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Induced fractional valley number in graphene with topological defects
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We report on the possibility of valley number fractionalization in graphene with a topological defect that is
accounted for in the Dirac equation by a pseudomagnetic field. The valley number fractionalization is attributable
to an imbalance in the number of one-particle states in one of the two Dirac points with respect to the other. The
difference in the number of one-particle states is manifest and can be exactly evaluated thanks to an external
uniform magnetic field. Although the external magnetic field is precluded, the net valley number results in being
dependent only on the flux of the pseudomagnetic field. We also discuss the analogous effect that the topological
defect might lead to the induced spin polarization of the charge carriers in graphene.
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I. INTRODUCTION

Approximately seven years ago it was demonstrated by
Hou, Chamon, and Mudry [1] that fermion charge fractional-
ization can take place in monolayer graphene due to Kekulé
distortions that are described by means of a complex-valued
scalar field (Higgs field) coupled to the Dirac field which, in
its turn, describes the dynamics of massless charge carriers
in the quantum field theory obtained as the low-energy
regime of a discrete model (tight-binding Hamiltonian) of
nearest-neighbor hopping on the two-dimensional honeycomb
lattice [2,3]. The mechanism for charge fractionalization relies
on the existence of zero-energy eigenstates bounded to the
vortex associated with the Kekulé distortions that also would
open an energy gap at the (two) previously present degeneracy
points—two inequivalent Dirac points in the Brillouin zone
where the valence and the conduction bands intersect each
other—of the tight-binding Hamiltonian. While the so-called
valley symmetry is preserved by such midgap bound states, the
vorticity of the distortion, either n � 1 or n � −1, determines
which one of the two triangular sublattices supports |n| zero
modes. That is, the zero modes do not exhibit the so-called
pseudospin (sublattice) symmetry presented in both the tight-
binding and Dirac Hamiltonians. The zero modes and their
sole contribution to the fermion charge fractionalization were
shown to persist in a chiral gauge theory for graphene proposed
by Jackiw and Pi [4] by adding an axial-vector gauge potential
that incorporates axial gauge symmetry [UA(1)] to the field
theoretical model in [1].

The chiral coupling of electrons with gauge field in [4] was
motivated to give a dynamical origin of the Higgs field, which
together with the gauge potential enters in a phenomenological
model (Landau-Ginzburg-Abrikosov-Nielsen-Olesen model),
whose minimum energy solutions exhibit vortex-like profiles,
as those proposed to be realized in graphene. It is worth
mentioning that a chiral gauge field was introduced much
earlier in the Dirac equation, as an effective equation for charge
carriers in a single layer of carbon atoms to describe frustration
in fullerenes [5]. Later, Pachos, Stone, and Temme [6] showed
that in a honeycomb lattice the modulated hopping strength,
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otherwise described by means of a real scalar field, may
become a modulated complex-valued field if one considers
that the hexagonal lattice has its topology altered, such
that the former planar system becomes spherical, as in
fullerenes. To take into account the modified topology at the
theoretical level, one introduces a chiral gauge field in the
Dirac Hamiltonian that describes the low-energy dynamics
of charge carriers. In this way, [6] has provided a physical
realization of magnetic vortices with fractionalized charge, as
those proposed originally in [1] and [4] and also analyzed in
detail in [7] and in [8] by taking into account the effects of
external magnetic fields.

In a remarkable work [3] dedicated to the role gauge fields
might play in the dynamics of charge carriers described by
an effective quantum field theory of Dirac fermions, Semenoff
showed that the parity anomaly, a phenomenon that was shown
to happen in quantum electrodynamics in 2+1 space-time
dimensions [9], could be simulated in a planar honeycomb
lattice with two species of atoms. In that scenario there is a
difference in energies of electrons localized on the different
atoms and that implies a parity-violating “mass term” to the
field theory effective Hamiltonian that is eventually respon-
sible for the anomalous current that, paraphrasing Semenoff,
“would couple to an unphysical external field of abnormal
parity and is therefore not directly observable.” In other
words, that was an axial-vector gauge potential entering in the
scene, at least theoretically, in condensed matter, especially
in graphite monolayers. Nowadays, it has been proposed that
very intense pseudomagnetic fields can be induced by strain
in graphene nanobubbles [10] and such pseudomagnetic fields
might be associated with the curl of an axial-vector gauge
potential nonminimally coupled to Dirac spinors describing
the dynamics of electrons in strained graphene.

