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Spectral properties of superconducting microwave photonic crystals modeling Dirac billiards
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We determined experimentally the eigenvalues of two rectangular quantum billiards that contain circular
scatterers forming a triangular grid, so-called Dirac billiards. For this we performed measurements of
unprecedented accuracy using superconducting macroscopic-size microwave billiards that enclose a photonic
crystal. The objective was the investigation of the peculiar features of the density of the eigenvalues (DOE), which
resemble that of a graphene flake, and of their fluctuation properties. We identified in the measured resonance
spectra Dirac points and in their adjacent bands the van Hove singularities (VHSs), that show up as sharp peaks in
the DOE. The analysis of the experimental resonance frequencies and of the band structure, which was computed
with a tight-binding model, revealed that the VHSs divide the associated band into regions where the system
is governed by the nonrelativistic Schrödinger equation of the quantum billiard and the Dirac equation of the
graphene billiard of corresponding shape, respectively. Furthermore, we demonstrate that Dirac billiards are most
suitable for the modeling of idealized graphene. Indeed, the DOEs of both systems are well described by a finite
tight-binding model which includes first-, second-, and third-nearest-neighbor couplings.
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I. INTRODUCTION

The pioneering fabrication of graphene [1], a crystalline
monolayer of carbon atoms forming a honeycomb lattice,
triggered by reason of its extraordinary properties an immense
amount of experimental and theoretical investigations. The
most intriguing one is a linear dispersion relation near the
Fermi energy, i.e., in the vicinity of the so-called Dirac
points [2] (DPs) that are located at the corners of the hexagonal
Brillouin zone (BZ). There the conduction and valence bands
touch each other conically so the electronic excitations behave
as massless Dirac fermions. Consequently, near the DPs the
electronic properties of graphene are described by a Dirac
equation and, even though the Fermi velocity of the electrons
is by a factor of 300 smaller than that of light, it features
relativistic phenomena [2–6].

In recent years, graphene quantum dots, so-called graphene
billiards, have been the focus of experimental activities [7–11].
The experiments that are the subject of this paper were
motivated by the nonconforming results on their spectral prop-
erties. They were investigated experimentally in Ref. [8] and
numerically in Refs. [12–14]. While the former revealed that
they coincide with those of neutrino billiards of corresponding
shape [15,16], that is, with those of random matrices from the
Gaussian unitary ensemble (GUE), the latter found agreement
with those from the Gaussian orthogonal one (GOE) [17–19].
Indeed, these ensembles are applicable to generic chaotic
systems with and without violated time-reversal invariance,
respectively. The discrepancies were attributed to the differing
conditions on the wave functions along the boundaries (see
Ref. [20]). In a subsequent publication [21], graphene billiards
were studied analytically where the focus was the influence of
different edge geometries on the properties of the density of
the electronic excitations of graphene billiards.

The focus of this paper are the properties of the resonance
density and of the spectra of two macroscopic-size rectan-
gular microwave Dirac billiards providing an experimental
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realization of idealized graphene flakes or quantum dots
as outlined in Ref. [22]. Here, we exploited the fact that
the peculiar band structure of graphene stems from the
symmetries of its honeycomb structure which is formed
from two interpenetrating triangular lattices with threefold
symmetry. Indeed, the manufacturing of artificial graphene
using two-dimensional electron gases subject to a honeycomb
potential lattice [23,24], molecular assemblies arranged on a
copper surface [25], ultracold atoms in optical lattices [26,27]
and photonic crystals [28–36] is a rapidly emerging field.

The microwave Dirac billiards, shown in Fig. 1 with
the top plates removed, were constructed from photonic
crystals, composed of metallic cylinders and arranged on
a triangular lattice, that were squeezed into a rectangular
microwave cavity [22]. Below a certain frequency, which is
inversely proportional to the height of the cavity, the Helmholtz
equation describing such systems is two dimensional and
mathematically equivalent to the Schrödinger equation of
the corresponding quantum billiard [37–39]. Thus, their
eigenfrequencies yield the eigenvalues of a rectangular billiard
with the same side lengths, which contains circular scatterers
at the positions of the cylinders, i.e., of a rectangular Dirac
billiard. Due to the presence of the cylinders, the frequencies
of wave propagation as function of the two quasimomentum
components exhibit a band structure which is similar to that
of graphene. Accordingly, the resonance spectra of microwave
Dirac billiards contain DPs, where they are expected to be
governed by the relativistic Dirac equation. Note that, like the
carbon atoms in graphene, the voids between the cylinders of
the microwave Dirac billiards, marked by red (gray) and blue
(dark gray) dots in Fig. 2, exhibit a hexagonal configuration.

In a previous experiment [31], we used unbounded photonic
crystals consisting of cylinders forming a triangular grid and
squeezed between two metal plates to perform transmission
measurements with plane waves traversing the photonic crys-
tal. These measurements revealed the extremal transmission
behavior also observed in graphene in the vicinity of the
DP. The aim of the present experiments was the determina-
tion of the eigenvalues of Dirac billiards in high-resolution
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FIG. 1. (Color online) Photographs of the basin plates of the
microwave Dirac billiards B1 (upper panel) and B2 (lower panel),
each containing 888 metal cylinders. They were constructed from
brass and coated with lead to achieve superconductivity at liquid
helium temperature. The red (gray) crosses mark the positions of
the antennas. The insets show a magnification of the lattice structure
along the long sides.

measurements with superconducting microwave billiards [40]
and the investigation of their spectral properties in the two
frequency bands that frame each DP. These were compared
with those of relativistic graphene billiards and nonrelativistic
quantum billiards of corresponding shape, respectively. As
outlined in Ref. [21], depending on the boundary structure of
a graphene billiard it may exhibit edge states [35,41–43]. We
performed experiments with two different microwave billiards,
one with and one without edge states.

The paper is organized as follows. In Sec. II, the experimen-
tal setup is introduced. The measured resonance spectra and

Billiard B2Billiard B1

FIG. 2. (Color online) Schematic view of the triangular lattice
structure of billiards B1 (left-hand side) and B2 (right-hand side).
The red (gray) and blue (dark gray) dots mark the voids between the
cylinders. They correspond to the atoms in graphene, that generate
the two independent triangular lattices. In both billiards, the resulting
hexagonal lattice is terminated by armchair and zigzag edges along the
short and the long sides, respectively. In billiard B1 it is translationally
invariant with respect to all sides, in B2 only along the short ones.

their salient properties are presented in Sec. II B. In Sec. III,
the resonance density extracted from the resonance spectra is
compared to results obtained with tight-binding models (TBM)
for unbounded and for bordered graphene sheets. The focus
of Secs. IV and V are the spectral properties in the bands
that frame each of the two DPs found in the spectra of both
billiards.

