
PHYSICAL REVIEW B 91, 035401 (2015)

Lifetimes of metal nanowires with broken axial symmetry
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We present a theoretical approach for understanding the stability of simple metal nanowires, in particular,
monovalent metals such as the alkalis and noble metals. Their cross sections are of order 1 nm, so that small
perturbations from external (usually thermal) noise can cause large geometrical deformations. The nanowire
lifetime is defined as the time required for making a transition into a state with a different cross-sectional
geometry. This can be a simple overall change in radius, or a change in the cross-section shape, or both. We
develop a stochastic field theoretical model to describe this noise-induced transition process in which the initial
and final states correspond to locally stable states on a potential surface derived by solving the Schrödinger
equation for the electronic structure of the nanowire numerically. The numerical string method is implemented
to determine the optimal transition path governing the lifetime. Using these results, we tabulate the lifetimes of
sodium and gold nanowires for several different initial geometries.
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I. INTRODUCTION

Nanowires made of monovalent metals, such as sodium,
copper, and gold, live at the boundary between classical and
quantum mechanics and exhibit some of the behavior of each.
They are therefore of great interest, from both a fundamental
physics perspective as well as for technological applications.
Their cross-sectional dimensions can be as small as half a
nanometer (though several nanometers is far more typical)
and their lengths at most a few tens of nanometers. At these
length scales, the stresses induced by surface tension exceed
Young’s modulus, making the wires subject to deformation
under plastic flow [1] and therefore subject to breakup due to
the Rayleigh instability [2,3]. This in fact has been observed
for copper nanowires annealed between 400 and 600 ◦C [4],
as well as for copper and silver nanowires [5,6].

However, electron-shell filling effects stabilize these wires
for radii near certain discrete “magic radii” [1]. These radii
correspond to conductance “magic numbers” that agree with
those measured in experiments [7–11]. This quantum stabi-
lization, however, is only against small surface oscillations
that can lead to breakup via the Rayleigh instability; it does
not take into account thermal noise that can induce large radial
fluctuations that can lead to breakup.

A self-consistent approach to determining lifetimes [12],
which modeled thermal fluctuations through a stochastic
Ginzburg-Landau classical field theory, obtained quantitative
estimates of alkali nanowire lifetimes [12,13], in good agree-
ment with experimentally inferred values [7,8]. The theory,
however, is limited to wires with a cylindrical symmetry. Urban
et al. [9,11], using a stability analysis of metal nanowires

subject to nonaxisymmetric perturbations, showed that, at
certain mean radii and aspect ratios, Jahn-Teller deformations
breaking cylindrical symmetry can be energetically favorable,
leading to an additional class of stable nanowires with non-
axisymmetric cross sections.

The mathematical problem of determining nanowire life-
times in this more general case requires solution of a stochastic
set of coupled partial differential equations corresponding to
a stochastic Ginzburg-Landau field theory with two coupled
fields, one corresponding to variations in mean radius and
the other to deviations from axial symmetry. In particular, we
consider here quadrupolar deformations of the nanowire cross
section, which cost less surface energy than higher-multipole
deformations, and were shown to be the most common
stable deformations within linear stability analyses [11,14].
The general mathematical treatment of such problems was
discussed in [15,16]. Of particular interest was the discovery
of a transition in activation behavior, not only as wire length
varies [12], but also as bending coefficients for the two fields
vary [16].

In this paper, we use these results and those of Urban
et al. [9,11] to construct a more general theory of lifetimes
of nanowires with both axisymmetric and nonaxisymmetric
cross sections, as functions of temperature, strain, and other
thermodynamic variables.

II. OVERVIEW OF THE NANOWIRE
STABILITY PROBLEM

Historically, there have been a number of studies on
nanowires focusing on aspects ranging from growth techniques
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to electronic, mechanical, thermal, and optical properties.
There are several major laboratory techniques for synthesizing
nanowires: suspension, vapor-liquid-solid (VLS), solution-
based growth, and so on. The materials used to fabricate
nanowires also vary, including metals (e.g., Ni, Pt, Au),
semiconductors (e.g., Si, InP, GaN, etc.), and insulators (e.g.,
SiO2, TiO2). Usually, the focus is on nanowires with cross
sections of the order of hundreds of nanometers or even a few
micrometers [17–19]. However, the type of nanowire under
study here is much smaller—at most a few nanometers in
radius [20]. The nanowires we study are mainly prepared via
the suspension technique in either vacuum or air, as opposed
to wires fabricated on a substrate and adhering to a surface.