Indeed, fictitious magnetic fields in graphene have been
very fruitful both theoretically and experimentally, as for ex-
ample in the modeling of corrugations and elastic deformations
and in the study of influences that topological defects could
lead to in the electronic properties of graphene [11–17]; in
the experimental realization of Landau levels in very intense
(up to 300 T) pseudomagnetic fields due to stress in strained
graphene [10]; and in the possibility to observe, also by
means of a scanning-tunneling microscopy, Aharonov-Bohm
interferences due to local deformations (microstresses) in
graphene [18]. A good review on gauge fields in graphene can
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be found in [19], where the introduction at the theoretical level
of elastic deformations, topological defects, and curvature in
the low-energy effective Hamiltonian for graphene is reviewed
and some of their effects in the electronic properties are
discussed (see also [20] and [21]). Fictitious magnetic fields
have also been proposed as possible valleys filters in strained
graphene [22,23]; a valley filter allows the transmission of a
current associated with only one of the valleys, while filters
the other one; that is, it transmits a valley-polarized current
and constitutes a crucial mechanism in valleytronics [24],
as much as the spin-filtering mechanism is fundamental to
spintronics. In addition, the influence of uniform magnetic
and pseudomagnetic fields on the Hall response in graphene
samples and the nature of broken-symmetry phases within
the lowest Landau levels have been studied in [25].

Motivated by some of the works cited above, we have
shown [26] that vector and axial-vector gauge potentials by
themselves can bind zero-energy electrons and that fractional
charge may be induced even in the absence of Kekulé
distortions. In this vein, we have discussed the relation of such
induced fractional charge to the parity anomaly which would
be realized in gapped graphene as proposed almost thirty
years ago [3] and in gapped graphene whose parity symmetry
breaking term is provided by the Haldane energy [27]. In
addition we also discussed the possible fractionization of
another induced quantum number, which we had called
chiral charge (number) in the presence of magnetic and
pseudomagnetic fields and had briefly shown the connection
of the chiral charge to the time component of the abnormal
current found in [3].

The chiral charge (number) seems to have an important
physical meaning and must be treated as a physical observable
in graphene whenever the valley symmetry is preserved at
the quantum Hamiltonian level. It is more appropriate to call
it the valley number, instead. Since the valley symmetry is
manifest in this system and there is no intervalley scattering,
there is a doubling of fermions for each energy value and it is
legitimate to assign to each one-particle state a label (index)
to account for the fermion doubling. By its turn, the valley
number is defined here as the net number of valley states,
i.e., Nv = N+ − N−, where N+ is the total number of states
(summed over all energy states) around one of the Dirac points,
while N− is the total number of states associated with the other
Dirac point.

Here, we consider the sample of graphene in the presence
of an external uniform magnetic field and with a local
topological defect of disclination type, which is equivalent
to a pseudomagnetic field typical of a very thin and long
solenoid, the very same magnetic field usually used to discuss
the Aharonov-Bohm (AB) effect. In Fig. 1 we show a graphene
lattice with the kind of local defect we are interested in (an
isolated disclination previously analyzed in [12,28]) and under
the action of an external uniform magnetic field. We show
that the induced valley number is due only to the zero-energy
modes (zero modes) of one-particle states and that there is an
imbalance in the number of zero-energy eigenstates associated
with the two Dirac points. The presence of the external uniform
magnetic field is desirable for many reasons: it can easily
realizable in the laboratory, and it provides normalizable zero
modes and a Landau level structure for the energy spectrum.

FIG. 1. (Color online) Isolated disclination (blue atoms) in a
graphene lattice in the presence of an external uniform magnetic field
(red dots) pointing out of the page. The disclination is a consequence
of the replacement of the central hexagon by a pentagon. Inset: Detail
of the isolated disclination (in perspective), giving rise to a conical
geometry with the pentagon close to the apex of the cone; the external
magnetic field B points upwards.

Notwithstanding, the induced net valley number is shown to be
given by Nv = ±1/2(1 − 2{�/2π}), where 0 < {�/2π} < 1
is the fractional part of the reduced pseudomagnetic flux,
whereas the global sign ± arises from the freedom to choose
the zero-energy particles either in the conduction (+) or in
the valence (−) band. Some interesting features of this result
are the independence of the valley number from the applied
external magnetic field, the fractionalization (even irrational
values) of the valley number for {�/2π} �= 1/2, and its null
result for {�/2π} = 1/2. Moreover, by extending the concept
of valley filtering further, we could say that this is a case of
valley-polarized vacuum due to a partial valley filtering, when
some of the zero-energy localized states of one of the valleys
are filtered. The above result it is not in complete agreement
with the one obtained via the field theoretical calculations in
the perturbative approach as carried out in [7,26,29]. Within
the perturbative approach in field theory one would obtain
Nv = ±�/2π whether the pseudomagnetic flux is integer
or not, but it depends on the Pauli-Villars regulator used
to regularize the induced Chern-Simons action. Then the
nonperturbative field theoretical calculation carried out here,
namely, by using the canonical operator formalism and the
exact one-particle states, is important, because it reveals some
features which probably cannot be attained via the usual
perturbative approach.

