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Ab initio studies of adatom- and vacancy-induced band bending in Bi2Se3
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We investigate the influence of potassium adsorption and selenium vacancies in the surface layer on the
electronic properties of the prototypical topological insulator Bi2Se3. These modifications of the surface give
rise to oscillations in the charge density that extend deep into the crystal. They result in a long-ranged potential
perpendicular to the surface (also referred to as band bending) and new states in the band structure that are
reminiscent of the states of a two-dimensional electron gas. Very similar effects have been observed in several
experiments. The reorganization of the charge deep inside the crystal as a reaction to the surface modification
constitutes a remarkable property of Bi2Se3 and is closely related to its layered structure. The emergence of the
long-ranged potential as a direct consequence of the charge reorganization turns out to be a generic property
of Bi2Se3. However, calculations without spin-orbit coupling show that the band bending is not related to the
nontrivial topological character of Bi2Se3.
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I. INTRODUCTION

Topological insulators (TIs) are a recently discovered
class of materials that exhibit spin-polarized, topologically
protected surface states due to bulk symmetries [1,2].
Bi2Se3 was the first both theoretically and experimentally
discovered three-dimensional topological insulator [3,4] and
still serves as a prototype, due to its simple topological
surface band structure with only one Dirac point in
the bulk band gap. In several experiments, a temporal
evolution of the surface band structure of Bi2Se3 has been
observed [5–10]. This “aging effect” is characterized by a
down-shift of the Dirac point, the emergence of Rashba-like
surface states and the formation of M-shaped states. This
behavior could experimentally be reproduced with different
types of intentionally deposited adatoms [5–9,11–13],
but it also occurred under UHV conditions [7,10]. These
features in the band structure have been interpreted to
originate from the formation of a two-dimensional electron
gas (2DEG). Such a 2DEG is caused by a potential gradient
perpendicular to the surface that confines the electrons and
leads to quantized bound states.

However, the details of the potential gradient formation
are still under debate [14,15]. Intrinsic electron doping [16],
vacancies [12], adsorbates [14] and an increase of the van
der Waals (vdW) gap [17,18] have been discussed as possible
origins for the band bending. It was shown [16] that intrinsic
electron doping can indeed lead to a long-ranged potential
that is extended very far into the crystal and results in the
experimentally observed changes in the band structure. There
has also been a number of theoretical investigations dealing
with adatoms or selenium vacancies on Bi2Se3 or related
compounds [13,14,19–24].

On a microscopic level, the aging effect has been studied
by Park et al. [14] in the context of potassium adsorption
on Bi2Se3. Employing density-functional theory (DFT), the
authors have investigated the electronic band structure of
K:Bi2Se3 as a function of the coupling strength between K and
Bi2Se3, which is tuned by the distance between the adatoms
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and the substrate. Based on these results, Park et al. [14] argue
that a substantial charge transfer from the adsorbed K atoms to
the Bi2Se3 substrate gives rise to the observed band bending.

The main goal of our study is to gain understanding of the
principal microscopic origins of the band bending. As the band
bending occurs in various experimental conditions, its origin
should be related to generic properties of Bi2Se3.

Motivated by the experiments cited above, we investigate
the influences of potassium adsorption and of selenium
vacancies in the surface. Potassium serves as a prototype
adsorbate. To further ensure that the obtained results are not
specific to potassium, we also investigate selenium vacancies
in the surface layer. Vacancies have been discussed as possible
origin of the band bending [12], but as yet there are no
theoretical works showing that vacancies can lead to band
bending. Although these two perturbations of the ideal surface
are quite different, they lead to the same qualitative effects.

Up to now, the spatial structure of the charge density inside
the crystal has not been taken into account in an explanation
of the band bending. In this work, we investigate in detail
the charge transfer �Q into the crystal and the changes in
the charge density �ρ(r) inside the crystal that arise upon a
distinct perturbation, e.g., adatoms or vacancies, of the pristine
surface of Bi2Se3. This is motivated by the observation that a
similar amount of charge transfer (�Q) as in K:Bi2Se3 occurs,
e.g., for the adsorption of potassium on Si(001)-(2 × 1). In that
case, however, no long-ranged potential inside the Si substrate
appears [25].

We will outline that considering solely the amount of shifted
charge is not sufficient to explain the formation of the long-
ranged potential. A reorganization of the charge distribution
inside the substrate plays a crucial role and is indispensable
in an explanation of the band bending. Bi2Se3 consists of a
periodic arrangement of quintuple layers (QLs), which are
formed by layers of Se and Bi atoms, respectively, in the
sequence Se-Bi-Se-Bi-Se. We will show on the basis of DFT
calculations that the resulting reorganization of the charges is
related to the layered structure of the crystal in combination
with its special screening properties. The formation of the
long-ranged potential is a direct consequence of the changes
in the charge density.
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One might suppose that the peculiar charge redistribution
inside Bi2Se3 may result from its topological-insulator nature.
However, one can easily turn Bi2Se3 into a conventional semi-
conductor by switching off the spin-orbit coupling (SOC) [2].
In such a calculation, Bi2Se3 still exhibits the same long-
ranged charge redistribution (see below), which proves that
the topological nature of Bi2Se3 is not responsible for the
band bending.

First, we consider the adsorption of K on Bi2Se3 and
discuss the resulting band bending and its influence on the
band structure for various potassium coverages. In this context,
we analyze whether the effects in the electronic structure are
specific to K adsorption or are of more general nature. To this
end, we carry out a calculation for a Bi2Se3 surface with an
additional model potential that simulates the band bending.
A comparison with these results enables us to differentiate
between distinct origins of the adsorption-induced changes
in the band structure. Secondly, we carefully investigate the
charge density of the K-covered slab. By scrutinizing the
origins of the observed charge density, we examine the details
of the formation of the long-ranged potential and how this is
related to the layered structure and the element-specific nature
of Bi2Se3. Finally, we show that selenium vacancies in the
surface layer give rise to qualitatively the same effects as K
adsorption.

The paper is organized as follows. In Sec. II, we describe
technical details of our calculations. Section III deals mainly
with the effect of K adsorption and the resulting long-ranged
potential on the band structure of Bi2Se3. The main results of
this paper are presented in Sec. IV in which we investigate
the spatial structure of the charge density inside the crystal
and how this leads to the observed band bending. Emphasis
is laid on the role of the layered structure of Bi2Se3. Results
for selenium vacancies in the surface layer are discussed in
Sec. V. We close with a summary of the main points (Sec. VI).