Metal nanowires of atomic cross section are typically
prepared using either a scanning tunneling microscope (STM)
or a mechanically controllable break junction (MCBJ) [20].
In both cases, the nanowires are essentially freely suspended
three-dimensional wires. In the STM setup, a nanowire is
obtained by pushing the sharp STM tip into a substrate and
then carefully retracting it in a controlled way. The contact
formed in this way is of atomic dimensions [21]. If the tip is
moved further away, the contact thins down and eventually
breaks. In the MCBJ method [22,23], the sample is fixed
onto an insulating substrate and then bent by a piezoelectric
drive controlled by an applied voltage. The sample is pulled
apart until the wire breaks, after which it reforms by reversing
the process. The displacement between the electrodes can be
controlled with accuracy down to 100 fm. Because this setup is
more stable against external vibration than the STM method,
it allows more precise experiments on individual contacts.
In both methods, the cross-sectional area of the nanowire is
inferred from conductance measurements using the corrected
Sharvin formula [11],

Gs

G0
= k2

FA
4π

− kFP
4π

+ 1

6
, (1)

which gives an approximation Gs to the quantized conductance
of an ideal metal nanowire in terms of geometrical quantities,
such as the wire’s minimal cross-sectional area A and
corresponding cross-section perimeter P . Here G0 = 2e2

h
is

the quantum of conductance and kF is the Fermi wave vector
of the material.

The formation and breakup process is repeated thou-
sands of times to derive a statistical histogram for the
conductance [7,24,25] (and therefore cross-sectional areas).
The experiments can be performed at either ambient or
cryogenic temperatures. Very small contacts consisting of four
gold atoms in a row have been formed by means of this
technique [26]. Although this type of experiment does not
measure lifetimes of nanowires directly, rough estimates can
be inferred from the existence of a conductance peak (which
is evidence of a more stable wire, see Ref. [14]) by knowing
parameters of the experiment’s dynamics, in particular, the
speed of elongation of the wire. Typically, the existence of
a conductance peak in a MCBJ experiment [7] implies a
nanowire lifetime greater than 1 ms.

Based on these criteria, there is ample experimental evi-
dence that nanowires made from sodium, gold, and aluminum
are stable, with lifetimes greater than or of the order of
milliseconds [10,11,14].

From a theoretical point of view, the stability of metal
nanowires can be explained by quantum-size effects, or
electron-shell effects, that can overcome the classical Rayleigh
instability [2] in very thin wires. While the Rayleigh instability
makes thin wires unstable once their surface tension exceeds
their yield strength [27], shell effects can stabilize wires with
certain preferred cross sections. The nanowire is a quantum
system where conduction electrons are confined within the
surface of the wire, with a Fermi wavelength comparable to
the cross-section linear dimension. This leads to electron-shell
filling [28–30], which provides an oscillating potential with
multiple minima as a function of the cross-section size and

FIG. 1. (Color online) Contour plot of the electron-shell potential Vshell as a function of the Sharvin conductance Gs , defined by Eq. (1),
and the quadrupolar deformation parameter λ2.
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shape. This potential is called the electron-shell potential, and
its derivation is discussed in detail in Sec. III. Figure 1 shows
this shell potential for wires with a quadrupolar cross section
as a function of the wire’s Sharvin conductance Gs [related
to the cross-section area through Eq. (1)] and parameter λ2,
which describes the cross-section’s deviation from a disk (with
λ2 = 0).

Quantum effects can thus stabilize the wire against breakup
due to the Rayleigh instability. A linear stability analy-
sis [11,31,32] shows that cylindrical wires are most stable
when the radius of the cross section takes a series of discrete
values called the “magic radii.” It also finds that some wires
with nonaxisymmetric cross sections can be stabilized by
electron-shell effects. In fact, comparison of the sequence
of stable structures observed in experiments with linear
stability analyses implies that some of the experimentally
observed conductance peaks must correspond to wires with
nonaxisymmetric cross sections [10,14].

However, linear stability analyses typically consider only
stability toward small, long-wavelength deformations of the
wire. (See Refs. [32,33] for a linear analysis, including short-
wavelength deformations.) In particular, they do not consider
changes of radius or breakup due to large fluctuations, which
can be initiated by thermal noise, application of stress, or
other destabilizing effects. Because the regions of stability are
confined by finite energy barriers (as can be seen from Fig. 1),
a given structure is at best metastable; its confining barriers
can be surmounted by thermal (or other) noise.