In the next section we discuss the one-particle states by
solving the proper Dirac equation we have in hand and
comment on the relevant symmetries of the problem. In the
third section we present the second quantization of the fermion
field, comment on the manifest valley symmetry in the context
of quantum field theory, calculate the induced valley number,
and show that one may have quasiparticles carrying fractional
valley charge. We also compute the induced electric charge in
this context.

To show the similarity of that supposed partial valley
filtering to a partial spin filtering also in graphene, in the fourth
section we consider the very same configurations of magnetic
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and pseudomagnetic fields in the effective Hamiltonian for
low-energy electrons whenever the valley degree of freedom
is decoupled and the relevant degrees of freedom are the
pseudospin (associated to the two triangular sublattices) and
the spin polarization. There we do not take into account the
antiferromagnetic order as it was considered in [30], because
that would break the spin symmetry at the Hamiltonian level,
which would not give reliability to the spin polarization
of the field as a physical observable. We show that the
filtering of some zero-energy states of spin polarization
implies quasiparticles carrying fractional, even irrational, spin
polarization. The fifth section is left to further comments
on the results we have found and a short analysis about the
possible induction of fractional valley number in strained and
in in-plane deformed graphene samples.

II. BOUND STATES ON MAGNETIC AND
PSEUDOMAGNETIC FIELDS

The effective field theory Hamiltonian describing the dy-
namics of the electrons on the graphene honeycomb structure
in the presence of an external magnetic field �BV = �∇ × �V and
a pseudomagnetic field �BA = �∇ × �A can be written as

H =
∫

d2�r�†(�r,t)ĥD�(�r,t), (1)

where ĥD = �α · (−i �∇ − e �V − γ5 �A) is the Dirac Hamiltonian
operator and �(�r) is a four-component spinor, whose transpose
is �T = (ψb

+ψa
+ψa

−ψb
−). The superscripts a and b in the spinor

components designate the triangular sublattices on which the
electrons are supported, while the subscripts ± stand for each
one of the two inequivalent Dirac points. The matrix structure
in (1) is made explicit by means of the following matrices:

β =
(

0 I

I 0

)
, �α =

(�σ 0
0 −�σ

)
,

(2)

α3 =
(

σ3 0
0 −σ3

)
, γ5 = −iα1α2α3 =

(
I 0
0 −I

)
,

where I is the 2 × 2 identity matrix and �σ = (σ1,σ2) and σ3

are the Pauli matrices in the standard representation.
We notice that (1) is invariant under local U (1) ×

UA(1) gauge transformations � → ei[eϑ(�x)+γ5ω(�x)]�, �V →
�V + �∇ϑ(�x), and �A → �A + �∇ω(�x). Moreover, because we are
in (2 + 1) dimensions, the chiral anomaly is absent.

The corresponding time-independent Dirac equation

ĥD�(�r,t) = E�(�r,t) (3)

can be decomposed in two independent Dirac equations, for the
upper ψT

+ = (ψb
+ψa

+) and lower ψT
− = (ψa

−ψb
−) components of

the energy eigenfunctions, that are associated with each one
of the Dirac points in the Brillouin zone of the honeycomb
lattice:

[(±�σ ) · ��±]ψ±(�r,t) = Eψ±(�r,t), (4)

with ��± = −(i �∇ + e �V ± �A).
The bispinors �T

+ = (ψT
+0) and �T

− = (0ψT
− ) are also

eigenstates of γ5 that commute with the Dirac Hamiltonian
operator, with eigenvalues ±1, respectively. This is the mani-
festation of the valley symmetry at the quantum mechanics

level. Furthermore, once the Dirac Hamiltonian operator
anticommutes with α3 and with α3γ5, the energy spectrum
is symmetric around the zero-energy level. In other words, if
there is a norm-preserving operator (unitary operator C) such
that {ĥD,C} = 0, then for each positive-energy normalized
eigenstate, �|E|, there is one corresponding negative-energy
normalized eigenstate �−|E| = C�|E| and the zero modes are
self-conjugate.

When the external magnetic field is uniform and one
considers that the graphene sheet is under disclination, the
vector and axial-vector potentials can be written in the
symmetric gauges respectively as

V i = −B

2
εij xj , Ai = − �

2πr2
εij xj , (5)

where ε12 = −ε21 = 1 and � = ∫
d2�rBA is the flux of

the pseudomagnetic field BA = �δ(r)/2πr (in cylindrical
coordinates), which exhibits the same profile of the magnetic
field used to describe the AB effect. Such effect involves a
charged particle in the presence of a background magnetic field
concentrated within a flux tube where the probability of the
particle be found is zero. Here, it is the topological defect that
is represented by such (pseudo)magnetic field (see [12,28]).

