. 10(b)–10(d). The
excited electron is then inelastically scattered to another real
state E2 in which process a phonon is created. The real state
E2 with electron wave vector k2 was obtained by the following
expression:

E2 = E1 − �ωph, (C1)

where ωph is the frequency of the created phonon. The electron
at state E2 is then inelastically scattered by a second phonon
back to a virtual state which has the same electron wave vector
as the real state E1(k1). To calculate the phonon energy for the
double-resonance processes, we must have information about
which specific processes are involved. For example, the Raman
2D and 2G peaks involve scattering by two identical iTO

FIG. 10. (Color online) Double-resonant Raman-scattering processes. (a) Brillouin zone of graphite showing electron energy contours
(black dashed lines). Intervalley scattering processes q1 (orange solid arrow) involve two phonons belonging to the iTO branch along the �–K
direction. Intervalley scattering processes q2 (teal solid arrow) involve two phonons belonging to the iTO branch along the K-M direction as q2

can be translated with a reciprocal lattice translational vector to lie along K–M. Intravalley scattering processes q3 (magenta solid arrow) involve
two phonons belonging to the LO branch. The corresponding dashed arrows have the same directions and lengths as the solid arrows and are
used to denote the phonon wave vectors originating from the Brillouin-zone center (� point). (b)–(d) Energy wave-vector diagrams indicating
corresponding scattering processes in (a). Photon energy resulting in the creation of an electron-hole pair E1, corresponding electron wave
vector k1, energy loss by phonon generation �ωph, and corresponding electron wave vector k2, are indicated on each graph and are exaggerated
for clarity.
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phonons and two identical LO phonons, respectively, hence
we have defined the frequency of each created phonon as

ωph,iTO = ωph,2iTO

2
and ωph,LO = ωph,2LO

2
. (C2)

In the above equations, ωph,2iTO and ωph,2LO are the frequencies
of the second-order Raman modes 2iTO and 2LO. For double-
resonance scattering involving muliple polarizations, e.g., one
iTO and one LA phonon, we cannot directly use the measured
phonon frequency in Eq. (C1) because the two nonidentical
phonons have different frequencies. Thus to determine E2 we
use the phonon energy for the LO polarization determined from
1
2ωph,2LO since the excited electron has been observed to first
scatter with an optical phonon then relax by scattering with
an acoustic phonon [54]. Since the first scattering process is
identical for iTO + LA and 2iTO, the phonon wave vector
involved is the same for both processes and justifies this
method. The electronic band structure for graphite (Fig. 9)
is then used to determine the value of the scattered electron’s
wave vector at E2(k2).

The inelastic processes involved in double-resonance scat-
tering can occur within the same electronic band or between
two different electronic bands. However, resonance is canceled
due to destructive interference effects for scattering across
the � point between two nonparallel electronic bands [50].
Thus, the two possible double-resonance scattering processes
are as follows: (i) intervalley scattering across the the � point
between nonidentical K points, namely, the K and K′ points and
(ii) intravalley scattering across the K or K′ point or between
identical K points, which will be discussed in the following
sections.

a. Intervalley scattering

Intervalley scattering between K and K′ electrons creates a
phonon with a wave vector of q1 or q2 depending on whether
the electron is scattered along slow or fast transport directions.
In order to conserve momentum, the magnitude of the phonon
wave vector involved in the scattering process is determined
from the difference between the excited and the scattered
electron wave vectors k1 and k2, respectively, which connects
a real state at E1(k1) located around the K point to another real
state E2(k2) located around the K′ point [Figs. 10(a)–10(c)].
The phonon wave vectors are then determined as

q = k�−K ± (|k1| + |k2|), (C3)

where k�−K is the magnitude of the zone-boundary wave
vector at K, k1 is determined from the laser exitation energy
and electron band structure, and k2 is determined as per
Eq. (C1). The two values of q for intervalley scattering arise
from the anisotropic electron dispersion around K, which
consists of a fast transport direction along �-M and a slow
transport direction along K-M. Based on the Raman D mode’s
cross-sectional integration, the lower intensity peak of the D

mode occurs for the scattering between two locations along
the slow transport direction, whereas the higher intensity peak
of the D mode occurs for the scattering between two locations
along the fast transport direction [50,55]. Considering that
the Raman 2D mode is the second-order overtone of the D

mode, we assign the lower intensity 2D1 mode to electron
scattering between two slow transport locations denoted as

q1 in Figs. 10(a) and 10(b), whereas the higher intensity
2D2 mode is assigned to electrons scattered between two fast
transport locations denoted as q2 in Figs. 10(a) and 10(c). This
results in q1 lying along the �-K direction and q2 lying along
the K-M direction as shown in Fig. 10(a).