The energy contours shown in Fig. 1 lead naturally to a
description of the lifetime problem in which (meta)stable struc-
tures correspond to local energy minima; in the limit of low
noise (thermal energy small compared to the lowest confining
barrier), there is an optimal transition path along which the
probability of a successful transition is maximized [34]. When
the zero-noise dynamics are governed by a potential function
(as is the case here), the “barrier” corresponds to a saddle point
in the potential surface, that is, a fixed point whose linearized
dynamics has a single unstable direction, all the others being
stable. The transition rate is governed by Kramers’ formula

� ∼ �0 exp(−�E/kBT ), (2)

where �E is the difference in energy between the saddle
and the initial state and �0 is a prefactor depending on the
fluctuations around each. In the low-noise limit, the lifetime of
a metastable state is just the inverse of the Kramers’ transition
rate. The problem then reduces to finding �E and �0 as a
function of the system parameters.

In the limit of weak noise, Wentzell and Freidlin (WF) [35]
showed that a rigorous asymptotic estimate for the rate of
transition (i.e., probability of a successful transition per unit
time) can be found by constructing an action functional, which
gives the relative probabilities of different paths. It has been
shown for gradient systems [36,37] that the optimal transition
path is one in which the system climbs uphill against the
gradient through a saddle state and then relaxes toward its
final state.

Solving for the transition rate therefore requires knowledge
of the saddle state. The model developed in Ref. [15] allows for
an analytical solution to the saddle state in the case of certain
special potentials. To solve the nanowire stability problem,

however, we need to find the transition path and lifetime in
more general cases. The string method [38,39] is a numerical
scheme designed for this kind of problem. The procedure it
uses is to first guess the optimal path and then let it evolve
freely along the direction of steepest descent until equilibrium
is reached. Details of the application of the string method to
the kind of problem discussed here are given in Ref. [16].

In the case of cylindrical wires, the cross section of the wire
can in principle shrink or grow under the influence of noise.
However, nanowires studied in experiments are typically sus-
pended between two electrodes that apply a strain on the wire
that tends to pull it apart; as a consequence, transitions are bi-
ased toward smaller radii. In either case, the electrodes act as a
“particle bath” that can supply or remove atoms from the wire.

The case of transitions between different radii under the
assumption of constant axisymmetry was studied in Ref. [12].
This corresponds to transitions between energy minima along
the λ2 = 0 axis in Fig. 1, and the calculated lifetimes
of cylindrical nanowires are comparable with experimental
values. Here we include the effects of broken axial symmetry,
so that transitions between any two minima in Fig. 1 can occur
in principle.

The space of possible transitions is large. However,
the study can be narrowed to those of greatest physical
significance, guided by linear stability analyses [9,11] and
experiments on alkali metal nanowires [7,8,10]. In particular,
nanowires with electrical conductance G/G0 = 5,9, and
29, where G0 = 2e2/h is the conductance quantum, were
identified as the most stable nanowire structures with broken
axial symmetry. We therefore concentrate on transitions from
these local minima.

We will denote nonaxisymmetric structures by D (for
deformed) and the cylindrical ones by C. So, for example, the
nonaxisymmetric structure with G/G0 = 5 will be denoted
D5, the cylindrical structure with G/G0 = 3 will be denoted
C3, and so on.

III. THE MODEL

Metal nanowires have two main components which require
different treatments. Conduction electrons have a wavelength
at the Fermi surface that is of the order of the linear dimension
of the wire cross section, and must therefore be treated
quantum mechanically [29], and positive ions which are much
heavier and therefore have much shorter wavelengths. As
a result, the ions can be treated classically [27] and have
a dynamics that is slow compared to that of the electrons,
which can be treated separately [3]. This separation of time
scales allows for a Born-Oppenheimer approximation, where
conduction electrons are considered at all times to be in
equilibrium with the instantaneous ionic structure which
confines them within the wire. Furthermore, for wires in the
size regime dominated by electron-shell effects, the discrete
atomic structure is unimportant and can be replaced by a
continuum of positive charge (the Jellium model [3,29,40]).
Electron shell effects are dominant over atomic shell effects
in small wires (at least up to about 40 G0 for alkali metal [10]
and Al wires [14], and are still present above that limit).

These observations form the basis for the nanoscale free-
electron model (NFEM [11,29,41]) which considers electrons
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in the wire to be free (other than being confined within the
wire) and noninteracting. The former works best for s-shell
metals, such as alkali and to some extent noble metals like
gold, but has also been shown to perform well for metals
whose Fermi surface in the extended zone scheme is nearly
spherical, such as Al [14]. The limitation to noninteracting
electrons has been shown to be a reasonable approximation
for most metal nanowires [42].