The zero-energy normalized eigenfunctions associated with
the electrons under the above magnetic and pseudomagnetic
fields are given by

�0,l,+(�r) =
√√√√ |eB/2|1+l− �

2π

π�
(
1 + l − �

2π

)
⎛⎜⎝eilθ

0
0
0

⎞⎟⎠ rl− �
2π e− |eB|

4 r2
,

(6)

�0,k,−(�r) =
√√√√ |eB/2|1+k+ �

2π

π�
(
1 + k + �

2π

)
⎛⎜⎝ 0

0
eikθ

0

⎞⎟⎠ rk+ �
2π e− |eB|

4 r2
,

for eB > 0, and by

�0,l,+(�r) =
√√√√ |eB/2|1+l+ �

2π

π�
(
1 + l + �

2π

)
⎛⎜⎝ 0

e−ilθ

0
0

⎞⎟⎠ rl+ �
2π e− |eB|

4 r2
,

(7)

�0,k,−(�r) =
√√√√ |eB/2|1+k− �

2π

π�
(
1 + k − �

2π

)
⎛⎜⎝ 0

0
0

e−ikθ

⎞⎟⎠ rk− �
2π e− |eB|

4 r2
,

for eB < 0. In the above expressions, θ is the angular
variable in cylindrical coordinates and l,k ∈ Z, with
l > �/2π − 1 and k > −�/2π − 1 (for eB > 0), which
are conditions to get normalized states. For eB < 0 one
must have l > −�/2π − 1 and k > �/2π − 1. From these
conditions one can note that there are infinite zero modes
in both valleys, and that the pseudomagnetic field causes
the lower bound of k to be less than that of l in the case
� > 0 and eB > 0. This leads us to conjecture that there are
additional states of �0,k,− with respect to �0,l,+, and vice
versa in the case � < 0. One can check that the external
uniform magnetic field not only provides normalizable zero
modes, but also brings the imbalance on the number of
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zero modes out. In fact, in the absence of it both valleys
support [�/2π ] − 1 singular zero modes [26,31,32]
([�/2π ] > 0 is the integer part of the reduced
pseudomagnetic flux).

Solutions of the Dirac equations as those in (4) for the
scattering of massive fermions (when a mass term mσ 3

is added to the Dirac Hamiltonian operator) by only an
AB-like magnetic field were discussed in several papers, for
instance [33–35], and of massless fermions in [36]. In our
case, the presence of the uniform magnetic field changes the
energy spectrum of the particle from a continuous spectrum
to a discrete one. Our treatment to reach the excited states,
E �= 0, follows the one given in [37,38], where we find a
discussion of the wave functions of massive fermions in the
presence of a uniaxial magnetic field with two contributions,
a uniform magnetic field and the AB-like magnetic field.
Parenthetically we notice that each one of the equations in (4)
corresponds exactly to the equations solved in [37,38], except
that we are interested in massless fermions and that the ground
states were obtained here through the first-order differential
equations (4), while the second-order differential equations are
used in [37,38] to obtain all the eigenstates, but the irregular
ones at the origin. (For the sake of simplicity we use a specific
value of the adjoint extension parameter; any other choice does
not modify the main results presented in the next section.)

The orthonormal eigenstates of positive energy, angular
momentum, and of γ5 can be worked out straightforwardly
and have the forms

�|E+|,l,+(�r) = eilθ

√
2

⎛⎜⎝ Rn,ν+ (r)
iRn−1,ν++1(r)

0
0

⎞⎟⎠ ,

(8)

�|E−|,k,+(�r) = eikθ

√
2

⎛⎜⎝ 0
0

Rn,ν− (r)
−iRn−1,ν−+1(r)

⎞⎟⎠ ,

where ν+ = l − �/2π , ν− = k + �/2π , and

Rn,ν(r) =
√

(|eB| /2)1+νn!

π�(n + ν + 1)
rνe− |eB|

4 r2
Lν

n(γ r2) (9)

are the Gauss Laguerre modes in cylindrical coordinates
conveniently constructed such that

∫ |Rn,ν(r)|2d2�r = 1, and
we are assuming that R−1,ν(r) = 0 and ν > 1.

The bound state solutions for ν± < −1 are given by

�|E+|,l,+(�r) = eilθ

√
2

⎛⎜⎝ Rn,|ν+|(r)
−iRn,|ν+|−1(r)

0
0

⎞⎟⎠ ,

(10)

�|E−|,k,−(�r) = eikθ

√
2

⎛⎜⎝ 0
0

Rn,|ν−|(r)
iRn,|ν−|−1(r)

⎞⎟⎠ ,

while the eigenstates of negative energy with ν± > +1 and
ν± < −1 can be obtained by applying the unitary operator α3

to the eigenstates (8) and (10), respectively.