II. EXPERIMENT

A. Experimental setup

The experiments were performed for two superconducting
Dirac billiards [22,31] called B1 and B2 in the sequel. They
consisted of a brass lid and a rectangular basin with side lengths
420.0 × 249.4 mm2 and 420.0 × 255.4 mm2 for B1 and B2,
respectively. For the construction of the basin, 888 metallic
cylinders were milled out of a brass plate. The lattice constant
was aL = 12 mm and the radius of the cylinders was R =
aL/4. Figure 1 displays the bottom plates of B1 and B2. The
billiards differ in the structure of the lattice edges along the
long sides. In B1, the lattice ends there with half cylinders
and in B2 with full ones. This is clearer visible in Fig. 2
where the billiards are depicted schematically. The metallic
cylinders are arranged on a triangular lattice, so the voids
between the cylinders form a hexagonal one as indicated by
the colored dots. In fact, three neighboring cylinders constitute
a triangular cell that hosts a quasibound state localized at
its center and thus can be considered as an open resonator.
Accordingly, the lattice can be regarded as being composed of
coupled resonators centered at the voids, acting as the carbon
atoms in graphene and forming the two independent triangular
sublattices marked by red (gray) and blue (light gray) dots in
Fig. 2. In both billiards, this void structure is terminated with
armchair and zigzag edges along the short and the long sides
of the rectangular billiard, respectively. Due to the geometry
of the lattice formed by the cylinders at the edges, B1 can be
expanded over the whole plane by reflections at its sidewalls,
i.e., it can be considered as an infinitely extended lattice with
periodic boundary conditions whereas this is not the case for
B2. Accordingly, we expect the occurrence of edge states in
B2, whereas they should be absent in B1 [21].

In order to attain superconductivity at liquid helium
temperature, the lids and the basins of the microwave billiards
were lead coated. A proper electrical contact was achieved by
screwing the former tightly to each cylinder of the latter. The
height of the Dirac billiards was h = 3 mm. Accordingly, for
frequencies below 50 GHz only the lowest transverse magnetic
mode with the electric field vector perpendicular to the top and
bottom plates was excited. Thus, in that frequency range, the
microwaves inside the resonator were governed by the scalar
Helmholtz equation which is mathematically identical to the
Schrödinger equation of the corresponding two-dimensional
rectangular quantum billiard [37–39] with Dirichlet boundary
conditions at the walls of the cavity and of the scatterers.

B. Resonance spectra

For the measurement of the transmission spectra, mi-
crowave power was emitted into the resonator via one wire
antenna and a vectorial network analyzer (VNA) determined
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FIG. 3. Transmission spectrum of the Dirac billiard B1. The stop
band terminates at 19.61 GHz. The spectrum exhibits two band gaps
and two DPs that are framed by regions of low resonance density.
The part below the first band gap has been shown in Ref. [22]. The
lower band gap is terminated by a narrow region of exceptionally
high density.

the relative phase and amplitude of the output and input
signals. Altogether, five antennas were attached to the lid
of B1 and seven to that of B2. Their positions are marked
by red (gray) crosses in the upper and the lower panels
of Fig. 1 for B1 and B2, respectively. They reached a few
millimeters into the resonator through holes in the lid. The
positions of the resonances in the transmission spectra yielded
the eigenfrequencies of the Dirac billiards. The measurements
were performed with all possible antenna combinations in
order to make sure that no resonances were missing. This
could occur if one of the antennas is positioned at a nodal
line of the electric field intensity inside the resonator so that
the resonance cannot be excited [44]. Due to the high-quality
factors Q > 5 × 105 of the resonances, we could resolve all
of them and thus determined ≈ 4900 eigenfrequencies for B1
and B2 below 50 GHz.

Figure 3 shows a transmission spectrum measured with B1.
The first resonances were detected above 19.61 GHz where
the stop band terminates. The spectrum exhibits two further
band gaps, where the transmission is reduced by four orders of
magnitude and no propagation is possible. Furthermore, two
regions of low-resonance density are visible. They are located
around the Dirac frequencies of the two DPs.

In Fig. 4, we compare the density of the eigenfrequencies
(DOE) ρ(f ) = ∑

n δ(f − fn) for the eigenfrequencies fn of
B1 extracted from the transmission spectrum shown in Fig. 3,
with the calculated band-structure function f (�q). The left
part displays the experimentally determined DOE. Shown is
actually the smoothed DOE, which is obtained by replacing
the δ functions by Lorentzians of finite width �L,

ρ(f ) �
∑

n

1

π

�L

(f − fn)2 + �2
L

, (1)

where we chose �L = 40 MHz. The right part of Fig. 4 shows
the calculated band structure along the path �MK� inside the
first Brillouin zone (BZ) depicted in the inset. Here, K denotes
the distance of the DPs, that are located at the corners of the BZ,
from its center � where the corresponding band terminates,
M that of the saddle points [2] (see inset of Fig. 4). The
positions of the experimental band gaps are in good agreement
with those in the calculated band structure. Furthermore, the
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FIG. 4. Comparison of the DOE determined from the measured
spectra of B1 (left panel) with the computed band structure of an
infinitely extended photonic crystal with the same lattice constant
(right panel). The locations of the DPs and the band gaps coincide.
Furthermore, the frequencies of the VHSs and the other peaks of ρ(f )
agree well with those of the saddle points and the regions of a flat
band structure, respectively.

DOE exhibits two broad minima at the frequencies of the
DPs indicated in the transmission spectrum shown in Fig. 3.
Their locations coincide with those of the Dirac or K points
in the calculated band structure where two bands touch each
other [45]. They are bordered by sharp peaks, the van Hove
singularities [46] (VHSs), that correspond to saddle points in
the latter. Generally, the maxima of ρ(f ) occur at frequencies
where the band barely changes with the quasimomentum,
i.e., regions of low group velocity | �∇f (�q)| � 0 with �q being
the quasimomentum vector. Particularly, the narrow region of
exceptionally high-resonance density at the upper edge of the
first band gap in Figs. 3 and 4 is associated with a band that is
entirely flat.

The only difference between the transmission spectra of B1
and B2 lies in the accumulation of resonances observed in the
latter above the first DP. It is clearly visible in Fig. 5 where a
zoom into that region is displayed for B1 (upper panel) and B2
(lower panel). In a previous experiment [31] with a rectangular
microwave Dirac billiard containing only 273 metallic cylin-
ders, we demonstrated that, similar to the edge states occurring
in graphene flakes, the associated wave-function intensities are
nonvanishing only along the zigzag edges. Here, we used the
analogy between the wave functions of a quantum billiard and
the electric field strength distributions in the corresponding
microwave billiard to determine them experimentally. For most
of the eigenfrequencies within the range of the accumulation
observed in Fig. 5, the field intensity was nonvanishing only
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FIG. 5. Comparison of the zooms into the transmission spectra
around the first DP of billards B1 (upper panel) and B2 (lower panel).
An accumulation of the resonances is clearly observable above the
DP in the lower panel. These are associated with edge states located
along the long sides of the Dirac billiard B2 (see main text).

along the long sides of the billiard, i.e., the zigzag edges,
whereas it was distributed over the billiard plane otherwise.