A. Energetics of the nanowire

The surface of a nanowire aligned along the z axis can
be described by a generalized radius function R(z,θ ) in
cylindrical coordinates, which can be written as a multipole
expansion

R(z,θ ) = ρ(z)

⎛
⎝√

1 −
∑
m

λm(z)2/2

+
∑
m

λm(z) cos[m(θ − θm(z))]

⎞
⎠, (3)

where the sums run over the positive integers. ρ(z) defines
the mean radius at position z along the wire, λm(z) describes
a multipolar deformation of order m, and θm(z) allows for a
“twisting” of the wire cross section along z, which has no effect
on the wire energy given the use of the adiabatic approximation
(see below), and will therefore be dropped. The square root
in Eq. (3) has been chosen so that the cross-section area A =
πρ2(z).

Urban et al. [9,11] have shown that, aside from axisym-
metric wires, by far the most common stable nanowires are
wires with a quadrupolar cross section (m = 2). This is related
to the fact that the surface-energy cost of deformations is
proportional to m2. Note that m = 1 deformations correspond
to a simple translation combined with higher-order deforma-
tions. For that reason, we will restrict ourselves to quadrupolar
deformations with m = 2, so that the shape of the wire will
be described by two parameters: the mean radius ρ(z) and the
cross-section deformation parameter λ2(z), which correspond
to the shape shown in Fig. 2.

As long as the variation of the wire cross section along z is
slow enough (adiabatic approximation), any thermodynamic
quantity can be written as an integral over z of a local quantity
that depends only on the cross section at z. This is particularly
true [29] for the grand-canonical potential �e of the conduction
electrons, which is the appropriate thermodynamic potential

FIG. 2. (Color online) Cross section (solid line) of a nanowire
with a quadrupolar deformation (m = 2).

for electrons in a wire connected to bulk electrodes (open
system). �e can thus be calculated for any wire of length L as
a functional of ρ(z) and λ2(z):

�e[T ; ρ(z),λ2(z)] =
∫ L

0
dz ω[T ,ρ(z),λ2(z)], (4)

where the local energy density ω(T ,z) can be obtained
numerically from the transverse energy levels En[ρ(z),λ2(z)]
using the WKB approximation. The energy levels themselves
can be calculated numerically for any value of λ2 and depend
on ρ in a simple way [11,29].

On the other hand, any extensive thermodynamic quantity
can be expressed in terms of a Weyl expansion [43],

�e[ρ,λ2] = −ωV + σsS +
∫ L

0
Vshell[ρ,λ2] dz, (5)

where V and S are the wire’s volume and surface area,
respectively. The last term is a quantum correction and can
be taken as the definition of the electron-shell potential Vshell,
depicted in Fig. 1.

In the spirit of the Born-Oppenheimer approximation,
the electronic grand canonical potential �e is treated as
the potential energy of the ions. Since the wire can also
exchange ions with the bulk electrodes, the appropriate free
energy determining the structure of the wire is the ionic grand
canonical potential

�a[ρ,λm] = �e[ρ,λm] − μaNa, (6)

where μa is the chemical potential [3,12] of the ions deter-
mined by the electrodes, and Na is the number of ions in the
wire.

B. Effective energy of deformations

While linear stability is a necessary condition for a
nanostructure to be observed experimentally, it is not sufficient
due to large stochastic deviations, which can bring the wire
out of its linearly stable state. Under the framework of the
NFEM, we study the noise-induced fluctuations of the cross
section by introducing two classical fields as perturbations to
the parameters ρ̄ and λ̄2 of the generalized radius function in
Eq. (3):

ρ(z) = ρ̄ (1 + φ1(z)),
(7)

λ2(z) = λ̄2 + φ2(z),

where (ρ̄,λ̄2) is the location of the local minimum of the ionic
grand canonical potential.

Expanding the ionic grand canonical potential (6) around
(ρ̄,λ̄2) with respect to the fields φ1, φ2, and keeping terms up to
quadratic order in the spatial derivatives, we get the fluctuation
energy functional. The ionic grand canonical potential (6)
becomes

�a[ρ,λ2] = �a[ρ̄ (1 + φ1),λ̄2 + φ2]

= L

{
πσsρ̄ f [λ̄2] +

(
1 − ρ̄

2
∂ρ̄

)
Vshell[ρ̄,λ̄2]

}

+
∫ L/2

−L/2
H[φ1(z),φ2(z)] dz, (8)

where 2πρ̄f is the perimeter of the metastable nanowire’s
cross section, and f may be represented by a quartic
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polynomial with high accuracy:

f [λ2] = 1 + 3λ2
2

4
− 9λ4

2

32
. (9)