The subscripts |E±| designate the energy eigenvalues which
are the Landau levels (LLs)

|E±| =
√

2eBn,

with n = 1,2,3, . . . for

{
l ≥ 2 + [�/2π ]

k ≥ 1 − [�/2π ]
(11)

that are obtained from the regularity condition ν± > +1, while
from ν± < −1 one obtains

|E±| =
√

2eB (n − m ± �/2π ) (n = 0,1,2, . . .), (12)

where m stands for l ≤ −1 + [�/2π ] in case of |E+| and for
k ≤ −2 − [�/2π ] in case of |E−|.

Only regular eigenfunctions have been considered so far.
The irregular ones, corresponding to ν+ = −{�/2π},1 −
{�/2π} and to ν− = {�/2π},−1 + {�/2π} (0 < {�/2π}<1
is the fractional part of the reduced pseudomagnetic flux) are
obtained from the first-order differential equations (4). We
have found that the irregular eigenstates �|E+|,1+[ �

2π ],+ and
�|E−|,−[ �

2π ],− have their corresponding energy eigenvalues in
the set (11), whereas for �|E+|,[ �

2π ],+ and �|E−|,−1−[ �
2π ],− the

corresponding energy eigenvalues belong to the set (12).
Notice that the LLs (including the zero-energy level) are

degenerate with respect to eigenstates of γ5 and L̂ = −i∂θ .
For the zero-energy level, one has l � [�/2π ] and k �
−1 − [�/2π ], and the LL one has l ≥ 1 + [�/2π ] and k ≥
− [�/2π ], due to the irregular eigenstates. The energy levels
in the set (12) with l ≤ [�/2π ] and k ≤ −1 − [�/2π ] may be
degenerate only for {�/2π} = 1/2. Moreover, one only has a
complete set of eigenstates if the zero-energy eigenstates with
l = [�/2π ] and k = −1 − [�/2π ] are dropped out from the
set of eigenstates. This complete set of eigenstates comprises
the basis from which the fermion field operator will be built in
the next section.

III. INDUCED VALLEY NUMBER

In this section we focus on the computation of the induced
valley number that is defined here as the vacuum expectation
value of the valley number operator, namely

N̂v = 1

2

∫
d2�r[�̂†(�r,t),γ5�̂(�r,t)], (13)

where �̂†(�r,t) is the fermion field operator that is expanded
on the basis of the one-particle states presented in the previous
section in the following way:

�̂(�r,t) =
+∞∑

l=[�/2π]+1

c̃0,l,+�0,l,+(�r) +
+∞∑

k=−[�/2π]

c̃0,k,−�0,k,−(�r)

+
+∞∑
n=0

{∑
l

[cn,l,+�|E+|,l,+(�r)e−i|E+|t

+ d†
n,l,+α3�|E+|,l,+(�r)e+i|E+|t ]

+
∑

k

[cn,k,−�|E−|,k,−(�r)e−i|E−|t

+ d†
n,k,−α3�|E−|,k,−(�r)e+i|E−|t ]

}
. (14)
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In this expansion of the fermion field cn,m,v (d†
n,m,v) is

the absorption (creation) operator of a particle of energy
|E±|, angular momentum m = l,k and valley v = ± in
the conduction (valence) band. The energies |E±| of the
particles are given by expressions (11) and (12) with the
corresponding values l and k assumed. The particles of zero
energy are, by construction of the fermion field, supposed
to be in the conduction band and their absorption operators
are represented by c̃0,m,v. The creation d†

n,m,v (c†n,m,v) and
absorption dn,m,v (cn,m,v) operators of particles in the va-
lence (conduction) band obey the following anticommutation
relations:

{cn,m,v,c
†
n′,m′,v′ } = {dn,i ,d

†
n′,i ′ } = δnn′δmm′δvv′ ,

(15)
{c̃0,m,v,c̃

†
0,m′,v′ } = δmm′δvv′ ,

with all the others possible anticommutators vanishing. Then,
one can show that {�̂†(�r,t),�̂(�r ′,t)} = δ2(�r − �r ′), since one
has a complete set of eigenfunctions as that developed in the
previous section.

Then, the valley number operator can be expressed as N̂v =
N̂+ − N̂−, where

N̂+ =
+∞∑

l=[�/2π]+1

(
c̃†0,l,+c̃0,l,+ − 1

2

∫
d2�r|�0,l,+|2

)

+
∑

n

+∞∑
l=−∞

(c†n,l,+cn,l,+ − d†
n,l,+dn,l,+), (16)

N̂− =
+∞∑

k=−[�/2π]

(
c̃†0,k,−c̃0,k,− − 1

2

∫
d2�r|�0,k,−|2

)

