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Intrinsic thermal conductivity in monolayer graphene is ultimately upper limited:
A direct estimation by atomistic simulations
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In the sample size domain so far explored, the thermal conductivity of graphene shows an intriguing dependence
on the sample length Lz along the heat flux direction. An extrapolated infinite value for such a thermal conductivity
is sometimes suggested for infinite samples, while other investigations predict anyway an upper limit for it.
We address this issue by avoiding any guess or approximation on the underlying microscopic heat transport
mechanisms; we rather perform direct atomistic simulations aimed at estimating thermal conductivity in samples
with increasing size up to the unprecedented value of Lz = 0.1 mm. Our results provide evidence that thermal
conductivity in graphene is definitely upper limited in samples long enough to allow a diffusive transport regime
for both single and collective phonon excitations.
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Since the first measure of the thermal conductivity κ

in graphene, reporting an extremely high value [1], several
experimental and theoretical investigations have been focused
on the characterization of the thermal properties of this
atomic monolayer. However, it is still difficult to assign
a sharp value to κ since the experimental measurements
scatter between 600 and 5000 W m−1 K−1 depending on
different samples quality [1–5]. In order to rationalize this
experimental scenario, several theoretical models [6–8] have
been numerically implemented by means of ab initio [9–12]
or model-potential [13,14] calculations. Direct equilibrium
and nonequilibrium molecular dynamics (MD) simulations
[15–17] have been as well addressed to estimate κ . Overall,
κ has been theoretically predicted to vary in the range
300–3596 W m−1 K−1.

Most investigations underline the dominant role in the
transport of heat played by acoustic phonons, showing in
graphene three polarizations: the longitudinal (LA) and the
transverse (TA) ones, both associated to in-plane vibrations,
and the flexural one (ZA) due to out-of-plane oscillations.
Although it has been guessed that only in-plane phonons
carry heat [18,19], more recently it has been recognized
that the ZA phonons are in fact fundamental in graphene
thermal transport [3,10,11,14,17]: despite that they show
a very low group velocity and Gruinesen parameter, their
lifetime is comparatively very long due to a selection rule
for three-phonon scattering.

Another exotic feature of graphene thermal transport, which
has been predicted by several theoretical works [12,14,16,18]
and recently observed by experiments [20], is the κ = κ(Lz)
dependence on the sample length Lz along the heat flux
direction, for which different interpretations have been sup-
plied. In MD simulations the κ(Lz) dependence is commonly
attributed [17,21] to a well-known size effect hindering those
phonons having a mean free path (MFP) longer than Lz

(corresponding to the dimension of the periodically repeated
simulation cell). Eventually this results in an artificial ballistic
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transport regime. This is typically the case of equilibrium
(EMD) [17] or approach-to-equilibrium (AEMD) [22] simula-
tions, as schematically shown in Fig. 1. As for nonequilibrium
MD (NEMD), this dependence is in turn generated by the
presence of two thermostats at the sample boundaries of
the finite-size simulated sample [16]. In any case, a reliable
description of the intrinsic thermal conductivity needs the
achievement of a truly diffusive regime, a situation that can
only be reached by increasing the size of the simulation cell up
to a system-dependent critical length Ldiff . This is the length at
which phonon dynamics becomes diffusive for all modes; until
recently, Ldiff in graphene was reported to range 1–10 μm [10].

A different situation is found in lattice dynamics calcula-
tions in the long-wavelength approximation (LWA), such as in
Klemens-like models [8,18,23]: here the κ(Lz) dependence is
artificially included by construction, through the definition of
a cutoff frequency ωmin ∝ √

1/Lz which was first introduced
by Klemens to adapt the thermal transport description given
for graphite to graphene where the transport is intrinsically
two dimensional (2D) even for small phonon frequencies. In
this case the low-bound cutoff frequency is determined by the
condition that the phonon MFP cannot exceed the physical
size Lz of a graphene sample.

Finally, an explicit κ(Lz) dependence for Lz � 50 μm
is also found by exactly solving the Boltzmann transport
equation (BTE) [14]. Here an empirical length-dependent rate
is introduced to count boundary scatterings in a finite-size
sample [9].

An experimental evidence of the κ(Lz) dependence has
been recently shown by thermal resistance measurements on
single-layer graphene samples [20] suspended between two
SiN membranes (one used as an heater, the other as sensor)
to measure the temperature rise at the end of the sample (see
Fig. 1): a κ ∼ log Lz dependence was observed for sample
lengths up to 9 μm.