Because of the large number of closely lying metallic
cylinders, a direct measurement of the wave functions was
not possible with the billiards considered in this paper.
Therefore, in order to test whether the states from the region
of resonance accumulation correspond to edge states with
intensities localized at the zigzag edges of B2, we used the fact
that the resonance amplitudes in a spectrum are proportional
to the field strengths at the positions of the antennas [44].
Accordingly, we measured transmission spectra with antennas
positioned close to the edges of B2 and in its interior. The
different antenna positions of B2 are marked by red (gray)
crosses in the lower panel of Fig. 1. In Fig. 6, we compare
the spectrum taken with the interior antennas 1 and 6 (black)
with those obtained with antennas positioned close to the short
(armchair) edges, i.e., antennas 2, 3, and 7 and near the long
(zigzag) edges, marked as 4 and 5. Peaks pointed at with red
arrows correspond to resonances that do not show up in the
spectrum obtained with antennas positioned in the interior of
the resonator. They thus correspond to edge states.

III. TIGHT-BINDING MODEL DESCRIPTION

In this section and in Sec. IV, we restrict to the two bands
of billiards B1 and B2 that are joined at the lower DP. Figure 7
shows the DOE ρ(f ) inferred from the measured spectra using
Eq. (1). Due to the presence of the photonic crystal inside the
microwave billiard, the DOE clearly deviates from that of an
empty one [40,47], which according to Weyl’s law [48] should
increase linearly with f . The region around its minimum at
the Dirac frequency is bordered by two sharp peaks at f −

VH
and f +

VH. As already noted, these are the VHSs [46]. There,
ρ(f ) diverges logarithmically for two-dimensional periodic
structures of infinite extent. In the Dirac billiards used in the
experiments, however, the peaks have a finite height ρmax. Its

FIG. 6. (Color online) Comparison of transmission spectra of B2
in the region of the resonance accumulation. They were measured
between antennas 1 and 6 located in the interior of the billiard (black)
and with antennas 2, 3, 4, 5, and 7 positioned close to the edges [red
(gray)]. The antenna positions are marked in the lower panel of Fig. 1.
Resonances that were only excited by the border antennas [marked
by red (gray) arrows] are associated with edge states.
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FIG. 7. (Color online) Comparison of the DOE obtained from the
spectra (black) of B1 (upper panel) and B2 (lower panel) with that
resulting from the TBM for an infinitely extended photonic crystal
with the same lattice constant [red (gray)]. Here, the eigenfrequencies
were shifted and rescaled such that the Dirac point is at f̃ = 0 and
the distance of the VHSs equals 2 [22]. In the lower panel, the small
peak to the right of the DP is due to edge states. It is well described
by a finite TBM for a photonic crystal of the same size as the one
used in the experiments with special boundary conditions along the
zigzag edges [blue (light gray)].
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TABLE I. Frequencies in GHz of the lower (flBE) and the upper
(fuBE) band edges, the DP (fD), and the VHSs (f ±

VH) of billiards B1
and B2.

flBE f −
VH fD f +

VH fuBE

B1 19.64 21.98 23.36 24.87 30.15
B2 19.98 22.23 23.53 25.15 30.20

dependence on the area of the associated photonic crystal has
been investigated in Ref. [22]. The frequencies at the DPs fD ,
the VHSs f ±

VH, and the lower and the upper band edges flBE

and fuBE, respectively, are given in Table I. The oscillations
of the experimental ρ(f ) around its mean value differ in the
frequency ranges in-between the two VHSs and below and
above them. The focus of this paper is the investigation of
the spectral properties that in fact are strongly linked to these
fluctuations. We show in Sec. IV A that in the frequency ranges
below f −

VH and above f +
VH, they coincide with those of an empty

quantum billiard of corresponding shape, which is described
by the Schrödinger equation. This defines the nonrelativistic
region. In Sec. IV B, we demonstrate that in the region around
the Dirac frequency fD, on the other hand, they are similar
to those of relativistic graphene billiards [21]. Since these are
governed by the Dirac equation [49] we call this part of the
band structure the relativistic region.

The red curves in Fig. 7 show the result of a tight-binding
model (TBM) computation. The first TBM description of
graphene was provided by Wallace [50]. He took into account
only nearest- and second-nearest-neighbor interactions for
the graphene pz orbitals, but neglected the overlap between
the wave functions centered at the different atoms. We
used the TBM approach for an infinitely extended hexagonal
lattice structure such as graphene described in Ref. [51]. In
that model, the band-structure function, i.e., the dependence
of the frequencies f (�q) on the quasimomentum vector �q, is
obtained by solving the generalized eigenvalue problem

HTBM|��q(�r)〉 = f (�q)SWO|��q(�r)〉 (2)

with the TBM Hamiltonian

HTBM =
(

γ0 + γ2h2(�q) γ1h1(�q) + γ3h3(�q)
γ1h1(�q) + γ3h3(�q) h0 + γ2h2(�q)

)
(3)

and the wave-function overlap matrix

SWO =
(

1 + s2h2(�q) s1h1(�q) + s3h3(�q)
s1h1(�q) + s3h3(�q) 1 + s2h2(�q)

)
. (4)

In distinction to the TBM description [50], this model
incorporates the nearest-neighbor coupling γ1 as well as the
second- and third-nearest-neighbor couplings γ2 and γ3 and
in addition the corresponding overlaps s1, s2, and s3. The
functions hn(�q), n = 1,2,3, associated with the different
couplings were obtained as outlined in Ref. [51].

The parameters were determined from a fit of the DOE
deduced from the band-structure function f (�q) to the ex-
perimental one. In order to achieve a good agreement of
the DOEs deduced from the TBM and the experimental
eigenfrequencies, respectively, we actually had to take into

account nearest-neighbor, second- and third-nearest-neighbor
couplings between the quasibound states, i.e., the electric field
mode components localized at the voids between the metallic
cylinders and also the corresponding overlaps. This indicates
that the quasibound states slightly extend into the regions of
neighboring voids. Still, their coupling is so weak that the TBM
is applicable. Indeed, the agreement between the calculated
DOE [red (gray)] and the experimental one (black) in Fig. 7
is very good for B1 (upper panel). This TBM, however, does
not describe the small peak observed to the right of the Dirac
frequency for B2 (lower panel). The peak, actually, is due to the
edge states, i.e., it is a finite-size effect, which obviously is not
accounted for by the TBM for infinitely extended hexagonal
lattices.