II. METHODS AND COMPUTATIONAL DETAILS

We perform calculations within the framework of density-
functional theory and use the local density approximation
(LDA) [26]. To this end, we use a code which has been devel-
oped in our group [27,28]. The electronic wave functions are
represented by a basis set of Gaussian orbitals with s,p,d, and
s∗ symmetry [29] that are localized at the atomic positions. We
use nonlocal norm-conserving ab initio pseudopotentials [30]
in the separable Kleinman-Bylander form [31] and nonlinear
partial core corrections [32] are employed for potassium.
Scalar relativistic corrections as well as SOC are included
in the pseudopotentials [28] and the surface is treated within
the supercell approach. Brillouin zone (BZ) integrations are
performed using a �̄-centered Monkhorst-Pack mesh [33]
of size 12 × 12 × 1, which corresponds to 19 k points
in the irreducible part of the hexagonal BZ. In structural
optimizations, forces are converged to 1 × 10−4 Ry/a0 (with
the Bohr radius a0).

To ensure a consistent description of the K adsorption, we
optimize the bulk lattice parameters of Bi2Se3 within LDA
and find a = 4.14 Å and c = 27.61 Å for the hexagonal lattice
constants. The internal parameters describing the positions
of the atoms inside the unit cell are ν = 0.2090 and μ =
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FIG. 1. (Color online) Top view of the Bi2Se3(111) surface. The
three topmost layers are shown and possible adsorption sites for
adatoms are indicated.

0.4008 (see Ref. [34] for definition). Our results agree well
with experimentally determined values, e.g., Ref. [35] gives
the values a = 4.1355 Å, c = 28.615 Å, ν = 0.2109, and
μ = 0.4006.

III. POTASSIUM ADSORPTION AND ITS EFFECTS
ON THE BAND STRUCTURE

A. Adsorption geometry of potassium on Bi2Se3

Five conceivable adsorption sites for adatoms on the Bi2Se3

surface are depicted in Fig. 1. The H site is above the atom
of the third layer of the crystal. In continuation of the crystal,
the Se atoms of the next atomic layer would occupy the H
sites. We calculate the vertical atomic distances dz of the K
atoms from the selenium surface layer and binding energies
EB for potassium adatoms on each of these sites in the case
of one adatom per 1 × 1 unit cell of Bi2Se3 [one monolayer
(ML) coverage] and in the case of one adatom per

√
3 × √

3
unit cell of Bi2Se3 (1/3 ML coverage). The binding energy is
defined as

EB := −(EK−covered slab − Epristine slab − EK), (1)

where EX denotes the total energy of system X. All three
calculations (for X=K-covered slab, pristine slab, and K) are
performed with the same basis set for the wave functions
in order to avoid the basis set superposition error [36]. The
adsorption process was studied on a Bi2Se3 slab of 3 QL
thickness (25.27 Å in total) with K atoms on both sides.
The results are listed in Table I. The presented numbers
are obtained without considering relaxation of the Bi2Se3

surface layers. We have checked that structural optimization
of these layers results in minor shifts of the atomic positions
in z direction and no surface reconstruction is observed.
Here, we optimize only the K positions because we want to
investigate the principal effect of the adatoms. A comparison
of the potentials (Sec. III C) or charge densities (Sec. IV A) of
the Bi2Se3 surface with and without adatoms requires that the
surface structure is the same to avoid artefacts from Bi2Se3

relaxation.
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TABLE I. Atomic distances dz and binding energies EB for
potassium on Bi2Se3 at the different possible sites H, C, and T (see
Fig. 1 for explanation). Adsorption in positions B and D is unstable.

Site H C T

1 monolayer coverage
dz (Å) 2.43 2.51 3.30
EB (eV) 1.38 1.31 0.87

1/3 monolayer coverage
dz (Å) 2.15 2.23 3.12
EB (eV) 3.16 3.02 2.01

It turns out that the B and D sites are unstable for both
investigated coverages. The H site is the favored adsorption site
in both cases, but it is energetically only slightly preferred over
the C site, and the distance to the surface is also comparable.
The binding energies are much larger for 1/3 ML coverage
than for 1 ML coverage and the binding lengths become
shorter, accordingly. This can be explained by the fact that
in the one ML case the potassium atoms show strong binding
to each other, thus forming an atomic layer, whereas in the
1/3 ML case the K atoms can be regarded as nearly isolated and
have only a very weak inter-atomic binding and are therefore
more strongly bound to the crystal surface. Reference [14] also
gives the H site as the favorable adsorption position.

B. Band structures

We now discuss the band structure of Bi2Se3 with adsorbed
potassium in comparison to the band structure of the pristine
surface. For the pristine surface and the surface with one
ML coverage, we use Bi2Se3 slabs of 13 QL thickness.
The calculations for 1/3 ML coverage are performed with
a 7 QL slab because of the high computational cost. We use
a symmetric setup with K atoms on both surfaces of the slab.
Figure 2 shows the band structure for potassium adsorbed on
the H site. We will only discuss this case in the following
because it is the energetically most favorable one.

The band structure of the pristine surface is in good
agreement with other band structures for Bi2Se3 from the
literature [20,22,37,38]. Slight differences occur because we
use our LDA-optimized lattice parameters whereas most
other studies have been performed with experimental lattice
parameters. The choice of the lattice parameters influences
for example the shape of the band gap edges [39]. The bulk
band gap is closed by the spin-polarized topological surface
state (TSS). The Rashba-component of the spin expectation
value is indicated in Fig. 2 by blue (red) points for positive
(negative) values. The Fermi level EF is 0.01 eV below the
valence band maximum. In the valence band pocket around �̄

(between −1.1 and −0.5 eV), there is another spin-polarized
surface state. This state also occurs for the topological insulator
Sb2Te3 and has been investigated in detail in Ref. [40].