+
∑

n

+∞∑
k=−∞

(c†n,k,−cn,k,− − d†
n,k,−dn,k,−) (17)

are the fermion number operators associated with the valley
+ and valley −, respectively. In obtaining these expressions
one must remember that for each positive-energy state of a
given valley there is a corresponding negative-energy state,
such that they cancel each other. Furthermore, one can
note that each of the fermion number operators acquires
a c-number contribution whose origin is due to the zero

modes; i.e.,

c number+ =
∫

d2�rρ+(�r) = −1

2

∫
d2�r

+∞∑
l=[�/2π]+1

|�0,l,+|2

= −1

2

∫ +∞

0
dζe−ζ

+∞∑
l=[�/2π]+1

ζ l−�/2π

� (1 + l − q�/2π )

= −1

2

∫ +∞

0
dζ

(
1 + ζ−{�/2π}e−ζ

�(1 − {�/2π})

− �(1 − {�/2π} ,ζ )

�(1 − {�/2π})
)

= −1

2

(
{�/2π} +

∫ +∞

0
dζ

)
, (18)

c number− =
∫

d2�rρ−(�r) = −1

2

∫
d2�r

+∞∑
k=−[�/2π]

|�0,k,−|2

= −1

2

∫ +∞

0
dζe−ζ

+∞∑
k=−[�/2π]

ζ k+�/2π

� (1 + k + �/2π )

= −1

2

∫ +∞

0
dζ

(
1 + ζ {�/2π}−1e−ζ

�({�/2π})

− �({�/2π} ,ζ )

�({�/2π})
)

= −1

2

(
(1 − {�/2π}) +

∫ +∞

0
dζ

)
, (19)

where �(α,ζ ) is the upper incomplete Gamma function [39],
with ζ = eBr2/2. The c numbers are the only ones responsible
for the nonvanishing vacuum expectation of the fermion
numbers associated with each one of valleys. Figure 2 shows
the absolute values of ρ+(�r), ρ−(�r) and of the difference
ρ(�r) = ρ+(�r)− ρ−(�r) in dimensionless units, where one can
appreciate the sharp behavior of the the “valley number
densities” around the defect.

As a consequence of those contributions, each one of the
fermion numbers picks up a nonvanishing vacuum expec-
tation, namely N+ = 〈0|N̂+|0〉 = −(�B

4π
+ { �

4π
}) and N− =

〈0|N̂−|0〉 = −(�B

4π
+ 1

2 − { �
4π

}), where �B/2π is the reduced
flux of the external magnetic field which is not quantized; it is
infinity in fact once BV is uniform and in the calculations we

FIG. 2. (Color online) Absolute values of (a) surface density ρ+, Eq. (18); (b) surface density ρ−, Eq. (19); (c) net surface density (net
valley number density) ρ = ρ+ − ρ− as functions of the coordinate r (in dimensionless units).
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have done so far the graphene sample has infinity dimensions
[r ∈ [0,∞)]. As one can see, there is an induced fermion
charge associated with each one of the valleys due to the
magnetic fields, whose results are compatible with the results
of the induced electric charge and parity anomaly in QED
in 2+1 dimensions. In fact, the total induced charge of the
system—which is also a physical observable and may be
fractional when specific configurations of the magnetic and
pseudomagnetic fields are considered and is fractional under
Kekulé deformations—is

Q = 〈0|Q̂|0〉 = − e

2

(
−1 + 2e

�B

2π

)
. (20)

From the above expression one sees that this induced charge
is infinity once the flux of the external and uniform magnetic
field is infinity, but it also has a fractional contribution e/2 due
to the AB-like pseudomagnetic field.

On the other hand the induced valley number is finite and
given by

Nv = 〈0|N̂v|0〉 = 〈0|N̂+ − N̂−|0〉 = 1

2
−

{
�

2π

}
. (21)

That is a measure of the imbalance on the number of zero
modes among the valleys. Parenthetically we notice that we
would obtain Nv = −1/2(1 − 2 {�/2π}) had we considered
the zero-energy particles in the valence band. Although Nv

does not depend explicitly on the applied uniform magnetic
field, one would obtain Nv = 0 in the absence of the external
field, for the number of zero modes on both valleys is the same
and, for the same reason, Q would be finite and equals e/2.

Another consequence of the c number as it stands in (18) and
in (19) is that each particle in the conduction or in the valence
band would carry a fractional valley charge as follows:

N̂v |1cond,n,m,±〉
= N̂vc†n,m,± |0〉
= [±1 + 1/2(1 − 2 {�/2π})] |1cond,n,m,±〉 ,

N̂v |1val,n,m,±〉
= N̂vd†

n,m,± |0〉
= [∓1 + 1/2(1 − 2 {�/2π})] |1val,n,m,±〉 .

From this last result one can see that, except for the zero-energy
states, to each particle in the valence band and in the valley
+ (−) is assigned the same valley charge of a particle in the
conduction band and in the valley − (+).