The blue curve in the lower panel was obtained from a finite
TBM for a bounded hexagonal lattice that had the same size as
the one formed by the voids of the microwave photonic crystal
in B2. The determination of the associated DOE implies the
diagonalization of a (1656 × 1656)-dimensional TBM matrix.
We again included up to third-nearest-neighbor couplings and
the corresponding overlaps and used the same parameters
γ0, γn, n = 1,2,3, and sn, n = 1,2,3, for the fitting procedure
as obtained with the TBM equation (2). Furthermore, we
accounted for the effect of the lattice structure along the zigzag
edges by imposing there special boundary conditions. For B1,
we realized periodic boundary conditions by introducing a
coupling between opposite atoms of the zizag edges [52]. The
resulting DOE is indistinguishable from the one shown in
the upper panel of Fig. 7 so we do not show it. In billiard
B2 we took the edge effects into account by introducing a
potential along the zigzag edges [53]. For this we replaced
the parameter γ0, which describes the onsite potential, by
a variable parameter γedge and determined it from a fit of
the resulting DOE to the experimental one. This yielded
γedge = 0.272. The good agreement between the DOE obtained
from the finite TBM and the experimental one corroborates
the assumption that the resonance accumulation observed in
the transmission spectrum and the DOE of B2 indeed is an
effect of the zigzag edges. We should note that in the simplest
TBM for hexagonal lattices possessing zigzag-type edge
segments, which includes only nearest-neighbor couplings and
no wave-function overlaps, the DOE exhibits a peak at the
Dirac frequency. As stated in Ref. [43], at least nonvanishing
second-nearest-neighbor couplings are needed to explain the
shift of the energy of the edge states with respect to the Dirac
frequency observed in graphene sheets. So, the fact that the
peak shows up above the Dirac frequency in the lower panel
of Fig. 7 already indicates that the simplest TBM does not
describe the experimental DOE. The results for the coupling
and the overlap parameters are given in Table II.

TABLE II. Coupling parameters in GHz and overlap parameters
resulting from a fit of the DOE deduced from the TBM equation (2)
to the experimental one.

γ0 γ1 γ2 γ3 s1 s2 s3

B1 0.011 1.009 0.022 −0.013 −0.060 −0.023 −0.009
B2 0.007 1.008 0.038 −0.011 −0.062 −0.020 0.002
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FIG. 8. (Color online) The integrated DOE N (f ) obtained for
the first two bands of the resonance spectrum shown in Fig. 3 that
are joined at the first DP. It exhibits a plateau around the Dirac
frequency fD = 23.36 GHz and barely visible kinks at the frequencies
f −

VH = 21.98 GHz and f +
VH = 24.87 GHz of the VHSs. Adopted from

Ref. [22].

IV. SPECTRAL PROPERTIES AND LENGTH
SPECTRA OF B1

In this section, we analyze the integrated DOE, the length
spectra, the nearest-neighbor spacing distribution, and the �3

statistics as measures for the fluctuation properties of the
eigenfrequencies of the Dirac billiard B1. Since the results
are similar for both Dirac billiards, we do not present them for
B2. Figure 8 shows the integrated DOE N (f ) determined for
the frequency range under consideration, i.e., for the two bands
framing the lower DP in the measured resonance spectra, as
function of the excitation frequency f . It exhibits a plateau in
the region around the Dirac frequency fD, the Dirac region,
which stems from the low DOE in that frequency range
(see Fig. 3). Above and below fD it has the shape of half
a parabola opening upwards and downwards, respectively.
Furthermore, it has barely visible kinks at the frequencies
f ±

VH of the VHSs. In the regions below f −
VH and above f +

VH,
the Schrödinger region, the frequency dependence is different
from that in-between. We investigated the transition from
the Dirac to the Schrödinger region that takes place at the
VHSs in a previous paper [22]. Sections IV A and IV B are
devoted to the features of the spectra in these regions. To be
more explicit, we compare the integrated DOE, the length
spectra and fluctuation properties of the eigenfrequencies of
the Dirac billiard in the Schrödinger region with those of the
eigenvalues of an empty quantum billiard (QB) governed by
the Schrödinger equation, in the Dirac region with those of
a graphene billiard (GB) which is described by the Dirac
equation, both having the same shape as the former one.

A. Schrödinger region

In this section, we consider the spectral properties of the
lower and the upper Schrödinger regions, i.e., of the smallest
and the largest 250 wave numbers k̃l,n = kn − klBE, n =
1, . . . , 250, and k̃u,ñ = |kn − kuBE|, n = 1402, . . . , 1651, ñ =
1652 − n, respectively. Here, kn = 2πfn/c is deduced from

FIG. 9. (Color online) The wave numbers of B1 plotted in the
lower Schrödinger region k̃ = k̃l as black circles and in the upper
one k̃ = k̃u as red (gray) ones versus the eigenvalues Q = qS of the
rectangular quantum billiard with the same side lengths as the Dirac
billiard. The turquoise (light gray) full lines show the band-structure
function k̃ = 2πf (δ�q)/c, which was computed by inserting the TBM
parameters listed in Table II into the analytical expression given in
Ref. [51] versus the distance Q = |δ�q| of the quasimomentum vector
�q from the � point.

the experimentally determined eigenfrequencies fn and,
similarly, klBE and kuBE are obtained from the eigenfrequencies
flBE and fuBE at the lower and the upper band edges,
respectively. Their values are given in Table I. We also
computed the wave functions associated with these wave
numbers using the finite TBM introduced in Sec. III and
found that they coincide with those of a rectangular quantum
billiard with the same side lengths as B1. The latter is governed
by the Schrödinger equation ( ∂2

∂x2 + ∂2

∂y2 + q2
QB)ψQB(x,y) = 0

with the Dirichlet condition along its boundary ∂�, i.e.,
ψQB(x,y)|∂� = 0, for (x,y) ∈ � where � denotes its interior.
Accordingly, we plotted in Fig. 9 the wave numbers of B1 in
the lower Schrödinger region k̃ = k̃l as black circles and in the
upper one k̃ = k̃u as red (gray) ones against the eigenvalues
Q = qS = qQB − qQB0 of the rectangular quantum billiard,
with qQB0 denoting the smallest one. The latter were shifted
such that the smallest eigenvalue equaled zero as is the case
for the spectra of k̃l , k̃u. We compared both curves with the
band-structure function f (�q) defined in Eq. (2). To compute
it, we inserted the tight-binding parameters listed in Table II
into the analytical expression provided in Ref. [51]. In Fig. 9,
the turquoise (light gray) full lines show f (δ�q) in a region
close to the � point, i.e., to the lower and upper band edges,
versus the distance of the quasimomentum vector �q from
it, Q = |δ�q|. The good agreement, first, corroborates the
applicability of the TBM to the experimental data and, second,
proves that the quasimomenta |δ�q| indeed may be identified
with the eigenvalues of the rectangular quantum billiard. Both
the experimental and the TBM curves are well approximated
by a quadratic polynomial in the lower Schrödinger regime,
and also in the upper one after skipping the ≈10 lowest
eigenfrequencies.
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FIG. 10. (Color online) Integrated DOEs of B1 in the lower (k̃S =
k̃l) and the upper (k̃S = k̃u) Schrödinger regions are depicted as black
circles and as red (gray) ones, respectively. The quadratic polynomials
that describe the data best are plotted as turquoise (light gray) full
lines.