FIG. 2. (Color online) The band structures of a pristine slab (left) and of K-covered Bi2Se3 slabs with 1 ML (middle) and 1/3 ML coverage
(right) are shown. The gray areas show the projected bulk band structure. Red (blue) dots indicate a negative (positive) Rashba component of
the spin expectation value. For the definition of the Rashba-component P⊥ at a given wave vector k0, please see the inset in the left panel. The
size of the dots is proportional to the absolute value of the Rashba component. The bands from the upper and lower surfaces of the slab have
opposite Rashba components. Here, only the values of the bands from the upper surface are shown. This applies to all figures. In the middle
and right panels, green lines indicate states that are predominantly located on the potassium atoms, as resulting from a Mulliken population
analysis. The arrows mark the upper part of the modified TSS (see text for explanation). The thickness of the lines is proportional to the
Mulliken population. The valence-band maximum (VBM) of the projected bulk band structure is taken as the zero of the energy scale.
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General striking features of the Bi2Se3 surface band struc-
ture are the quite big pockets, especially in the unoccupied part
of the band structure. At E ≈ 1.4 eV, a “second Dirac point” is
visible at �̄. The existence of this state depends on the lattice
parameters and has been described in the literature [41,42].

K-adsorption gives rise to a number of spin-polarized
surface states that do not appear on a pristine surface (see
middle panel of Fig. 2). In order to unravel the band structure
of the K-covered slab, we perform a Mulliken population
analysis [43] of the bands and vary the K-slab distance
(not shown here). For large distances, the resulting band
structure becomes the superposition of the band structures of
a pristine Bi2Se3 slab and an isolated monolayer of potassium.
The evolution of the bands from this noninteracting case to
the band structure in the middle panel of Fig. 2 can be tracked
for the intermediate distances. This analysis together with the
study of a model potential (Sec. III D) leads to the following
interpretation of the band structure in Fig. 2 (middle panel).

Two distinct origins of the surface states in the band
structure of the K-covered surface can be distinguished: The
first mechanism is an adsorbate-specific change of the effective
potential near the surface, due to the binding of the adatoms
to the surface atoms. The second mechanism is a universal
feature of Bi2Se3 that occurs for various adsorbates as well as
for vacancies in the surface layer (see Sec. V): The emergence
of a long-ranged potential perpendicular to the surface, often
referred to as band bending [44]. In Sec. III C, we explicitly
show that a long-ranged potential perpendicular to the surface
comes up in Bi2Se3 upon K adsorption. In Sec. III D, we use
a simple model to show how a band structure looks with pure
band bending in the absence of adsorbate-specific states. This
allows us to clearly identify the band bending-induced states
in the band structures of the K-covered slabs. That analysis
supports the assertion we make about band bending-induced
states in this section.

We begin the discussion of the band structure of the
K-covered slab by describing the modification of the surface
states of the pristine surface upon K adsorption. The TSS
undergoes a shift to lower energies, with the Dirac point itself
being shifted from E = −0.24 eV on the pristine surface to
E = −0.93 eV on the K-covered surface. The lower part of the
modified TSS [45] is marked by the yellow box labeled “A” in
the middle panel of Fig. 2. The part of the TSS with negative
Rashba-component (red points) hybridizes with K-induced
surface states and therefore a “gap” is opened for the TSS,
i.e., the modified TSS in box A is not connected with the
conduction bands. The states in the projected bulk band gap
marked by arrows are relics of the original TSS and can be
regarded as the continuation of the upper bands in box A.
The Mulliken analysis of these bands shows contributions
from potassium as well as from the uppermost surface
layers.

The surface state that occurred in the valence band pocket
on the pristine surface has been shifted to lower energies and is
not visible anymore on the K-covered surface. The down-shifts
of the TSS and of the bands in the valence band pocket can be
attributed to the long-ranged surface potential (see below).

We now discuss the potassium-specific states which are
marked by green lines in the middle panel of Fig. 2. They
range from E ≈ 1 eV near K̄ to E ≈ −0.43 eV at �̄ (close

above the magenta box labeled “B”), bridging the bulk
band gap. Between �̄ and M̄ , the spin-polarized bands that
arrive at M̄ just above EF and at E = 1.39 eV, respectively,
show significant potassium contributions. The band structure
of a free-standing K monolayer is nearly parabolic. Upon
adsorption on the Bi2Se3 surface, the parabola splits due to
the SOC and its dispersion gets reduced due to the interaction
with the slab. Close to �̄, the potassium-states show a large
spin polarization.

In addition to all those states, there is a number of further
states in the band structure of the K-covered slab that are
absent on the pristine surface. The emergence of these further
states can be explained in the picture of band bending and
is not K-specific. Band bending can be understood in terms
of an effective potential, which is lowered (or raised) at the
surface compared with the potential in the bulk. A lowered
potential confines the electrons at the surface, and they can be
described as a 2DEG. Similar to the Rashba effect, the SOC
leads to a splitting of spin-degenerate states and gives rise to
spin polarization. The above described downshifts of the TSS
and of the band in the valence band pocket also stem from
such a lowered potential.

The M-shaped pair of spin-polarized states in box B in
Fig. 2 has been “pulled down” from the uppermost valence
bands by the band bending. It resembles the M-shaped
bands observed in several experiments [6,10,16,46] and
calculations [14,16,17] with different kinds of modifications
of the ideal Bi2Se3 surface. The band with positive Rashba-
component is energetically above the band with negative
Rashba-component, in contrast to the ordering in the TSS.

Below the conduction band minimum (CBM), at least two
pairs of spin-polarized states have emerged in the bulk band
gap, one pair at E ≈ 0 eV around �̄ and the other one just
below the CBM at E ≈ 0.18 eV. These states have been pulled
down from the conduction band edge due to band bending.
Their dispersion and spin polarization is similar to the spin-
split parabolas of free electrons in the Rashba effect. Therefore,
we name these states “Rashba-like states” in the following. In
our case, the Rashba-like states do not show strictly parabolic
dispersion since they reflect the dispersion of the conduction
band edge.

At higher energies, new states, which are marked by box C
(in the middle panel of Fig. 2), are also visible in the conduction
band pocket. The lower pair of spin-polarized states reflects
the W-shaped dispersion of the upper edge of the pocket from
which it emerged. The upper pair of states has been pulled
down from parabolic bulk bands at E ≈ 1.2 eV.