Even if both experiments and theory agree in predicting
a Lz-dependent thermal conductivity in the sample size
domain so far investigated, an active debate about its possible
divergence for Lz → ∞ is presently ongoing in the literature.
In particular, theoretical models only taking into account
in-plane phonon modes (disregarding, therefore, out-of-plane
flexural modes) predict a logarithmic divergence at room
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FIG. 1. (Color online) Schematic representation of the charac-
teristic length Lz in different situations: (a) typical setup of an
experimental thermal resistance measurement; (b) typical geometry
for a NEMD simulation; (c) typical geometry of an AEMD simulation
(we show the initial configuration where the left and right regions are
thermostatted, respectively, at cold and hot temperature).

temperature [8]. Recently this has been confirmed in Ref. [20]
by experiments performed on samples with Lz � 9 μm and
interpreted as due to the 2D nature of phonons in graphene,
as well as to their actual statistical distribution. In particular,
it has been argued that the differences in phonon populations
between nonequilibrium and equilibrium conditions promote
the observed logarithmic divergence.

This conclusion (based on general arguments [24] valid
for 2D systems) has been questioned in the specific case
of graphene. In fact, it has been argued [12] that, even by
assuming κ = κ(Lz) as due to a regime of ballistic phonon
transport in samples with Lz < Ldiff , an upper limit for thermal
conductivity should be anyhow reached for long enough
samples where a fully diffusive regime can be eventually
reached. It has also been calculated that such a diffusive regime
is reached only for mm-long samples that can accommodate
both single-phonon and collective excitations with typical
MFP of ∼1 μm [10,11] and ∼100 μm [12], respectively.
The actual occurrence of a truly diffusive regime in mm-long
systems has not yet been confirmed since both experiments and
MD simulations (of any kind) explored so far much smaller
samples.

In this work we offer some insight on this problem by
performing unbiased (i.e., with no a priori guess) AEMD
simulations [25,26] on pristine graphene monolayers with Lz

up to a size of 0.1 mm. Our goal is to ultimately state whether
the claimed κ ∼ log Lz divergence is indeed observed by a
direct numerical estimate and, if so, whether this behavior
drives to a divergent thermal conductivity for arbitrarily long
samples. The present discussion could provide a motivation to
perform experimental measurements on mm-long samples.

All the simulations here discussed were performed by
imposing an initial nonequilibrium condition to a monolayer
graphene sample which was then let free to evolve towards
equilibrium by a microcanonical simulation [25]. In particular,
we initially set a steplike temperature profile along the
z direction by thermostatting the left and right regions of
the simulation cells at, respectively, a cold T2 and hot

T1 temperature (Fig. 1). During the following microcanonical
run, the time-dependent difference �TC(t) between the aver-
age temperatures of the two regions was calculated straightfor-
wardly. On the other hand, by solving the heat equation under
the above initial boundary conditions, the same difference
has been calculated analytically as �TA(t) = ∑∞

n=1 Cne
−α2

nκ̄t ,
where κ̄ = κ/ρcv is the thermal diffusivity of the system with
density ρ and specific heat cv and both αn = 2πn/Lz and
the coefficients Cn = 8(T1 − T2)[cos(αnLz/2) − 1]2/α2

nL
2
z are

determined by the imposed initial conditions. The thermal
conductivity κ is easily obtained by setting �TC(t) = �TA(t)
and using κ̄ as a fitting parameter. Quantum corrections are
duly considered for the specific heat as discussed in Ref. [22].
The present AEMD simulations were performed by using the
LAMMPS package [27] with the reactive empirical bond order
(REBO) potential in its second generation form [28], whose
reliability for graphite has been established [22]. In particular,
we remark that the REBO potential ensures a good description
of the acoustic branches especially near the � point. In the
AEMD simulations the equations of motion are integrated by
the velocity Verlet algorithm with 1.0-fs time step.

We calculated the thermal conductivity of 13 samples with
0.83 μm � Lz � 100 μm. The periodic boundary conditions
enabled us to simulate an infinite sample in the lateral
direction. The corresponding simulation cell spanned the range
24 000–2 880 000 atoms, requiring different simulation times
for the AEMD analysis extending from 0.411 to 10 ns.