1. Integrated DOE and length spectra

This clear correspondence between the wave numbers of
B1 and the eigenvalues of the rectangular quantum billiard is
corroborated by the similarity of the fluctuating parts of the
associated integrated DOEs. Figure 10 displays the integrated
DOE obtained for the wave numbers k̃S = k̃l (black dots)
and k̃S = k̃u [red (gray) dots] of the lower and the upper
Schrödinger regions, respectively. Both curves are best fit by a
quadratic polynomial plotted as turquoise (light gray) full line
yielding the smooth part of the integrated DOE Nsmooth.

The fluctuating part Nfluc(k̃S) = N (k̃S) − Nsmooth(k̃S) is
plotted in Figs. 11 and 12 for the wave numbers in the lower
(k̃S = k̃l) and the upper (k̃S = k̃u) Schrödinger regions, respec-
tively, as black circles, and as red ones for the corresponding
quantum billiard, versus the eigenvalues of the latter. For
better visibility, the data points are joined by dashed lines.
Similarly, the agreement of the length spectra determined from

FIG. 11. (Color online) Comparison of the fluctuating parts of
the integrated DOE of B1 in the lower Schrödinger region (black
circles) with that of the corresponding quantum billiard [red (gray)
circles]. For better visibility, the circles are connected by dashed lines
of corresponding color.

FIG. 12. (Color online) Same as Fig. 11 but for the upper
Schrödinger region.

the Fourier transforms of these curves is very good (see Figs. 13
and 14). They, actually, exhibit peaks at the lengths of the
periodic orbits in the rectangular quantum billiard [54,55].

2. Spectral properties of the wave numbers

We also analyzed the spectral properties of the wave
numbers k̃l , k̃u. For this, we first unfolded the latter by
replacing the wave numbers k̃l , k̃u with the values attained
by the polynomial Nsmooth(k̃S), k̃S = k̃l , k̃u best fitting the
corresponding integrated DOE (see Fig. 10). Figure 15 shows
as black full line the experimental result for the distribution
P(s) of the spacings s between adjacent eigenvalues for the
upper Schrödinger region, the black dashed line that for the
eigenvalues of the rectangular quantum billiard, and in red
(gray) the Poissonian distribution, which applies to generic
integrable systems [17,56,57]. Figure 16 shows the Dyson-
Mehta statistic [18] �3(L), which gives the local average
least-squares deviation of the integrated DOE of the unfolded
eigenvalues from a straight line over an interval of length L,
obtained for the wave numbers k̃l , k̃u (circles), the eigenvalues
of the quantum billiard (triangles), and Poissonian random
numbers [red (gray) full line]. The agreement between the
spectral properties of the Dirac billiard and the quantum

FIG. 13. (Color online) Comparison of the length spectrum of
B1 in the lower Schrödinger region (full black line) with that of the
corresponding quantum billiard (dashed red line).
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FIG. 14. (Color online) Same as Fig. 13 but for the upper
Schrödinger region.

billiard is very good. This analogy, and also that of the TBM
wave functions of the Dirac billiard and those of the rectangular
quantum billiard, demonstrate that in the regions around the
� points, that is, in the vicinity of the lower and upper band
edges at klBE and kuBE, the former is effectively described by
the nonrelativistic Schrödinger equation of the latter.

We also determined the quasimomenta corresponding to
the wave numbers k̃S,n of B1 and B2 directly using the TBM
model. For this we computed the momentum distributions
using the wave functions ψn(x,y) obtained for each of them
from the corresponding finite TBM:

ψ̃n(�k) =
∫

�

dx dy ψn(x,y)e−i(kxx+kyy) . (5)

They are peaked exactly at the momentum values (kx,ky) =
(qx,qy) associated with the eigenvalues qS =

√
q2

x + q2
y of

the rectangular quantum billiard. Thus, the quasimomenta are
indeed given by �qS = (qx,qy) in the Schrödinger region. This
is in accordance with the conclusions drawn from the similarity
between the wave numbers of B1 and the band-structure
function f (δ�q) shown in Fig. 9. These curves and thus the
dispersion relation of the Dirac billiard are well described

FIG. 15. (Color online) Comparison of the nearest-neighbor
spacing distribution of B1 in the upper Schrödinger region (full black
line) with that of the corresponding quantum billiard (dashed black
line) and the Poisson distribution (full red line).

FIG. 16. (Color online) Comparison of the �3 statistics of B1 in
the upper Schrödinger region (circles) with that of the corresponding
quantum billiard (triangles) and the Poisson distribution (full red
line).

by a quadratic polynomial. Furthermore, we found that this
analogy breaks down when the quasimomenta approach the
border of the hexagonal BZ of the triangular lattice formed by
the cylinders of the photonic crystal inside the Dirac billiard.
Actually, the wave vectors of a rectangular quantum billiard
are not restricted to it, and the wave-function patterns are the
result of the superposition of the waves that are scattered at
the cylinders, so we expect a deterioration of the analogy to
occur whenever the triangular lattice structure prevails over
the rectangular shape of the Dirac billiard. In the following
section, we will consider the frequency region between the
VHSs, where this indeed is the case.

B. Dirac region

The focus of this section are the spectral properties of
billiard B1 in the vicinity of the Dirac frequency. For this
we divided the wave numbers into spectra containing the
first 100 ones above and below the Dirac wave number
kD = 2πfD/c with k̃u,ñ = kn − kD, n = 814, . . . , 913, ñ =
n − 813 and k̃l,ñ = |kn − kD|, n = 714, . . . , 813, ñ = 814 −
n, respectively, where kn=813 < kD < kn=814. Close to the
Dirac frequency, the electromagnetic waves in billiards B1 and
B2 are effectively described by the Dirac equation [28,49].
Accordingly, we compared their spectral properties with
those of the corresponding rectangular graphene billiards with
two opposite zigzag and two opposite armchair edges. Such
billiards had been introduced in Ref. [21] to investigate spectral
properties in graphene flakes. There, a transcendental equation
for the corresponding eigenvalues qGB was derived:

κ =
(

K − mπ

Lzz

)
tan (κLac) ,

qGB =
√

κ2 +
(

K − mπ

Lzz

)2

. (6)

Here, K = 4π
3aL

denotes the distance of the DPs, i.e., the
corners of the first BZ from the � point at its center, and
Lac and Lzz are the lengths of the armchair and the zigzag
edges, respectively. The eigenenergies of the graphene flake
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FIG. 17. (Color online) The first 100 wave numbers of B1 below
(k̃ = k̃l , black) and above [k̃ = k̃u, red (gray)] the DP versus the
eigenvalues Q = qD of the corresponding rectangular graphene
billiard. The turquoise (light gray) curves show the band-structure
function k̃ = 2πf (δ�q)/c versus the distance Q = |δ�q| from the DP.
As may be guessed from the shape of the band structure shown in the
right part of Fig. 4, deviations from a linear dispersion relation occur
for smaller values of |δ�q| in the region below the DP than above.