Effects that we attribute to the band bending (down-shift of
the TSS, emergence of M-shaped bands, and the Rashba-like
bands) have been observed for adsorbate-covered Bi2Se3 sur-
faces, both experimentally [6,10,16,46] and theoretically [14].
Here, we point out that band bending not only induces changes
around the Fermi energy, but also in the whole unoccupied part
of the band structure, e.g., the states in box C. It generally leads
to the emergence of new bands below the bulk band edges,
because the corresponding wave functions are localized close
to the surface and are thus influenced by the lowered potential.
The aforementioned pockets in the unoccupied part of the band
structure facilitate the occurrence of spin-polarized surface
states below the band edges.
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The right panel of Fig. 2 shows the band structure for
1/3 ML K-coverage. We use the same scale in all panels,
so one length unit in k space is the same in all panels. The√

3 × √
3 unit cell is rotated by 30◦ with respect to the 1 × 1

unit cell, therefore the �̄M̄ (�̄K̄) direction corresponds to the
�̄K̃ (�̄M̃) direction, with K̃ (M̃) denoting the K̄(M̄) point of
the

√
3 × √

3 BZ. The enlarged unit cell leads to a smaller BZ
and thus to back-folding of the bulk bands. Therefore the size
of the pockets of the projected bulk band structure is reduced in
the

√
3 × √

3 unit cell. However, the area around �̄ between
−0.5 and 1 eV remains nearly unaffected and can be well
compared with the 1 × 1 band structure.

For the lower K-coverage of 1/3 ML, the band structure
again changes significantly, compared to the case of 1 ML
K coverage. The TSS is located at lower energy than on
the pristine surface but at higher energy than on the fully
K-covered surface. The Dirac point is shifted to E = −0.7 eV
into the region of projected bulk bands; only the upper part of
the TSS with approximately linear dispersion and negative
Rashba-component can be seen, emerging from the bulk
valence bands, in the right panel of Fig. 2. We emphasize that
in this case, as well as for one ML K coverage, it is actually
not meaningful to use the term “Dirac point,” as there is no
crossing of bands with linear dispersion. Only a comparison
with the pristine surface can justify this name.

The K-dominated states are located at E ≈ 0.65 eV in
the conduction band pocket and do not hybridize with the
TSS. Due to the increased distance between the K atoms, the
dispersion is now much flatter than for one ML coverage.
The 2DEG-like states from box C in the middle panel of
Fig. 2 are shifted to higher energies, compared to one ML
coverage. The size of the valence band pocket is reduced due
to the back-folding of bulk bands, and no M-shaped bands
are visible for 1/3 ML K coverage. Apart from this, the band
bending effects are also present for 1/3 ML K coverage: The
down-shifted TSS, Rashba-like bands below the CBM and a
surface state in the conduction band pocket can be identified.

As a concluding remark to the discussion of the band
structures we note that the bulk band gap is closed by surface
states for all three coverages (0, 1, and 1/3 ML) regarded.
This, together with the observation that there is always an odd
number of crossings of surface states with a line of constant
energy in the bulk band gap, is a manifestation of the nontrivial
topological character of the band structure of Bi2Se3.

C. Slab potentials

The upper part of Fig. 3 shows the laterally averaged
effective potentials

V (z) := 1

A

∫
A

Veff(r) dx dy (2)

of a pristine and a K-covered slab. The integral is over the unit
cell in xy direction with area A. Close to the surface (z = 0)
and in the vacuum (z > 0), they distinctly differ, while deep in
the bulk they nearly coincide. At z = 10 Å, V (z) = 5.72 eV
(2.88 eV for the K-covered surface) denotes the work function
of the surface. Apparently, it is significantly reduced by K
adsorption [47].

FIG. 3. (Color online) The upper part shows the averaged effec-
tive potentials V (z) of a 13 QL slab with and without adsorbed K.
V (z) = 0 represents the Fermi energy. The lower part shows the
difference Vdiff (z) of these two potentials. For comparison, Vdiff (z) for
K adsorbed on Si(001) is also shown. Vertical dotted lines indicate
the midpoints of the vdW gaps between two neighboring quintuple
layers. z = 0 is the position of the outermost selenium layer of the
slab. The label “K” indicates the position of the K layer. The inset
shows the same data on an enlarged energy scale.

To see the change in V (z) more clearly, we plot the
difference

Vdiff(z) := V Slab+K(z) − V Slab(z) (3)

in the lower part of Fig. 3. This plot reveals the above-
mentioned lowering of the potential perpendicular to the
surface. For comparison, the dashed curve shows the same
quantity for the case of a K-covered Si(001) surface [48]. For
this “ordinary” semiconductor, Vdiff(z) decays to zero within
a few angstroms, while for Bi2Se3 we have |Vdiff| > 10 meV
even 40 Å deep in the bulk. The comparison with K:Si(001)
also demonstrates that this unusual behavior has its origin
in the properties of the crystal and not in the properties of
the adsorbate. In addition, we emphasize that the long-ranged
potential is not related to the topological character of Bi2Se3

or the TSS, respectively. Calculations without SOC yield very
similar, equally long-ranged potentials. A careful look at the
details of Vdiff(z) (see inset of Fig. 3) already points out a
possible connection with the layered structure of Bi2Se3: In
the vdW gaps (marked by dotted vertical lines), the slope of
Vdiff(z) is steeper than inside a QL. The relation between the
layered structure and the long-ranged potential will be further
analyzed in Sec. IV B.

Let us briefly compare our calculated Vdiff(z) to other
proposals for the band bending potential from the literature.
In Ref. [6], a constant charge density (with a nonzero net
charge) close to the surface was assumed. First, the potential
resulting from this charge density was calculated by means of
the Poisson equation. Then, the Schrödinger equation with this
potential was solved. The free parameters in this model were
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FIG. 4. (Color online) The model potential VM (z) in comparison
with Vdiff (z) from Fig. 3 and the resulting band structure (see text for
details of the calculation).

used to achieve the best agreement of the resulting energies
with experimental data. In Ref. [16], a more sophisticated
ansatz is taken for the solution of the Poisson equation.
Constant donor and acceptor densities as well as electron and
hole densities resulting from a k · p-Hamiltonian are taken into
account to describe the charge density. The resulting potential
is added to the onsite terms of a tight-binding Hamiltonian.
Both approaches yield band bending potentials extending over
≈150–200 Å.

In Ref. [14], an exponentially decaying potential V (z) =
−VBez/w was added to a tight-binding Hamiltonian. Based on
DFT results, w = 15 Å and VB � 1.5 eV were chosen. The
potential resulting from our calculations has a depth of 0.8 eV
and extends over roughly 40 Å (cf. Figs. 3 and 4 and the
discussion in Sec. III D).