An additional intervalley scattering process involves one
iTO and one LA phonon. The excited electron first scatters
with an iTO phonon, then is relaxed to the virtual electronic
state in a process involving an LA phonon. For this reason,
the phonon wave vector for the iTO + LA polarization is the
same as for the 2iTO polarization. The iTO + LA frequency
only satisfies the experimentally observed frequencies along
�–K, and so we only plot this process along the �–K direction
similar to Refs. [33,34].

b. Intravalley scattering

The phonon created during the intravalley double-
resonance scattering process across K (or across K′) has a
wave vector q3 around the � point [Figs. 10(a) and 10(d)]. Two
possible scattering processes can originate from both sides of
the K point and create phonons with wave vectors q ′

3 and q ′′
3

as shown in Fig. 10(d). Since �ωph is much less than E1, the
phonon energy is usually neglected to yield q3 ≈ 2k1, where
k1 is calculated from the electronic band structure without
considering phonon energy loss �ωph [50]. We do not make
this assumption here. The difference in phonon wave vectors
q ′

3 and q ′′
3 arising from the two distinct intravalley scattering

processes is small compared with the difference of the two
intervalley scatterings discussed in Appendix C 2 a, and so we
define the intravalley phonon wave vector as the average of q ′

3
and q ′′

3 as [50]

q ′
3 or q ′′

3 = |k1 + k2|, (C4a)

q3 = q ′
3 + q ′′

3

2
. (C4b)

3. Comparison with ab initio phonon dispersion

With the excitation energy-phonon wave-vector relation-
ships defined above, we can now estimate the uncertainty.
As we are using the ab initio electron band structure and
hence have not assumed a linear or isotropic E(k) relationship
around K, the major source of uncertainty is in determining
E2(k2). In the case that the phonon energy �ωph is neglected
in Eq. (C1), we calculated that the scattered electron energy
E2 is overestimated by 6.6%–10.1% for E1 = 2.54 − 1.96 eV
for all Raman active modes and all UG samples. The phonon
wave vector then has uncertainties arising from the uncertainty
in k2 as per Eq. (C3), which is on the order of −4.2%
to 1.9%. In order to avoid these uncertainties, we have
accounted for inelastic energy losses in our calculations,
and thus we do not expect uncertainties in our phonon
frequency-wave-vector determination to be greater than this
range.

We compare the first-order Raman G mode (LO) and the
second-order Raman modes (2LO, 2iTO, and iTO + LA) with
the ab initio phonon-dispersion calculation described in the
main text. The experimental phonon dispersion matches the
ab initio phonon dispersion well for the LO, 2LO, and iTO
+ LA polarizations. The measured 2iTO phonon frequency

035429-10



SCATTERING OF PHONONS BY HIGH- . . . PHYSICAL REVIEW B 91, 035429 (2015)

along �–K is slightly lower than the ab initio frequency. This
small deviation is likely due to the approximations involved
in computational modeling of the ab initio phonon-dispersion
calculation.

APPENDIX D: THERMAL CONDUCTIVITY MODELING
WITH SIGNIFICANT CONTRIBUTION

FROM THE oTA POLARIZATION

In addition to the calculation presented in the main text
where the thermal conductivity contribution from the oTA
polarization is assumed to be negligible, here we discuss the
other limiting case where the relative contribution from the
oTA polarization with respect to the iTA and LA polarizations
is as large as that reported in Ref. [15] for five-layer graphene
by adjusting the Grüneisen parameters for each polarization. In
this case, we have used a boundary scattering mean-free path
lb = 1.7 μm to fit the low-temperature experimental thermal
conductivity of all the ultrathin graphite samples κUG. The
Grüneisen parameters of γLA = gLO′ = 0.380T 0.471, γiTA =
γiTO′ = 0.155T 0.471, and γoTA = γoTO′ = −0.044T 0.471 were
used to match the calculation results with the high-temperature
thermal conductivity values for all samples. As shown in
Fig. 11 and similar to the case presented in the main text
for negligible contribution from oTA and oTO′ polarizations,
although the calculated κUG values based on Bi = π/4 for the
in-plane polarized modes and Bo = π/2 for the oTA modes fit
well over the entire temperature range for the low-impurity-
concentration regimes, this B value considerably overpredicts
the strength of isotope scattering in the 50% 13C sample
compared to the experimental results. The isotope-scattering
strength needs to be reduced by a factor of 12.5 in order
to match the calculation result to the measured κUG of the
50% 13C sample. Thus we conclude that in this limit of
large contribution of out-of-plane polarizations to the thermal
conductivity, we need an even smaller value of B to match the
high-impurity-concentration regime, 12.5 times smaller than
the isolated impurity value.

(a)

(b)

FIG. 11. (Color online) (a) Solid thermal conductivity of the
ultrathin graphite (κUG) versus temperature for 13C concentration
of 1.1% (green down triangles), 50.2% (red diamonds), and 99.2%
(blue circles). The lines are the calculated thermal conductivity based
on the fitting parameters discussed in Appendix D for different 13C
concentrations. (b) Calculated solid thermal conductivity normalized
by the theoretical value for isotopically pure 12C graphite (κUG/κ12C)
as a function of 13C isotopic concentration at temperatures of 152 K
(purple down triangles) and 303 K (orange circles). In one calculation,
the isotope-scattering coefficient B is taken to be Bi = π/4 for the
in-plane mode and Bo = π/2 for the out-of-plane modes. In another
calculation, the two B coefficients are reduced to Bi = π/50 for the
in-plane mode and Bo = π/25.
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