are obtained as E = �vF qGB, where vF is graphene’s Fermi
velocity. On choosing the lengths Lac and Lzz suitable for the
modeling of the spectral properties of B1 and B2, one has
to take into account that in graphene billiards the boundary
conditions, i.e., the vanishing of the wave functions, are not
imposed at the edges but for each of them at the first row of
missing atoms. In Fig. 17, we plotted the wave numbers k̃ = k̃l

(black dots) and k̃ = k̃u [red (gray) dots] versus the computed
eigenvalues Q = qD = qGB − qGB0 with qGB0 denoting the
smallest eigenvalue. The turquoise (light gray) full lines show
the band-structure functions k̃ = 2πf (δ�q)/c) in the regions
below and above the DP versus the distance Q = |δ�q| of the
quasimomentum vector �q from the DP, respectively. They were
computed as described in Sec. IV A. As in the Schrödinger
region, the agreement between them and the experimental
curves is good. Thus, as predicted in Ref. [21], in the vicinity
of the DP the eigenvalues of the graphene billiard may be
identified with the quasimomenta |δ�q|. In order to corroborate
this, we also determined the quasimomenta as outlined in
Sec. IV A from the momentum distributions (5) associated
with the wave functions computed from the finite TBM and
found that, as expected, they are located at and close to the
corners of the BZ.

As is visible in the figure, the wave numbers of B1 grow
linearly with the eigenvalues of the rectangular graphene
billiard, k̃D ∝ qD, k̃D = k̃l , k̃u. Consequently, as in the case
of the latter, the dispersion relation is linear in the vicinity of
the Dirac frequency

|f − fD| = c

2π
k̃l,u = (vD)l,u qD, (7)

with vD denoting the group velocity in B1. The difference
in the slopes of the straight lines in Fig. 17 indicates that
vD takes different values below and above the Dirac wave
number. The fits to the data points in the figure yielded
(vD)l � 0.349c and (vD)u � 0.477c. In fact, this inequality

FIG. 18. (Color online) Integrated DOEs below (k̃D = k̃l , black)
and above [k̃D = k̃l , red (gray)] the first DP of B1. Here, we skipped
the ≈5 lowest eigenvalues. The quadratic polynomials best fitting the
data [turquoise (light gray) full lines] are also depicted.

reflects the electron-hole asymmetry, i.e., the different opening
angles of the lower and the upper cones observed in the band
structure of graphene [58].

Furthermore, we compared the length spectra of B1
deduced from the wave numbers around kD with those of
the corresponding graphene billiard. For this we rescaled
the experimental wave numbers k̃D = k̃l , k̃u so that their
group velocities equaled that of the graphene billiard, which
corresponds to multiplying the wave numbers with the inverse
of the slopes of the straight lines in Fig. 17.

1. Integrated DOE and length spectra

The length spectra were obtained from the Fourier trans-
form of the fluctuating part of the integrated DOE. In Fig. 18,
we show the integrated DOE for the region below and above
the DP, i.e., for k̃l as black circles and for k̃u as red (gray)
ones, respectively. The turquoise (light gray) full lines show
the quadratic polynomials

Nsmooth(k̃l,u) ≈ A

2π
q2

D = A

2π

(
c

(vD)l,u
k̃l,u

)2

(8)

that best fit the data. Here, A denotes the area of the Dirac
billiard. We actually had to skip the ≈5 lowest eigenvalues
around the DP, i.e., in the flat region around the DP in Fig. 8,
in order to achieve that agreement. The difference between
the integrated DOEs below and above kD is due to that of the
group velocities (vD)l and (vD)u. As above, the fluctuating part
Nfluc(k̃D) of the integrated DOE was obtained by subtracting
the smooth part Eq. (8) from it.

In Figs. 19 and 20, the length spectra computed from
Nfluc(k̃D) are compared with that deduced from the eigenvalues
of the graphene billiard. The overall agreement is not as good as
that found in the Schrödinger region between the experimental
results and those for the corresponding quantum billiard
(see Figs. 11 and 12). Deviations are especially observed
in the amplitudes. Note that the boundary conditions differ
a bit for the graphene billiard and the Dirac billiard. While
for the former the wave functions vanish along the zigzag
edges, this is not the case for B1, where they vanish along
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FIG. 19. (Color online) Comparison of the length spectrum of
B1 in the region below the DP (full black line) with that of the
corresponding graphene billiard (dashed red line). Altogether 90 wave
numbers were taken into account.

the sidewalls of the cavity. These are slightly shifted with
respect to the zigzag edges formed by the outermost rows
of voids (see Figs. 1 and 2). Furthermore, deviations are
expected because of the fluctuations of the experimental data
around the straight line best fitting them (see Fig. 17), which
reflects the correspondence between the wave numbers of B1
and the eigenvalues of the graphene billiard. Actually, they
decrease with increasing qD , i.e., wave number. Nevertheless,
the number of eigenvalues is very low, so we are still far
from the semiclassical regime. To check this, we compared
the length spectrum of the graphene billiard obtained for the
first 90 eigenvalues with that computed on the basis of the
semiclassical trace formula for the DOE of the latter [21]
in the corresponding energy range (see Fig. 21). Deviations
similar to those in Figs. 19 and 20 are observed. Note,
that the discrepancies decrease with increasing wave number
and for large values of qD the agreement has been shown
to be excellent in Ref. [21]. We expect the same behavior
for those visible in Figs. 19 and 20. Indeed, a comparison
of the length spectrum for the graphene billiard with finite
TBM calculations also revealed such deviations for spectra of
comparable lengths. We thus conclude that a good agreement
can only be achieved for very large graphene flakes.

FIG. 20. (Color online) Same as Fig. 19 but in the region above
the DP.

FIG. 21. (Color online) Comparison of the length spectrum of
the graphene billiard (dashed red line) with that computed from
the semiclassical trace formula for its DOE [21] (full black line).
Altogether 90 eigenvalues were taken into account.

2. Spectral properties of the wave numbers

We also analyzed the spectral properties of the wave
numbers k̃S = k̃l , k̃u by proceeding as described in Sec. IV A.
Figure 22 shows as black full line the experimental result
for the nearest-neighbor spacing distribution P(s), as black
dashed line that for the eigenvalues of the rectangular quantum
billiard, and as red (gray) full line the Poissonian distribution.
Similarly, Fig. 23 shows the Dyson-Mehta statistic [18] �3(L)
obtained for the wave numbers k̃u (circles), the eigenvalues
of the quantum billiard (triangles), and Poissonian random
numbers [full red (gray) line]. The agreement between the
spectral properties of the Dirac billiard and the graphene
billiard is very good.