H is the energy density of fluctuations at position z,

H[φ1(z),φ2(z)] = 1

2
πσsσ̄

3

({
2 − λ̄2

2

2
+ 71λ̄4

2

16

}
(φ′

1)2

+ 2λ̄2

{
1 + λ̄2

2

4

}
φ′

1φ
′
2 +

{
1 − 5λ̄2

2

4

}
(φ′

2)2

)
+U [φ1(z),φ2(z)] (10)

with the effective potential

U[φ1(z),φ2(z)] = −ρ̄ ∂ρ̄Vshell[ρ̄,λ̄2]φ1 + 2πσsρ̄ f ′[λ̄2]φ2

− ρ̄

(
πσsf [λ̄2] + 1

2
∂ρ̄Vshell[ρ̄,λ̄2]

)
φ2

1

+ 2πσsρ̄ f ′[λ̄2]φ1φ2 + πσsρ̄f ′′[λ̄2]φ2
2

+Vshell[ρ̄(1 + φ1),λ̄2 + φ2] − Vshell[ρ̄,λ̄2].

(11)

Here σs is the material-dependent surface tension: for gold
σs = 7.83 (eV/nm2); for sodium σs = 1.39 (eV/nm2). L is the
length of the wire. The electron-shell potential Vshell has to
be obtained separately from solving for the electronic energy
bands in the transverse direction numerically [11].

C. The dynamical system

As discussed in Refs. [15,16], the time evolution of the
fields under noise can be described by the coupled Langevin
equations

�̇ = −δH [ �]

δ � +
√

2ε �ξ (z,t),

where � = (φ1
φ2

) and �ξ (z,t) is Gaussian spatiotemporal white
noise with ε = kBT . The saddle state is an extremum of the
action H [ �] [34], and so the optimal transition path can be
obtained numerically by evolving � according to the noise-
free form of the dynamical equations above.

For convenience, we make a change of variable φ1,φ2 →
ψ1,ψ2 to eliminate the cross term φ′

1φ
′
2 in Eq. (10). The two

new fields are defined as

ψ1 = φ1 + g12

g1
φ2, ψ2 = φ2, (12)

with

g1 = πσsρ̄
3

(
2 − λ̄2

2

2
+ 71λ̄4

2

16

)
, g12 = πσsρ̄

3λ̄2

(
1 + λ̄2

2

4

)
, g2 = πσsρ̄

3

(
1 − 5λ̄2

2

4

)
. (13)

The resulting equations of motion for ψ1 and ψ2 are

ψ̇1 = g1ψ
′′
1 + ρ̄(∂ρ̄Vshell[ρ̄,λ̄2]) + 2ρ̄

(
πσsf [λ̄2] + 1

2
∂ρ̄Vshell[ρ̄,λ̄2]

)
ψ1

−
[

2πσsρ̄f ′[λ̄2] + 2ρ̄

(
πσsf [λ̄2] + 1

2
∂ρ̄Vshell[ρ̄,λ̄2]

)
g12

g1

]
ψ2 − ρ̄ ∂ρVshell[ρ,λ2],

(14)

ψ̇2 =
(

g2 − g2
12

g1

)
ψ ′′

2 −
(

2πσsρ̄f ′[λ̄2] + ρ̄ ∂ρ̄Vshell[ρ̄,λ̄2]
g12

g1

)

+
[

2ρ̄

(
πσsf [λ̄2] + 1

2
∂ρ̄Vshell[ρ̄,λ̄2]

)
g2

12

g2
1

+ πσsρ̄f ′[λ̄2]
g12

g1
− 2πσsρ̄f ′′[λ̄2]

]
ψ2

−
[

2πσsρ̄f ′[λ̄2] + 2ρ̄

(
πσsf [λ̄2] + 1

2
∂ρ̄Vshell[ρ̄,λ̄2]

)
g12

g1

]
ψ1 + g12

g1
ρ̄ ∂ρVshell[ρ,λ2] − ∂λ2Vshell[ρ,λ2],

where ψ̇ = ∂ψ/∂t and ψ ′ = ∂ψ/∂z. We now turn to the
solution of the optimal transition path using the string
method.

IV. RESULTS

In Ref. [16] the string method was applied to the problem
of noise-induced transitions in a two-component classical field
theory. The transition path, or string, starts in a random
configuration on the potential surface, with its two ends
inside the basins of attraction of the initial and final states,
respectively. The string is then allowed to evolve along the
direction of the energy gradient, thereby determining the

optimal transition path. The saddle state is the configuration
of highest energy along this path. The results were consistent
with the analytical solutions of [15], in particular, the transition
of the saddle state from a homogeneous to an instanton
configuration as L increases beyond a critical value Lc.

In the following, we apply the same numerical scheme to
the ionic grand canonical potential surface of a metal nanowire,
in order to study lifetimes of wires whose cross sections
correspond to the conductance plateaus D5 and D9.