The two different approaches have the following character-
istics: Assuming an additional charge density and fixing the
potential by the measured shift of the Dirac point leads to very
long-ranged potentials with little amplitude (Refs. [6, 16]).
A microscopic description of the processes evoked by adatoms
on the surface (calculated within DFT) leads to a band
bending potential on a shorter length scale but with stronger

amplitude (Ref. [14] and our present work). The approaches
from Refs. [6, 16] lack a microscopic explanation for the origin
of the charge density leading to the potential. The calculations
from Ref. [14] and this work, however, assume ideal crystals
without defects that could lead to free charge carriers that
would result in longer ranged potentials.

D. Calculations with a model potential

We will now briefly discuss the effects resulting from
the long-ranged behavior (perpendicular to the surface) of
the potential. To this end, we first perform a self-consistent
LDA calculation for the pristine slab, yielding the potential
VLDA(r). Then we add a z-dependent model potential VM (z)
[simulating Vdiff(z) like the one of Fig. 3] to VLDA(r) and
finally calculate the band structure of the resulting potential
Vres(r) = VLDA(r) + VM (z). As model potential we choose a
simple Morse potential [49] VM (z) with

VM (z) = V0(1 − e−γ (z−z0))2 − V0. (4)

The minimum value of VM (z) is given by VM (z0) = −V0 and
the parameter γ controls how far the potential is extended into
the crystal. The surface selenium layer is chosen as the position
of z0. In analogy with the symmetric slab structure as discussed
in Sec. III B, the Morse potential is added on both surfaces of
the slab. Performing these calculations for different parameters
(e.g., increasing V0) allows us to comprehend the evolution of
the band structure of pristine Bi2Se3 for an increasing surface
potential.

With V0 = 0.8 eV and γ = 0.09/a0, VM (z) closely resem-
bles the potential difference Vdiff(z) from Fig. 3 (see Fig. 4),
therefore it is possible to quantitatively compare the band
structures from Figs. 2 (middle panel) and 4.

On the pristine surface, the TSS is inside the bulk band
gap and the Dirac point is located at E = −0.24 eV (see
again the left panel of Fig. 2). The model potential leads to a
down-shift of the Dirac point to E = −0.84 eV (see Fig. 4).
The other spin-polarized state in the valence band pocket of
the pristine surface is also shifted to lower energies and is
not visible in Fig. 4. Obviously, the model potential leads to
a number of spin-polarized surface states that do not exist on
the pristine surface. In the valence band pocket around �̄, an
M-shaped state with two branches of negative (red points) and
positive (blue points) Rashba-component is visible between
E = −0.65 and −0.45 eV. Below the CBM, a series of at least
two pairs of Rashba-like states is observed. New states have
also emerged in the conduction band pocket around �̄: The
W-shaped pair of states between 0.5 and 0.75 eV has been
pulled down from the upper edge of the pocket, while the
pair of states disperging from 0.8 eV to higher energies comes
from parabolic bulk bands. In general, the model potential
leads to the emergence of spin-polarized surface states below
every band edge, also for higher energies that are not shown
in Fig. 4.

The calculated band structure with the simulated band
bending thus shows all the features of the band structure of
the fully K-covered slab (Fig. 2, middle panel), except for the
adsorbate-specific potassium-dominated states. These findings
justify the statement made above, i.e., that the differences
between surface states with and without K adsorption originate

035313-6



Ab INITIO STUDIES OF ADATOM- AND . . . PHYSICAL REVIEW B 91, 035313 (2015)

from two different sources: From the adsorbate-specific short-
range part of the potential and from the long-ranged part of
the potential (“band bending”).

IV. MICROSCOPIC ORIGIN OF THE
LONG-RANGED POTENTIAL

The details in the spatial structure of the charge density
inside the crystal are of great importance for an understanding
of the band bending effect in Bi2Se3. In Sec. IV A, the
special properties of the charge density in Bi2Se3 and their
consequences for the resulting potential are demonstrated.
We identify the layered structure of the material as a crucial
ingredient for the long-ranged potential in Sec. IV B.

Let us first give definitions of the terms used in the following
discussion. We compute the difference �ρ(r) of the charge
densities ρ(r) of the K-covered slab and of the two isolated
subsystems (a pristine slab and a freestanding K monolayer):

�ρ(r) := ρSlab+K(r) − [ρSlab(r) + ρK(r)]. (5)

Based on this, we define the laterally averaged charge density
by

ρ(z) := 1

A

∫
A

ρ(r) dx dy. (6)

�ρ(z) shows the changes in the charge density when the
adsorbate interacts with the slab (see Fig. 5). Following
Ref. [14], the amount of charge �Q that is transferred from

FIG. 5. (Color online) The upper part shows �ρ(z) for K-covered
Bi2Se3 as defined in Eq. (5). The colored vertical lines mark
different points z0 for which we compute ρc(z) (see text for further
explanation). The lower part shows the Coulomb potential of ρc(z)
for different z0 in the corresponding colors. The black line shows the
potential of the original �ρ(z) of K-covered Bi2Se3. The dotted lines
mark the QLs, the surface, and the K position as in Fig. 3.

TABLE II. Charge transfers �Q as calculated from Eq. (7) for
the various systems treated in this work. �Q is given in electrons
per surface unit cell, or, equivalently, per adatom. K:Si refers to
K:Si(001) in the adsorption geometry that we also use for K:vdW-Si
(see Sec. IV B for details). A positive value indicates the transfer of
electrons into the subtrate.

K:Bi2Se3 K:Bi2Se3
a K:BiSe K:Si K:vdW-Si

�Q 0.110 0.112 0.119 0.094 0.133

aFrom Ref. [14].

the adlayer into the crystal is defined by

�Q := A ·
∫ K/2

−∞
�ρ(z)dz, (7)

where K/2 denotes half the distance between the substrate
(z � 0) and the adlayer (z = K). The choice of K/2 as lower
limit of the integral is somewhat arbitrary but reasonable.

The number �Q gives no information about the distribution
of the transferred charge within the crystal. This redistribution
can equally well happen within a few Å or within a few hundred
nanometers. Therefore two quantities have to be distinguished:

(1) The charge transfer �Q. This number quantifies a
transfer of charge from an adlayer towards the crystal.
However, no information is contained in �Q about the reaction
of the charge density inside the crystal.

(2) The charge redistribution �ρ(r) [or �ρ(z), respec-
tively]. This quantity describes the rearrangement of the charge
inside the crystal. Note that this quantity is not necessarily zero
in a certain interval I within the crystal, even if

∫
I
�ρ(z) dz =

0 (cf. Fig. 5 and the discussion below).
We find very similar charge transfers �Q for all systems

treated in this work (cf. Table II). Yet, we observe completely
different behaviors of �ρ(z) in these systems. The implications
for the formation of a long-ranged potential will be pointed out
in the following.