V. SECOND DIRAC POINT

In this section, we present results for the properties of
the resonance spectrum of the Dirac billiard B1 shown in
Fig. 3 in the two bands that frame the second DP. There, the
band structure is more complicated than for the first DP, as
can be guessed from the associated integrated DOE and the

FIG. 22. (Color online) Comparison of the nearest-neighbor
spacing distribution of the first 90 eigenfrequencies above the first
DP of B1 (full black line) with that of the corresponding graphene
billiard (dashed black line) and the Poisson distribution (full red line).
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FIG. 23. (Color online) Comparison of the �3 statistics of the
first 90 eigenfrequencies above the first DP of B1 (circles) with that
of the corresponding graphene billiard (triangles) and the Poisson
distribution (full red line).

DOE shown as black curves in Figs. 24 and 25, respectively.
The former exhibits a plateau around the Dirac frequency
fD = 41.11 GHz. Furthermore, it has two slight kinks at
f −

VH = 38.95 GHz and f +
VH = 43.42 GHz and, in distinction

to the DOE for the two bands bracketing the first DP shown
in Fig. 8, two more kinks at 44.49 GHz and at 46.63 GHz.
They correspond to the sharp peaks observed above f +

VH in the
DOE shown in Fig. 25 and are marked by arrows in Fig. 24.
The frequencies at the DP, fD , the VHSs, f ±

VH, and the lower
and the upper band edges, flBE and fuBE, respectively, of the
second DP are given in Table III. As can be deduced from
Fig. 4, the peak at the highest frequency already is part of
the subsequent band, which seems to start at the bottom of
the sharp decline of the preceding one at fuBE ≈ 44.7 GHz,
whereas the lower band edge is at flBE = 33.66.

The red (gray) curve in the upper panel of Fig. 25 shows
the result of a fit of the TBM to the experimental DOE
in the frequency range flBE � f � fuBE. It reproduces the
positions of the peaks, the band edges, and the DP of the latter,

fVH
+

fVH
-

Dirac
frequency

FIG. 24. (Color online) The integrated DOE N (f ) obtained from
the resonance spectrum shown in Fig. 3 for the two bands joined at
the second DP. It exhibits a plateau around the Dirac frequency fD =
41.11 GHz, where it barely varies, and slight kinks at the frequencies
denoted by f −

VH = 38.95 GHz and f +
VH = 43.42 GHz. At 44.49 and

46.63 GHz, two more kinks marked by arrows are clearly visible [32].

Expt.
fit TBM <0f

~

fit TBM >0f
~

Expt.
fit TBM

FIG. 25. (Color online) The DOE (black) obtained from the
frequency spectrum shown in Fig. 3 for the same frequency range
as the integrated DOE shown in Fig. 24. It is plotted versus the
shifted and rescaled frequency f̃ which was obtained as described in
the caption of Fig. 7. In the upper panel, it is compared to the DOE
computed with the finite TBM [red (gray)]. The associated parameters
were determined from a fit to the experimental DOE. In the lower
panel, those obtained from fits in the frequency ranges below [red
(gray)] and above [turquoise (light gray)] fD are shown.

whereas the overall shape shows clear deviations. Note that
the wavelengths, that vary from 9 to 6 mm in that frequency
range, approach the value of the diameter of the cylinders
and, consequently, the frequency dependence of the coupling
parameters entering the TBM gets more and more crucial.
Accordingly, in order to achieve a better agreement, we fit
the finite TBM separately to the resonance density below and
above the Dirac frequency. The resulting curves are shown
in the lower panel in red (gray) and turquoise (light gray),
respectively. The associated coupling and overlap parameters
are given in Table IV.

The values of the overlap parameters are identical for the
fits to the whole DOE (first row in Table IV) and to that above
the DP (third row in Table IV) and, in distinction to those
obtained arround the first DP (see Table II), are all of the same
size. The coupling parameters except γ3 are of comparable
size. The parameters resulting from the fit to the DOE below
(second row in Table IV) and above the DP, on the other hand,
are of similar size except for the third coupling and overlap
parameter, which is very small in comparison to s2 for the
former, as is the case for the first DP. Furthermore, the ratios
γ2/γ1 and γ3/γ1 are by a factor of 5 larger than around the
first DP. Consequently, the couplings and the wave-function
overlaps between second- and third-nearest-neighboring sites
of the lattice, respectively, are no longer negligible. This

TABLE III. Frequencies in GHz of the lower (flBE) and the upper
(fuBE) band edges, the second DP (fD), and the VHSs (f ±

VH) of
billiards B1 and B2.

flBE f −
VH fD f +

VH fuBE

B1 33.66 38.95 41.11 43.42 44.82
B2 34.87 39.21 41.38 43.61 45.13
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TABLE IV. Coupling parameters in GHz and overlap parameters
resulting from a fit of the DOE deduced from the finite TBM to
the experimental one around the second DP. The first row gives the
parameters obtained from the fit to the DOE in the whole frequency
range flBE � f � fuBE, the second and third one those for a fit to that
below and above the DP at f = fD , respectively.

γ0 γ1 γ2 γ3 s1 s2 s3

1. −0.100 0.914 −0.053 −0.0017 0.044 0.039 0.0409
2. 0.229 −0.970 0.107 0.014 −0.051 −0.043 −0.0002
3. −0.198 0.907 −0.093 0.110 0.044 0.039 0.0409

indicates that the applicability of the TBM and also the analogy
of the wave equation governing billiards B1 and B2 to the
Dirac equation expected in the vicinity of the DP, and found
around the first and also the second one as outlined below,
worsens with increasing frequency. Note that the signs of the
parameters obtained from the fit to the DOE for frequencies
f � fD , i.e., when neglecting the double-peak structure above
the DP differ from the corresponding ones resulting from the
other two fits. A change of all signs corresponds to a reflection
of the DOE at f = fD . In fact, the DOE around the second
DP seems to result from that around the first one by such an
operation, as can be seen in Fig. 4.

Like for the first DP, we could divide the two bands around
the second DP into regions, where the spectral properties
coincide with those of a nonrelativistic quantum billiard and
of a relativistic graphene billiard of corresponding shape,
respectively. These are separated by the two VHSs.

A. Schrödinger region

Since the transition to the next band is not sharp, we
only considered the first 250 wave numbers starting from
the lower band edge k̃l,n = kn − klBE, n = 1, . . . , 250, for
the comparison of the properties of the eigenfrequencies with
those of the corresponding quantum billiard.