Had we started with the Haldane mass term in ĥD

(mHα3γ5), we would have obtained Nv = mH

|mH | (
1
2 − { �

2π
}) and

the sign ambiguity is accounted for the sign of mass. In the
perturbative approach, by calculating the vacuum polarization
Feynman diagrams and by using the Haldane mass term as the
Pauli-Villars regulator the result would be a little bit different
(Nv = limmH →0

mH

|mH |
�
2π

), because in the perturbative approach
an equal number of zero modes on both of the valleys is
assumed a priori.

IV. FRACTIONAL (EVEN IRRATIONAL)
SPIN POLARIZATION

In this section we discuss the analogy between induced
valley number and induced spin polarization in graphene in
order to reinforce the development of valleytronics in analogy
to spintronics. In valleytronics the pseudomagnetic fields due
to topological defects, microstresses, and deformations in
clean graphene samples had shown to be useful in the filtering
mechanism which selects valley-polarized electric currents as
much as spin-polarized currents are produced in the context of
spintronics.

In the previous two sections we have not considered the spin
degrees of freedom, since in clean samples of graphene there is
no room for spin-spin interaction or spin flipping in graphene.
In the present section we decouple the two valley degrees
of freedom from the full Dirac Hamiltonian that describes the
low-energy dynamics of electrons in the honeycomb lattice and
we are left with the pseudospin (sublattices a and b) and spin
degrees of freedom. By following [30] we write the following
quantum mechanics Dirac Hamiltonian operator:

ĥ = i(�σ ⊗ I ) · [ �∇ − ie �V − i(I ⊗ τ3) �A]. (22)

The 4 × 4 matrix structure of ĥ comes from the direct product
of 2 × 2 matrices; one of the sets, namely the identity
matrix I and the Pauli matrices σ i , is associated with the
pseudospin, while the other one is formed by the identity
matrix and the spin Pauli matrices τ a . Moreover, �V is the
vector gauge potential associated with the external magnetic
field and �A is the axial-vector gauge potential associated with
the pseudomagnetic field. In order to carry the analogy of
induced valley number and induced spin polarization further
and show that the spin polarization can be fractional as a
consequence of the imbalance on the number of zero modes
with different spin polarizations, we consider that the gauge
potentials have the same configurations as given in (5).

Because ĥ commutes with the spin polarization operator
I ⊗ τ3, one can label the energy eigenstates as �± = 1

2 (1 ±
σ3) ⊗ I�, where �+ and �− are eigenstates of I ⊗ τ3

also, with eigenvalues +1 and −1, respectively. Moreover,
ĥ anticommutes with C =σ3 ⊗ τ3; then if �E

± is an eigenstate
of ĥ with eigenvalue E �= 0, C�E

± is also an eigenstate of ĥ

with eigenvalue −E, and the zero modes are C self-conjugate.
With such considerations one can find the explicit form of
the eigenstates of ĥ, I ⊗ τ3, and L̂ = −i∂θ as they were
found in Sec. II. Moreover, according to the steps developed
in the previous section, only the zero modes matter to the
calculation of the vacuum expectation value. Then, for the
sake of simplicity we present only them here, namely

�0,+,l =
√√√√ (eB/2)1+l− �

2π

π�
(
1 + l − �

2π

)
⎛⎜⎝eilθ

0
0
0

⎞⎟⎠ rl− �
2π e−eBr2/2,

(23)

�0,k,−(�r) =
√√√√ (eB/2)1+k+ �

2π

π�
(
1 + k + �

2π

)
⎛⎜⎝ 0

eikθ

0
0

⎞⎟⎠ rk+ �
2π e− eB

4 r2
.
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We notice that the only thing that distinguishes these zero-
energy eigenstates from those in (6) is their matrix structure.
The same happens to the other eigenstates. In other words,
eigenstates �|E|,+,l (�|E|,−,k) have in general the first and the
third (the second and the fourth) components different from
zero. The energy eigenvalues are given by (11) and (12).

Since the quantum field operator

Ŝ = 1

2

∫
d2�r[�̂†(�r,t),I ⊗ τ3�̂

†(�r,t)] (24)

commutes with the quantum field theory Hamiltonian operator

Ĥ = 1

2

∫
d2�r{�̂†(�r,t),i(�σ ⊗ I )

·[ �∇ − ie �V − i(I ⊗ τ3) �A]�̂†(�r,t)}, (25)

it can be associated with a physical observable. Then, by
following the same steps of Sec. III one finds the induced
spin polarization as given by

S = 〈0|Ŝ|0〉 = 1

2
−

{
�

2π

}
. (26)

One can check that the (quasi)particles would carry frac-
tional (even irrational) spin polarization. This result must
be understood only as an illustrative analogy to the result
on the fractional valley number due to topological defects
in the graphene lattice, because topological defects do not
affect the spin polarization degree of freedom.