It was found theoretically in Ref. [12] that both the
activation barriers and the transition direction are sensitive
to changes in stress of the order of 1nN. Figure 3 shows
the activation barrier for the transition of a cylindrical gold
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FIG. 3. The activation barrier �E∞ as a function of mean radius
for the conductance plateau Gs/G0 = 17 of gold. Solid curve:
numerical result for the full potential; dashed curve: result from
theoretical calculation [12] using the best cubic-polynomial fit to the
full potential. The mean radius is related to the tensile stress (upper
axis). This figure is taken from Ref. [12].

nanowire on the conductance plateau G/G0 = 17 (denoted
C17) to other linearly stable structures. To the left of the
cusp, the transition proceeds in a direction corresponding to
thinning (equivalently, moving to a lower conductance value);
to the right, the transition proceeds via thickening (moving to
a higher conductance value). The most stable structure of C17
corresponds to the maximum value of �E∞, which is located
at the cusp; at this point the activation barriers for thinning and
growth are equal.

For a nonaxisymmetric wire, by contrast, it is unlikely for
thinning and growth processes to reach equilibrium at the
same stress; the cusp in Fig. 3 is therefore absent. The greater
richness of the configuration space for nonaxisymmetric wires
allows more options for escape from a given initial state;
barriers are therefore generally lower (and lifetimes shorter)
than in situations restricted to axial symmetry.

Detailed analysis shows that there are two types of instanton
transition states that may arise as the initial state of the
wire varies. The first corresponds to decay into the nearest
cylindrical structure and resembles an asymmetric hyperbolic
tangent function with the longer arm coinciding with the initial
configuration (see Fig. 4). The second corresponds to decay
into (usually) the second-nearest-neighbor cylindrical struc-
ture, and consists of multiple plateaus, each corresponding to
a local minimum the transition goes through (see Fig. 5). We
hereafter refer to the first as a “short instanton” and the second
as a “long instanton.” The final state of the latter is farther from
the initial state in configuration space than that of the former.

Switching between short and long instantons is caused by
the change in the behavior of the activation barrier as a function
of L. Within a given family of wires (e.g., D5) lying in a
particular basin of attraction of the electron-shell potential,
there is a qualitative difference in the activation behavior of
the thinner wires versus the thicker wires, which can be tuned
by applying tensile/compressive stress. For thinner wires (e.g.,
under tensile stress), the energy of the short instanton first
grows for L < Lc and then reaches a plateau for L > Lc; for
thicker wires (e.g., under compression), it continues growing
as L increases beyond Lc. The upper bound of the lifetime
for the transition consequently grows without bound in the

FIG. 4. (Color online) A typical configuration of the short instanton (green), where the transition starts from the initial D5 configuration at
Gs/G0 = 5.55 (red line) and ends at its nearest-neighbor state C3 (thick black). Here a gold wire of length 1.2 nm is considered. The dashed
black lines are other intermediate states along the transition path.
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FIG. 5. (Color online) A typical configuration of the long instanton, where the transition starts from the initial D5 configuration at
Gs/G0 = 5.56 and ends at its second-nearest-neighbor state C1. Note that there are two obvious plateaus in the shape of the long instanton,
with one corresponding to the initial state and the other to the intermediate local minimum C3. Here a gold wire of length 3.3 nm is considered.
The line styles follow the same convention as in Fig. 4.

latter case as L increases. Conversely, the energy of the long
instanton approaches a finite asymptotic value as L → ∞.
Therefore, for thicker wires in a given family, the energies of
the short and long instanton cross at a certain L, beyond which
the short instanton transition state is no longer favorable (see
Fig. 6).

The change in the energy behavior of the short instanton can
be understood by modeling the transition using an asymmetric
double-well potential. In such a system [shown in Fig. 7(a)],
the activation barrier of the state belonging to the upper well
is finite and independent of L as L → ∞; consequently,
the leading-order exponential term determining the lifetime
[Eq. (2)] approaches a constant value. In the other direction,
however, the lifetime of the lower well, as determined by
its transition rate to the upper one [shown in Fig. 7(b)], is
not bounded because the activation barrier grows with L:
�E ∼ C · L, with C a constant determined by the energy
difference between the two wells. When the cross section of
the wire is varied by adjusting the applied tensile force, the two
potential wells (representing the two linearly stable states) shift
vertically relative to one another, until the lower well becomes
the new upper well and vice versa.

Consider now the thinning process for wires under tension;
as an example, we study the situation where the state D5
corresponds to the upper well and C3 to the lower well.
Under tension, the activation barrier �E∞, and hence the
lifetime of the thinning process from D5 → C3, is always
bounded. Under compression, however, D5 shifts downward
to become the lower well and C3 the upper; now �E∞ and
the corresponding lifetime become unbounded as L → ∞.