A. Charge density of K:Bi2Se3

In this section, we discuss the microscopic origin of
the long-ranged potential. In particular, we demonstrate its
relationship with long-ranged charge density effects.

For Bi2Se3, �ρ(z) shows a periodicity related to the QL
structure of the crystal, which is, however, modified by a z-
dependent amplitude function a(z) decaying into the bulk, i.e.,

�ρ(z) = f (z)a(z). (8)

To substantiate that SOC is not involved in the band bending
process, we also perform calculations without SOC, rendering
the system topologically trivial [2]. For one ML of K on Bi2Se3,
we find

a(z) ≈ exp(z 0.08/Å) with SOC, (9)

a(z) ≈ exp(z 0.06/Å) without SOC. (10)

To reveal the underlying periodic function f (z), we show in
Fig. 6 the “decay-corrected” quantity f (z) = �ρ(z)/a(z). The
curves with and without SOC are nearly identical. They only
differ noticeably within the first QL. The calculations with and
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FIG. 6. (Color online) The “decay-corrected” charge density dif-
ference f (z) (see text for explanation) for K-covered Bi2Se3 with and
without SOC. Dotted vertical lines mark the midpoints of the vdW
gaps. The underlying periodic structure in �ρ(z) for z < −8 Å is
nicely revealed.

without SOC yield equally long-ranged potentials. Therefore
the band bending is not related to the nontrivial topological
character of Bi2Se3.

Except for the first QL, the various amplitudes of f (z)
are nearly the same in every QL. Deviations from a perfectly
periodic behavior result from the approximation we make for
a(z). Figure 6 shows that [apart from the damping a(z)] the
main feature of �ρ(z) is charge accumulation and depletion
at the contiguous edges of two quintuple layers, i.e., there are
dipoles in the vdW gaps.

The most prominent feature of �ρ(z) in Fig. 5 is a large
shift of charge from the potassium layer to the surface. This
can be attributed to the binding of the adsorbate to the surface.
Thus a dipole is formed at the surface which mainly leads to the
reduction of the work function, because the Coulomb potential
Vcoul of a surface dipole is (approximately) a step function. In
addition to this shift of charge, oscillations in �ρ(z) inside the
crystal are visible in Fig. 5.

We show now that the band bending in Bi2Se3 can only
be explained when the oscillations in �ρ(z) are taken into
account. It is not sufficient to consider merely the surface
dipole. The rearrangement of the charges deeper inside the
crystal plays a major role in the band bending process.
To investigate the effect of the oscillations, we define a
one-dimensional cutoff charge density ρc(z) with

ρc(z) :=
{
�ρ(z) if z � z0

0 else . (11)

This definition means that with ρc we investigate the influence
of �ρ on Vcoul only up to a certain distance |z0| from the
surface, while �ρ deeper in the bulk (i.e., z < z0) is switched
off. The cutoff points z0 have to be chosen such that charge
neutrality is preserved (because we want to model the differ-
ence in charge density between charge neutral systems) [50].
The z0 for which charge neutrality is preserved are the zeros
of the integrated charge density, i.e.,

∫ ∞
z0

�ρ(z)dz = 0.
Our results (see Fig. 5) show that the oscillations of �ρ(z)

inside the crystal are the origin of the band bending. They
give rise to a potential that is constant in the range z < z0

[with ρc(z) = 0], while it is lowered towards the surface (for
z > z0). There is an obvious connection between the choice of
z0 and the amount of band bending: For cutoff points z0 deeper
in the crystal, the band bending becomes “stronger,” i.e., the
value |V (0)| increases and the range with V (z) �= 0 becomes

farther extended into the crystal. Therefore only computing the
amount �Q of charge transferred from the adsorbate to the
substrate [see Eq. (7) for definition] is not sufficient to explain
the band bending, because this �Q is the same for all curves
in Fig. 5.

The comparison between, e.g., the blue and magenta curves
in Fig. 5 nicely illustrates a crucial reason for the band bending
in Bi2Se3: The difference in ρc(z) between these two curves is
just one dipole in a vdW gap that is formed by the charge
accumulation and depletion at the edges of two adjacent
quintuple layers. This dipole leads to a potential difference of
≈0.2 eV at the surface between the blue and magenta curve.
The corresponding dipoles in the vdW gaps for z < −20 Å
still lead to a noticeable effect in the potential, i.e., to the
difference between the yellow and black line in Fig. 5, although
the variations in �ρ(z) are already very small in this region.
The role of the vdW gaps is investigated in detail in the next
section.

B. Role of the van der Waals gaps

The observations described in the previous section give rise
to the question concerning the origin of the charge density
oscillations. As the slope of the Coulomb potential is steeper
in the vdW gaps than in the QLs, one might wonder whether
the band bending is a general effect for crystals with a layered
structure, where contiguous layers of some material are only
weakly bound to each other. To investigate this question, we
construct two model crystals: Artificial BiSe and “van der
Waals silicon” (vdW-Si).

The artificial BiSe crystal has basically the same structure
as Bi2Se3, but it is built up of alternating bismuth and selenium
layers instead of the quintuple layers. While in Bi2Se3, there
are three different interatomic distances in the unit cell, the
artificial BiSe has only one interatomic distance for which
we use the distance between the outermost Se atom of a QL
and the adjacent Bi atom. This artificial crystal incorporates
a chemical binding very similar to the binding in Bi2Se3, but
it does not have the layered QL structure. We use a slab with
55 atomic layers, corresponding to a thickness of ≈85 Å. The
slab is terminated by Se on both sides. While Bi2Se3 is a
semiconductor, BiSe is a metal.

The vdW-Si crystal is built of stacked Si(001)-(1 × 1) slabs
with the surface atoms of each slab being saturated with
hydrogen atoms in order to ensure a weak interaction between
two contiguous slabs. We show results for slabs consisting of
six Si layers and a distance of 2.5 Å between two slabs. We use
a crystal with five such Si slabs and a symmetric setup with
potassium adsorbed in on-top position with a distance of 3.2 Å
on both sides of the crystal [51]. Calculations with slabs of
four Si layers in a slab or smaller distances between the slabs
yield similar results.