In Fig. 2 we compare our results with previous NEMD
simulations using REBO (circles) and Tersoff (diamonds)
empirical potentials, as well as with experimental measure-
ments (triangles) [16,20]. All data sets are in agreement in
predicting a logarithmic κ(Lz) behavior in the length range
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FIG. 2. (Color online) Thermal conductivity κ(Lz) of monolayer
graphene for increasing sample dimension Lz. Red squares: present
AEMD results using REBO potential. Magenta circles: NEMD results
using REBO potential (from Ref. [16]). Green triangles: experimental
data (from Ref. [20]). Yellow diamonds: NEMD results using Tersoff
potential (from Ref. [20]). Inset: AEMD-REBO (red squares) and
experimental (green triangles) data normalized to their corresponding
value in a reference sample with Lz = 10 μm.
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FIG. 3. (Color online) Thermal conductivity κ(Lz) of monolayer
graphene for increasing sample dimension Lz. Red squares: present
AEMD results. Black dashed line: exact solution of BTE provided
in Ref. [12]. For sake of comparison, all thermal conductivity values
are normalized to κ(100 μm), corresponding to a sample with size
Lz = 100 μm.

up to 10 μm. However, we remark that the REBO potential
provides comparatively smaller absolute values, both in the
case of AEMD and NEMD simulations. In order to assess
whether this only depends on the accuracy of the empirical
potential or it is due to other reasons more fundamentally
linked to some heat transport feature, we normalized the
REBO values to their corresponding value calculated for a
reference sample with Lz = 10 μm and compared to (similarly
normalized) experimental data. The result is shown in the inset
of Fig. 2, proving a really remarkable agreement.

We point out that the AEMD approach can be directly
compared to experimental procedures addressing a transient
regime, while NEMD simulations are more related a steady-
state condition. A more complete analysis should require a
direct comparison between results obtained by MD techniques
addressing a transient state (such as AEMD) and those
addressing a steady state (such as NEMD) in the 1 μm �
Lz � 10 μm range. We guess that these two simulated
conditions correspond to different phonon populations, as
similarly argued in Ref. [20] by comparing EMD and NEMD
predictions of thermal conductivity. This topic, however, falls
beyond the scope of the present work and we leave it to a future
investigation.

Since the only estimations of κ for sample dimensions
greater than ∼50 μm are based on the exact ab initio
solution of the BTE [12], we directly compare AEMD and
BTE results in Fig. 3 where, for the same reasons described
above, data sets are normalized to their corresponding value
for a reference sample with Lz = 100 μm. Figure 3 further

confirms the reliability of our approach in the description of
the κ-vs-Lz trend. More importantly, it provides clear evidence
that κ(Lz) has indeed an ultimate upper limit, a fact that
is now predicted by two independent calculations of rather
different nature. This result also confirms the assumption of
Ref. [12] which identifies the importance of collective modes
(with a comparatively larger MFP than single-phonon ones)
to properly define the critical sample length governing the
ballistic-to-diffusive transport transition.

Figure 3 clearly shows a change in the κ(Lz) trend at
about Lz = 0.1 mm, indicating that in samples that large
heat transport approaches a diffusive regime. This result
is consistent with a recent Monte Carlo simulation where
μm-long systems are investigated [29]: a ballistic-to-diffusive
crossover is captured for a sample length of 0.1 mm. There
it is also shown that about 20% of phonons have MFP longer
than this length. The picture emerging by combining present
AEMD and Monte Carlo simulations is in good agreement
with Ref. [12], which indicates Ldiff = 1 mm as the critical
sample length above which is observed a truly diffusive phonon
transport regime. We remark that, at variance with previous
investigations, in our calculations no educated guesses are used
to extract the complex κ(Lz) trend. Therefore, we conclude that
no κ ∼ log Lz divergence in fact occurs in graphene, provided
that samples large enough to host a fully diffusive regime are
considered. We underline that in order to draw this conclusion
out-of-plane oscillations must be duly taken into account, as
typical of any MD simulation, since they have a fundamental
role in thermal transport. This statement is fully consistent
with EMD simulations [20] where such out-of-plane modes
were artificially hindered showing that, under such an artificial
condition, a divergence of κ vs Lz is indeed found.

In conclusion, we remark that the results of the present
AEMD simulations represent direct evidence that κ in
graphene is upper limited, provided that are considered
samples long enough to allow pure diffusive heat transport
either for single and for collective phonon excitations. It
is found that the diffusive regime is observed in samples
larger than 0.1–1.0 mm. This conclusion suggests that existing
experiments on suspended graphene performed on smaller
samples could have been performed in a quasiballistic regime,
not addressing the upper limit of intrinsic graphene thermal
conductivity. The excellent agreement between AEMD and
exact BTE calculations promotes AEMD as an efficient tool
to investigate thermal conductivity in more realistic graphene
samples, by taking into account point and extended defects as
well as different chemical functionalizations.
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