FIG. 6. (Color online) Activation barrier for thinning of the
sodium D5 state, where the initial structure has Gs/G0 = 5.52. There
are two different final states: C3 and C1, to which the transition is
via the short (C3) and long instanton (C1), respectively. The x axis
is in dimensionless units whose range corresponds to 0–8.8 nm.
Note that there is a discontinuity in the barrier of the transition
D5 → C1, below which it suddenly drops and becomes inclined. For
very short wires, the long instanton is not favorable and “collapses”
into two short instantons, where the first is the saddle state of the
transition D5 → C3 and the second is the saddle state of the transition
C3 → C1. The string method can only select the saddle of the highest
energy if there is more than one along the transition path; here it is
that of C3 → C1, so that the activation barrier calculated increases
with L.
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(b) Backward transition via short-instanton(a) Forward transition via short-instanton 

(c) Barrier of forward transition (d) Barrier of backward transition

(e) The onset of long instanton

The switch from short-instanton to long-instanton

FIG. 7. (Color online) The first four subplots show the transition and the activation barrier of the D5 → C3 transition for Au via the short
instanton. Two different situations are shown: under tension at Gs/G0 = 5.5 [Figs. 7(a) and 7(c)] the activation behavior displays the
characteristics of the forward transition, while under compression at Gs/G0 = 5.6 [Figs. 7(b) and 7(d)] the activation behavior displays the
characteristics of the backward transition. The activation barrier of the forward transition levels out as L → ∞, while that of the backward
transition grows almost linearly with L, following the discussion of the asymmetric double-well model. The greater the difference in energy
between the two metastable states, the faster �E grows with L. The last subplot sketches the transition from D5 to C1 via the long instanton,
which sets a bound [as shown in Fig. (6)] on the barrier for thinning of D5 when the transition to C3 is backward.

The implication from this asymmetric double-well model is
that, to have a bounded lifetime, it is necessary to find a final
state whose energy is lower than that of D5. C1 is such a state;
the lifetime of D5 → C1 is bounded while that of D5 → C3
is not. These results are summarized in Fig. 7.

We can infer some of the dynamics of the process of escape
from the shape of the long instanton. Figure 5 implies that
during the escape process part of the wire assumes the C3
state, which then bends further towards C1. We do not expect
the long instanton to be a relevant intermediate state for escape
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FIG. 8. (Color online) A typical situation at Gs/G0 = 5.56,
where the transition via the long instanton turns unfavorable following
that of the short instanton. The activation barrier of the long instanton
(red dots) increases with L as well as the lifetime so that the
wire becomes more and more stable against thinning. The transition
direction switches accordingly from thinning to growth.

from short wires, as it would cost excessive bending energy
in forming the necessary critical droplet. This conclusion is
consistent with Fig. 6, in which the flat barrier of the long
instanton disappears at small L.

As the wire is compressed and its cross section continues
to grow, the energy of even C1 starts to shift upward and
eventually it becomes the upper well relative to D5; the
probability of thinning thereafter decreases (see Fig. 8). A
similar analysis can be applied to D9, where the role of C3 is
replaced by D8 and C1 by C6. The transition patterns of D5
and D9 are sketched in Figs. 9(a) and 9(b).

In Fig. 7, we denote the direction from the upper well to
the lower one as the “forward” transition and the reverse as
“backward.’ With its activation barrier reaching a plateau as
L → ∞, the forward transition should occur more frequently
than the backward one; we therefore refer to it as the
transition direction. We emphasize that the terms “forward”

and “backward” are defined relative to the upper well, that is,
the higher-energy metastable state.

In experiments, the wire is constantly subject to breakup
and re-formation. Under elongation, the cross section typically
samples all possible stable values before breakup. In reforming
the nanowire, on the other hand, there is typically a jump
to contact, and not all structures are clearly resolved in the
conductance histogram. The relevant lifetime determining
whether a given metastable structure is observed experimen-
tally is therefore that governing the thinning process when the
nanowire is under tension.

In the following sections, we calculate and display the
lifetimes of the D5 and D9 structures for gold and sodium
nanowires.

A. Gold nanowires

In this section, we discuss our results for the stability of the
D5 and D9 structures for gold nanowires.

For D5, Gs/G0 = 5.56 corresponds to the critical cross
section beyond which the long instanton plays a part in the
determination of the lifetime. As the wire becomes thicker,
the energy of the long instanton, and therefore the lifetime,
increases monotonically. Eventually, the transition D5 →
C1, occurring via the long instanton, becomes backward,
essentially halting the thinning process. The evolution of the
barrier for thinning is plotted in Fig. 10; the energy of the long
instanton ranges up to �E∞ = 1000 meV, corresponding to a
lifetime τ ≈ 107 s at T = 300 K.