Figure 7 shows �ρ(z) and the corresponding Coulomb
potential of K-covered BiSe. At first glance, the behavior of
�ρ(z) in BiSe is very similar to the behavior in Bi2Se3 (Fig. 5):
They are identical close to the surface. Farther inside the crys-
tal, �ρ(z) shows oscillations with comparable amplitudes in
both materials. Nevertheless, the resulting Coulomb potentials
are strikingly different: Instead of a long-ranged behavior, the
potential of BiSe shows a steep increase from the surface
towards the substrate for z > −5 Å with only little variations
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FIG. 7. (Color online) The same picture as Fig. 5, but for K-
covered artificial BiSe instead of Bi2Se3.

for z < −5 Å (see lower part of Fig. 7). The reason for the
differing potentials lies in the details of �ρ(z).

A simple model consideration explains why the potentials
of Bi2Se3 and BiSe show drastic differences, although at first
glance the charge densities from Figs. 5 and 7 seem to be quite
similar. To model this behavior, we consider a one-dimensional
charge density ρ(z) in a certain interval I = [0 : zI ]. We
assume the charge density to be zero outside of I and only con-
sider charge neutral systems, i.e., we have a total charge Q of

Q =
∫ ∞

−∞
ρ(z)dz =

∫ zI

0
ρ(z)dz

!= 0. (12)

From ρ(z) = 0 outside I , the Poisson equation ∂2
z V (z) =

−ρ(z) directly yields V = const outside I . If ρ(z) is periodic
in I with n periods [e.g., ρ(z) = A sin(2πnz/I )], it consists of
n identical consecutive dipoles. The Coulomb potential of one
isolated dipole of these n dipoles has a potential difference
V1 between the (constant) potentials on the left and right
side of the dipole. The size of the potential step V1 and the
course of the potential in the region of the dipole depend on
the details of ρ(z). The potential of ρ(z) (the n dipoles) will
have a difference V (∞) − V (−∞) = V (zI ) − V (0) = n · V1.
The size of V1 depends on the amount of charge Q that forms
the dipole and the spatial distance d between the two charges
+Q and −Q. In the case of a simple plate capacitor, V1 ∝ Qd

holds.
The structure of �ρ(z) in Bi2Se3 is similar to this model.

We have an approximately periodic charge density in a limited
space area, i.e., in the crystal [see Fig. 6: The decay-corrected
charge density difference has (nearly) the same structure on
every QL (marked by dotted vertical lines)]. But there is still
an important difference to the simple model explained above:
The dipoles do not all have the same amplitude, but the

FIG. 8. �ρ(z) and Vcoul(z) for K-covered van der Waals silicon
(see text for explanation).

amplitude gets smaller deeper in the crystal, i.e., the charge
Q inside the dipoles is reduced. So the dipoles farther away
from the surface cause smaller potential steps than the dipoles
close to the surface. These two properties (a periodic structure
combined with a decaying amplitude) of the observed charge
density difference in Bi2Se3 lead to the long-ranged potential.

The behavior of artificial BiSe can also be revealed within
this model. Here, �ρ(z) exhibits no periodic structure. There-
fore there are no repeated, periodic dipoles whose potential
steps add up, but there can be dipoles of opposite orientation
that neutralize each other or even lead to a negative potential
step. This can be seen in Fig. 7: For z < −5 Å, the potential
shows an oscillating behavior rather than a monotonic increase.
In this case, the irregular variations in �ρ(z) even lead to
a slight upward band bending for z < −5 Å while a quite
short-ranged downward bending occurs for z > −5 Å.

All these issues confirm that the layered structure of Bi2Se3

is crucial for the band bending which can be explained by
regular oscillations in �ρ(z) that do not occur for artificial
BiSe. Nevertheless, the layered structure of Bi2Se3 is not the
only reason for the band bending in this material, as can be
seen from comparison with vdW-Si.

Figure 8 shows �ρ(z) and Vcoul(z) for K-covered vdW-Si. In
this case, �ρ(z) is only nonzero close to the surface, despite the
layered structure of the crystal. Accordingly, we do not observe
the formation of a long-ranged potential; Vcoul(z) is only
nonzero on the first Si slab, and even here the maximal value
is small with |Vcoul| ≈ 0.11 eV. This means that band bending
is not a general effect for layered crystals in the sense that
any layered structure inevitably leads to band bending. Both
the involved chemical species and the presence of vdW gaps
are important for the question whether a long-ranged potential
appears or not. The sheer existence of vdW gaps in a crystal
is therefore not sufficient for the occurrence of band bending.

We infer that Si is very robust against variations of the
charge density deeper in the crystal. A rearrangement of
charges at the surface (e.g., caused by the adsorption of atoms)
can be screened on a short length scale (a few angstroms),
presumably due to surface states resulting from dangling
bonds which take up most of the transferred charge. The
introduction of vdW gaps in the crystal does not change this
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FIG. 9. �ρ(z) and Vdiff (z) for K-covered Bi2Se3 with reduced
(left) and increased (right) vdW gap dvdW. The real crystal has dvdW =
2.43 Å. The gray areas indicate the vdW gaps.

behavior, therefore no band bending is observed in vdW-Si.
In contrast, Bi and Se atoms as arranged in BiSe or Bi2Se3,
respectively, are very susceptible to changes in the charge
density. There are no surface states resulting from dangling
bonds, therefore the states affected by adatoms are bulklike.
The vdW gaps introduce a periodicity in the crystal which
leads to a corresponding periodicity in �ρ(z) and eventually
results in a long-ranged (Coulomb) potential. We observe very
similar band bending effects in calculations for the related
compounds Bi2Te3, Sb2Te3, Bi2Te2Se, and Bi2Se2Te.

It is also interesting to investigate the influence of the spatial
width dvdW of the vdW gap. In addition to the calculations
discussed so far, which were done for Bi2Se3 in its natural
structure (dvdW = 2.43 Å), we also calculate �ρ and Vdiff for
Bi2Se3 with a vdW gap reduced by 0.5 Å (dvdW = 1.93 Å) and
increased by 1 Å (dvdW = 3.43 Å), respectively. The results
displayed in Fig. 9 show that the main effect of the vdW gaps
is the formation of dipoles in the vdW gaps. Charge is shifted
from one edge of the vdW gaps to the other. As the vdW gaps
increase, their role becomes more important: For large vdW
gaps, the dipoles in the vdW gaps are the main feature of �ρ(z)
and thus Vdiff(z) is steep in the vdW gaps and flat on a QL. For
small vdW gaps, the charge density variation in the vdW gap
is not significantly stronger than inside a QL and thus the vdW
gaps are less prominently seen in both �ρ(z) and Vdiff(z).