In Fig. 26, we plotted the wave numbers k̃ = k̃l (black
circles) versus the shifted eigenvalues Q = qS of the latter. The
turquoise (light gray) curve shows the band-structure function
k̃ = 2πf (δ�q)/c, computed as described in Sec. IV A, as func-
tion of the distance Q = |δ�q| of the quasimomentum vector
from the � point, i.e., the lower band edge. The good agreement
between both curves demonstrates that, as in the case of the first
DP, the quasimomenta may be identified with the eigenvalues
of the quantum billiard. Both curves, and thus the dispersion
relation in the frequency range below the first VHS, are well
described by a quadratic polynomial. The wave functions
obtained from the finite TBM have also the same structure
as those of the latter. The intensity patterns, however, are not
as clear-cut as for the first DP. Consequently, we observe larger
deviations between the length spectra of B1 and the quantum
billiard, shown in Fig. 27, than in Fig. 13. Still, the overall
agreement, especially that of the peak positions, is good.

B. Dirac region

In order to investigate the spectral properties in the
vicinity of the second DP, we divided the spectrum of wave

FIG. 26. (Color online) The first 250 wave numbers [k̃ = k̃l)
(black circles) with respect to the lower band edge k̃lBE] versus the
shifted eigenvalues Q = qS of the corresponding quantum billiard.
The turquoise (light gray) shows the band-structure function k̃ =
2πf (δ�q)/c as function of the distance Q = |δ�q| of the quasimomen-
tum vector from the lower band edge.

numbers into one for the first 100 above and below the Dirac
wave number kD , k̃u,ñ = kn − kD, n = 823, . . . , 922, ñ =
n − 822 and k̃l,ñ = |kn − kD|, n = 723, . . . , 822, ñ = 823 −
n, respectively, where kn=822 < kD < kn=823. Figure 28 shows
the wave numbers k̃ = k̃l (black circles) and k̃ = k̃u [red
(gray) circles] versus the eigenvalues of the corresponding
rectangular graphene billiard qD = qGB − qGB0 computed
with Eq. (7), where qGB0 denotes the smallest eigenvalue.
The turquoise (light gray) lines exhibit the band-structure
function k̃ = 2πf (δ�q)/c as function of the distance |δ�q| of
the quasimomentum vector �q from the Dirac point. The
good agreement demonstrates that also in the region around
the upper DP, the quasimomenta may be identified with the
eigenvalues of the graphene billiard. The curves are best fitted
by a straight line. Thus, as in the vicinity of the first DP,
the wave numbers of B1 grow linearly with the eigenvalues
of the rectangular graphene billiard k̃D ∝ qD, k̃D = k̃l , k̃u.
Consequently, the dispersion relation is also linear around the
second DP. The difference in the slopes of the straight lines in
Fig. 28, however, is much smaller than in Fig. 17. Accordingly,

FIG. 27. (Color online) Comparison of the length spectrum of
B1 in the lower Schrödinger region (full black line) with that of the
corresponding quantum billiard (dashed red line).
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FIG. 28. (Color online) The first 100 wave numbers k̃ = k̃l below
(black circles) and k̃ = k̃u above [red (gray) circles] the second DP
versus those of the eigenvalues qD of the corresponding rectangular
graphene billiard. The turquoise (light gray) curves show the band-
structure function k̃ = 2πf (δ�q)/c versus the distance Q = |δ�q|.

the group velocities are approximately the same below and
above the second DP, (vD)l � (vD)u, where (vD)l � 0.608c

and (vD)u � 0.561c. Thus, the electron-hole asymmetry is not
as pronounced as around the first one.

Furthermore, we compared the length spectra deduced from
the wave numbers around kD with those of the corresponding
graphene billiard. For this, we again rescaled the experimental
wave numbers k̃D = k̃l , k̃u so that their group velocities equal
that of the graphene billiard. The agreement between the length
spectra of B1 (black full line) and of the graphene billiard (red
dashed line) below and above the DP in Figs. 29 and 30 is
slightly better than for the first DP, shown in Figs. 19 and 20.
The reason could be that the number of eigenvalues taken
into account is larger (100 instead of 90). Like for the two
bands framing the first DP, the spectral properties coincide
with those of the quantum billiard and the graphene billiard
and are well described by those of random Poissonian numbers
in the regions below the lower VHS and between the VHSs,
i.e., in the Schrödinger and the Dirac regions, respectively.

FIG. 29. (Color online) Comparison of the length spectrum of
B1 in the region below the DP (full black line) with that of the
corresponding graphene billiard (dashed red line). Altogether 100
eigenvalues were taken into account.

FIG. 30. (Color online) Same as Fig. 29 but in the region above
the DP.

VI. CONCLUSIONS

We investigated the DOE and spectral properties like the
nearest-neighbor spacing distribution and the �3 statistics of
two Dirac billiards in the two bands adjacent to the DP. For this
purpose, we determined experimentally with unprecedented
accuracy their eigenfrequencies by using superconducting
microwave Dirac billiards. The resonance spectra comprised
two DPs for both billiards. The associated DOE exhibits
pairs of VHSs that bracket them. We demonstrated that the
spectral properties and the length spectra are well reproduced
by those of the graphene billiard of corresponding shape in the
frequency region between them. Below and above that region,
on the other hand, they are identical with those of the empty
quantum billiard with the same shape. Accordingly, the wave
equation governing the Dirac billiards is well approximated by
the relativistic Dirac equation governing graphene billiards and
the nonrelativistic Schrödinger equation describing quantum
billiards, respectively. Note that generally works on properties
of (artificial) graphene [13,14] only concentrate on the region
around the DPs, whereas those beyond the VHSs are ignored,
even though they exhibit these interesting features. In a
previous publication [22], we associated the transition from the
relativistic to the nonrelativistic region with a quantum phase
transition similar to that occurring in the two-dimensional
vibron model for transverse vibrations of molecules [59].

The results of this paper raise several questions. First,
the considered Dirac billiards are rectangular and we found
that their spectral properties coincide with those of random
Poissonian numbers [17,56,57]. It would be of great interest
to investigate those of a Dirac billiard with the shape of a
classically chaotic one. Experiments with graphene quantum
dots [8] found evidence that the spectral properties coincide
with those of chaotic systems with violated time-reversal
invariance, as predicted for chaotic neutrino billiards [15].
Numerical studies, however, revealed accordance with those
of time-reversal-invariant systems, as is the case for non-
relativistic Schrödinger billiards. These discrepancies were
attributed to the boundary properties of graphene billiards,
that may induce an intervalley scattering and thus a mixing
of the two independent subsytems composing the honeycomb
lattice. Experiments with a superconducting microwave Dirac
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billiard, which has the shape of Africa [60], are in preparation.
Another still open problem concerns the spectral properties
of a Dirac or graphene billiard at the VHSs and also those
in the flat band, where the DOE diverges logarithmically
for an unbounded graphene sheet and exhibits sharp peaks
for a finite one, as observable in Fig. 4. Due to their
unprecedented accuracy, the experimental data dealt with
in this paper are most suitable to tackle it and find an
answer.
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M. Segev, and A. Szameit, Nat. Photonics 7, 153 (2013).

[35] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen,
A. Szameit, and M. Segev, Phys. Rev. Lett. 111, 103901 (2013).

[36] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).
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