V. FURTHER COMMENTS AND CONCLUSIONS

We have analyzed the influence of an external magnetic
field in a clean graphene sheet with a local topological
defect (single disclination). Such a topological defect can be
described in the low-energy continuum model for the charge
carriers as a Aharonov-Bohm-like pseudomagnetic field whose
axial-vector gauge potential couples to the two valley degrees
of freedom with different signs. As a consequence of this and
due to the configuration of the pseudomagnetic field one has
a partial breaking of the valley symmetry originally present in
the low-energy effective Hamiltonian for the charge carriers.
This partial breaking of the valley symmetry is revealed in
the energy spectrum of the system which is no longer the
usual (degenerate) Landau levels (LLs) for a (relativistic)
massless fermion in a uniform magnetic field. For instance,
between the zero-energy level and the first LL with energy√

2eB, there appears two additional nondegenerate energy
levels with energies

√
2eB {�/2π} and

√
2eB(1 − {�/2π})

(0 < {�/2π} < 1 is the fractional part of the reduced pseudo-
magnetic flux); each one of these intermediary energy levels
contains a unique member of only one of the valleys. In
addition, each one of the LLs is partially degenerate as regards
the valley degree of freedom; namely, there is an imbalance in
the number of valley states on those energy levels. A measure
of this imbalance, which we have called a partial filtering,
can be defined in the context of quantum field theory as the
valley number given by the vacuum expectation value of the
number operator associated with one of the valleys minus
the expectation value of the number operator associated with
the other valley. We have analyzed that in the third section

and have shown that due to the sole contribution of the zero
modes, the valley number is in fact finite and may be fractional
(even irrational) for {�/2π} �= 1/2. To show that the sum
of states is infinity, specifically concerning the zero-energy
states, we have also computed the induced electric charge and
have shown that it is proportional do the flux of the external
magnetic field, which is infinity because the external field
is uniform and the graphene sample is taken to be infinity.
This last result would be expected from the parity anomaly in
QED in 2+1 space-time dimensions. In fact, in the absence of
intervalley scattering, the continuum model for the dynamics
of charge carriers in graphene in magnetic and pseudomagnetic
fields may be seen as two decoupled QED in 2+1 dimen-
sions (one for each valley degree of freedom) for massless
fermions.

The above splitting on the lowest LL may be a good
candidate to explain the degeneracy lift of the zero-energy
level and perhaps the appearance of a mass gap, that has been
observed in graphene samples under relatively strong magnetic
fields. Since it seems to be very difficult to have a perfect,
free-of-defects graphene sample, the influence of those kind
of topological defects enhanced by a relatively strong magnetic
field might be observed.

We have also wondered whether similar effects could also
take place in strained samples of graphene under microstresses,
as those reported in [10] where uniform (pseudo)magnetic
fields up to 300 T seems to be realized. In view of the
results in [25,26], we conclude that particles associated with
the different valleys would describe orbits with different
cyclotron frequencies, namely ω± = |eB ± BA| /2 and each
Landau level, say

√
2eBn, is split in two levels with energies√|eB + BA| n and
√|eB − BA| n; each one contains a rep-

resentative of only one of the valleys. The zero-energy level
still persists with representatives of both valleys, but since
they have different cyclotron frequencies, there will be an
induced valley number given by Nv = ±�/2π (the ambiguity
of the sign is attributed to the zero-energy particles assigned
to the valence or to the conduction band), which is no longer
fractional; neither is it finite once the pseudomagnetic field
is uniform and the sample is taken to be infinitely large. An
interesting aspect of these results is that now we are able,
by fine-tuning the external magnetic field, to filter one of the
valleys completely and leading to valley-polarized cyclotron
orbits and to chiral eddy currents.

We have also analyzed other kinds of deformations in
graphene, such as the symmetric in-plane ones [18], but we
have not been able to reach a definite conclusion in favor of
partial filtering in this case. Nevertheless, in view of the results
presented here and based on the index theorems on the number
of zero modes of the Dirac Hamiltonian [40–42], we believe
that a partial valley filtering and a non-null induced valley
number take place whenever there is a net pseudomagnetic
flux. Then, as an example of the kinds of in-plane deformation
analyzed in [18], we have considered a pseudomagnetic field
given by BA = −κu00�0

πσ 6 (r4 − 7σ 2r2 + 4σ 4)e−r2/2σ 2
whose flux

is � = 4κu00�0; we would expect that, even in the background
of the uniform magnetic field, for which the index theorem
seems not to be applicable, since one has an infinite flux [42],
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an induced valley number given by Nv = ±2κu00�0, where
�0 is the quantum of flux and κu00 = 0.3 from the data
in [18]. An identical result is expected from field theoretical
calculations within the perturbative approach, as those carried
out in [7,26,29], if one uses the Haldane mass term as
the Pauli-Villars regulator, because in this case there is no
imbalance on the number of one-particle zero-energy states.
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