We emphasize that the screening in Bi2Se3 is in a sense
counterintuitive. Regarding the relatively large dielectric con-
stant ε∞ ≈ 25 of Bi2Se3 [52], one might expect the crystal to
be more “metallic” than silicon (ε∞ = 12) [53] in the sense that
perturbations of the charge density can be screened on very
short length scales. Accordingly one would expect �ρ �= 0
only close to the surface in Bi2Se3. However, this is not the
case. In fact, artificial BiSe is a metal and shows �ρ �= 0 deep
inside the crystal (see Fig. 7), whereas Si is a semiconductor
and exhibits the opposite behavior. The pure value of ε∞ is
not a helpful number for the explanation of the band bending,
because it is an averaged quantity for a macroscopic crystal.

V. BAND BENDING WITHOUT ADATOMS:
SELENIUM VACANCIES

The results obtained in this work as well as in the other
studies mentioned above suggest that the band bending effects
are related to the properties of Bi2Se3. Therefore they should
occur for all perturbations that induce a distinct charge
rearrangement at the surface, such as other types of adsorbates
or vacancies. For instance, we have investigated the adsorption
of atomic hydrogen on the Bi2Se3 surface and find the same
kind of band bending effects. As a further example with
similar results, we now discuss briefly the effect of selenium
vacancies in the surface layer and compare it with the effect
of K adsorption.

Studying vacancies offers a major advantage over calcu-
lations with other kinds of adsorbates, since this provides
an undisturbed insight into the band bending process due to
the absence of adsorbate-specific influences. The electronic
properties of Bi2Se3 with Se vacancies in the surface layer
have formerly been investigated by Yan et al. [21], but they
have not discussed their results with respect to band bending.
In our calculations, we use a

√
3 × √

3 unit cell in which
we remove one of the three Se atoms in the surface layer.
We find that �ρ(z) and Vdiff(z) show a similar behavior as in
the case of K adsorption. An experimental study discussing
Se vacancies as possible origin of the band bending can be
found in Ref. [12].

The band structure is plotted in Fig. 10. The comparison
with the 1/3 ML K-coverage band structure (cf. Fig. 2) is
most straightforward. Overall, there are many similarities in
the electronic structure. For the surface with a Se vacancy,

FIG. 10. (Color online) The band structure of Bi2Se3 with sele-
nium vacancies in the surface layer. The blue and red dots mark the
spin expectation value as in Fig. 2.
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the Dirac point is shifted to lower energies (compared to the
pristine surface) and cannot be identified any more. Below
the CBM at �̄, Rashba-like states have emerged. These
two features are a strong indication for band bending. The
potassium state at 0.65 eV from Fig. 2 is now absent, of course.
Instead, at this energy we observe a spin-polarized surface
state which is evoked by the vacancy and shows a completely
different dispersion. There is also a state that emerges from
the upper edge of the pocket around �̄.

These similarities and our analysis of the charge densities
and potentials (which is not shown here) show that a band
bending effect can not only be induced by adatoms on the
Bi2Se3 surface, but also by Se vacancies in the surface layer.
This shows that the band bending mechanism can not only
be activated by external charges (from adatoms) that are
transferred to the crystal. The formation of vacancies in the
surface leads to a similar rearrangement of charges close to
the surface as K adsorption. Accordingly, the reaction of the
charges deeper in the crystal is the same: Dipoles are built,
as discussed in the previous section, and eventually the band
bending emerges. The results for vacancies further confirm
that the band bending is a property of Bi2Se3 itself and not of
a specific adatom on the surface.

VI. SUMMARY

We have employed density-functional theory to investigate
adatom- and vacancy-induced band bending at the surface of
the topological insulator Bi2Se3. The adsorption of K adatoms
gives rise to significant changes in the band structure of a
pristine Bi2Se3 surface. Some of the new bands are specific to
potassium while most of the adsorption-induced states result
from a long-ranged potential inside the crystal and are of
more general nature, therefore. Rashba-like states below the
conduction band minimum, M-shaped states in the valence
band pocket around �̄, as well as W-shaped bands in the first
conduction band pocket belong to the class of bands resulting
from band bending. We observe similar states for Se vacancies
in the topmost surface layer.

The long-ranged potential, which is responsible for the
occurrence of the states mentioned above, is observed in

calculations both with and without SOC included, therefore
it is not related to the topological character of Bi2Se3. The
potential occurs for K adsorption as well as in the case of Se
vacancies. We identify the following ingredients needed for
the formation of the long-ranged potential in Bi2Se3:

(1) A distinct perturbation of the surface. The creation of a
surface by cleaving of bulk Bi2Se3 between two quintuple
layers gives rise to gap-closing surface states due to the
topological nature of the crystal. However, this perturbation
of the bulk is weak in the sense that no substantial charge
rearrangement occurs since the inter-QL bonding is weak.
As a result, no significant band bending occurs for a clean
surface of undoped Bi2Se3. Instead, defects or adsorbates are
necessary for band bending.

(2) The possibility to evoke variations of the charge density
far away from the surface. In contrast to the presented case of
silicon, the chemical and structural composition of bismuth
selenide (both with and without vdW gaps) enable such
changes in the charge density.

(3) The layered structure of the material. The vdW gaps
of Bi2Se3 give rise to a periodic rearrangement of the charges
inside the crystal. Accumulation and depletion of the charge
at the two boundaries of each quintuple layer, respectively,
lead to dipole potentials like those of consecutive plate capac-
itors. The resulting electrostatic potential shows characteristic
steps in the van der Waals gaps of Bi2Se3. It decays with
increasing distance from the surface since the adsorbate-
or vacancy-induced charge rearrangement is damped in the
crystal.

The question whether or not band bending occurs as a
universal effect in layered “van der Waals materials” might
also be relevant for other material classes, e.g., the large family
of transition metal dichalcogenides [54,55].

For all investigated perturbations at the surface of the
TI Bi2Se3, we find the often-cited robustness of the sur-
faces states remaining in the sense that the fundamental
bulk band gap is closed by states which are localized
at the surface. Nevertheless, the spin properties of these
states, as well as the positions of possible Dirac points
distinctly depend on the actual bonding configuration at the
surface.
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