If one considers growth processes, the lifetime may be much
shorter. The lifetime of the D5 → C6 process, for example,
where C6 is a cylindrical state with a higher conductance value,
is only of order 10−12 s. However, in experimental situations
in which tensile stresses bias the system toward thinning,
D5 should live long enough to be observed experimentally.
Atoms can always leave the wire by diffusing out onto the
surface of the bulk electrodes, while atoms incorporated into
the bulk electrodes cannot readily migrate into the wire, so
that thickening may only be possible on reasonable time scales
under compression.

For the D9 structure, the analysis is similar to that for D5,
except that the critical cross section for the onset of the long
instanton is approximately Gs/G0 = 9.3. Below this value, the

FIG. 9. (Color online) Transition patterns for the structures D5 and D9. Both thinning and growth are drawn, where the final states of
thinning are highlighted in red. Note that for growth only the nearest final state (C6 for D5 and D11 for D9) is shown for discussion purposes.
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FIG. 10. (Color online) Activation barrier for thinning of the D5
structure in Au. The Gs/G0 axis is related by the Sharvin formula to
the continuous variation of the cross section resulting from the change
of tensile force; the λ2 axis is the corresponding variation in the
degree of axial symmetry breaking. Below the critical cross section
at Gs/G0 = 5.56, the activation barrier �E∞ is determined by the
transition D5 → C3 via the short instanton, while for Gs/G0 > 5.56
the activation barrier is determined by the transition D5 → C1 (long
instanton). The curve stops at the point where the energy of the long
instanton becomes unbounded and thinning thus surrenders to growth.

likeliest transition is from D9 to D8 via the short instanton;
above this value, the transition will be from D9 to C6 via the
long instanton. For thicker wires, D9 could transition to D11
rapidly, with a lifetime of the order of a millisecond. Overall,
D9 is quite stable against thinning, with a lifetime (determined
by the long instanton) of 103 s at T = 100 K.

B. Sodium nanowires

The qualitative features of the stability of sodium nanowires
are similar to those of gold nanowires. However, lifetimes are
significantly shorter (cf. Ref. [12]) because of sodium’s smaller
surface energy.

Nevertheless, D5 is quite stable against thinning, with a life-
time of 0.3 ms at T = 100 K. The critical cross section above
which the long instanton becomes relevant is Gs/G0 = 5.48.
D9 has a lifetime of 0.057 s at T = 60 K or 0.000 12 s at T =
80 K. The critical cross section for D9 is Gs/G0 = 9.3. Both
plateaus are unstable at room temperature, and the same issues
concerning growth vs thinning apply to sodium as for gold.

V. DISCUSSION

The previous section discusses a mechanism—the in-
terplay of transitions via short vs long instantons—that is
likely to play an important role in determining lifetimes of
nonaxisymmetric wires. Physically, this interplay reflects
the competition between classical and quantum effects (the
latter encapsulated within the electron-shell potential). In the
classical regime, a long wire requires a large cross section
to stabilize against the Rayleigh instability. However, when
quantum effects are taken into account, the deep minima of the
electron-shell potential favor thinner structures, giving rise to
“magic radii.” When quantum effects dominate, the thinning
process is favored and the transition from thicker to thinner
is forward; when classical effects dominate, the thinning
transition becomes backward and hence less favorable. As
the cross section is continuously varied from larger to smaller,
we find that thinning is inhibited when the initial structure is
thicker; the converse is true when it is thinner.

In the purely cylindrical case, thinning and growth reach
equilibrium when the wire is at a particular cross-sectional
area, as in Fig. 4 of Ref. [12]. The most stable structure
and its lifetime can thus be defined at the cusp. In the
nonaxisymmetric case, however, there is no similar single point
of equilibrium. The rate of growth is generally much faster
than that of thinning, so that the wire may escape to a thicker
state even if the lifetime for thinning is large. Experimentally,
however, D5 and D9 are observable with lifetimes of the
order of milliseconds or larger. We believe this is due to
the experimental situation in which applied stresses to the
wire inhibit growth. Our model for both thinning and growth
implicitly assumes that the transfer of atoms into and out of
the wire is instantaneous. This assumption is a reasonable
approximation for thinning but not for growth under normal
experimental conditions. The observed stability of laboratory
nanowires is largely restricted by thinning processes: in
experiments the wire usually either thins or breaks up under
the pulling force. Given this, our model is quite successful in
predicting the stability of D5 and D9 conductance plateaus
against thinning.
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