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Rigorous theory of the radiative and gain characteristics of silicon and germanium lasing media
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A generalized numerical model for the phonon-assisted optical interband transition based on the Green’s
function formalism was developed and implemented to investigate optical processes in germanium and silicon
media intended for on-chip light emitter and laser applications. High-fidelity full band structures obtained from
the empirical pseudopotential method, self-energies, and the corresponding spectral density functions for the
phonon-perturbed electron and holes have been computed numerically as a function of strain, temperature, and
doping level. Validation has been carried out by showing the model’s ability to accurately reproduce the measured
temperature dependent absorption coefficient data for both germanium and silicon. Absorption coefficients,
radiative recombination rates of germanium and silicon active media were investigated with different biaxial
tensile strain, doping concentrations and injection conditions. Furthermore, when the model is employed to
compute the optical gain in strained germanium, we find that the use of tensile strain and high injection are the
preferable approaches to obtain population inversion. At the same time, strong absorption from the spin-orbit to
the heavy-hole band limits the maximum injection density that can be applied. Finally, when applied to study
silicon, the proposed model also successfully reproduces the experimentally observed radiative recombination
peak due to the two-phonon process.
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I. INTRODUCTION

As a result of the ongoing activities to develop light emitter
and laser structures compatible with standard silicon pro-
cesses, a renewed effort has been devoted to study germanium
(Ge) and silicon (Si) optical properties. Particular attention has
been paid to understand how the optical properties of these
materials change under the effect of strain and doping [1–4].
On the experimental side, attempts to develop Ge-based lasers
have leveraged the fact that using the combination of tensile
strain and high doping a significant enhancement of the direct
radiative recombination rate could be obtained [5–7], and
the optimum strain to fulfill the lasing conditions in Ge has
also been studied theoretically [8]. More exotic approaches
based on membranes are also being explored [9,10], which
have demonstrated possible ways of achieving direct band gap
in Ge. At the same time Si light emitters [11,12] based on
avalanche processes have made the development of microdis-
plays possible [13]. The present work intends to contribute
to this effort by achieving three main objectives. First, we
intend to develop an appropriate formalism to study the optical
absorption and radiative properties of strained Ge and Si
that goes beyond the conventional second-order perturbation
theory (SOPT). Although, SOPT has been employed to analyze
the indirect processes for many years [14], it is difficult to
properly handle the divergences when the energy of transitions
is not known a priori. As a result, it may not be possible to
apply this approach to all the possible cases consistently. The
proposed model, however, is based on the Green’s function
formalism [15], in which we employ the spectral density
functions to describe the broadening of the states involved
in the transitions due to different physical processes, therefore
avoiding the divergence difficulties in SOPT naturally [16].
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Second, we intend to develop a numerical approach suitable
to compute the aforementioned properties using the full
band structure of the material. This approach eliminates the
approximations introduced by the analytical models based on
parabolic or nonparabolic bands, makes it possible to analyze
the behavior of the material when a significant portion of
carriers populate the states far above the band edge [11,14],
and naturally includes the effects of valence-band warping and
anisotropy, which is particularly important when evaluating the
matrix elements of the radiative process. Finally, we apply the
developed model to study strained Ge and Si, where it will
be shown that the model can reproduce the experimental data
for the temperature-depended absorption coefficient of relaxed
material. Subsequently, strained materials will be further
investigated in terms of energy- and temperature-dependent
absorption coefficients and radiative recombination rates under
different doping and injection conditions.

The manuscript is organized as follows. Section II will
give a general description of the theoretical model including
the Green’s function formalism, the band structure calculation
model, and the numerical implementations. Section III will
discuss the results obtained for Ge and Si, and finally,
Sec. IV will deliver the conclusion. Theoretical derivation
of the absorption coefficient and radiative recombination rate
formulas can be found in Appendix.

II. THEORETICAL MODEL AND IMPLEMENTATION

In this section, the theoretical model used in this work and
its numerical implementations are presented. In particular, we
first outline the main ideas behind the Green’s function model
for the phonon-assisted (PA) process, then the approach used
to compute the electronic structure is described and finally
the details of the numerical implementations are explained.
The derivation of the formulas used in this section is stated in
Appendix.
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A. Theory

As was pointed out earlier, the main motivation of using
the Green’s function approach lies in trying to avoid the
numerical and convergence issues arising from conventional
SOPT [14]. However, a number of investigations that have
employed the Green’s function theory were mainly focused
on computing the recombination rates of Auger processes
mediated by the Coulomb interaction [16–18]. In the case of ra-
diative recombination processes, dipole interactions, where the
electromagnetic field interacts with electrons and holes, need
to be taken into account instead. Specifically, in this work, PA
indirect photon absorption and emission processes are studied.
Although the derivation of suitable expressions to compute
PA and impurity-assisted Auger recombination rates using
quasiequilibrium Green’s function formalism (Matsubara
method) have already been presented by Takeshima [19], little
or no information is available on the analogous formula for the
PA radiative recombination/absorption processes, except for
an expression reported in Ref. [17] [see Eq. (2.4)]. In the work
of Kwong et al. [20], though the phonon-assisted process was
studied along with the electron-hole plasma interaction using
quasiequilibrium Green’s function, only a phenomenological
expression was employed to model the PA. On the other
hand, Bardyszewski and Yevick [21] proposed an alternative
way to describe the optical recombination in the context of
electron-hole plasma interaction using nonequilibrium Green’s
functions (Keldysh method), which gives good agreement with
the experimental data but requires the inclusion of dynamic
screening in the model. This leads to a significant increase of
computational complexity for the full band calculation while
only a minor correction to the optical gain can be achieved.
Since our main focus is on the PA processes and the full
band structure effects, in the present work, we employed
a Thomas-Fermi static screening and ignored the additional
correction due to the electron-plasma interaction.

Here, we only recorded the final expressions of absorption
coefficient and radiative recombination rate for the PA
indirect transition based on the Matsubara method. For
detailed information, salient points of the derivation are
summarized in Appendix, which illustrates the foundation of
the model, and sheds light on the important approximations
made in the theory.

The absorption coefficient between band 1 and 2 for a
photon energy of �ωph is

α12(�ωph) = 2π
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The radiative recombination rate per unit volume per energy
interval from band 2 to band 1 is then computed as [22]
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where e,m0,v,ωph,ε, ê are the electron charge, electron mass,
volume of the crystal, frequency of the photon, dielectric
function, and polarization of the photon, respectively. P1,2(k)
is the matrix element for the dipole interaction defined in
Eq. (A8), and �(E) is the Fermi factor defined as �(E) =
1/[1 + eE/(kBT )], where the energy E is measured from the
corresponding quasi-Fermi level. ImGR

l is the spectral density
function for band l.

B. Electron self-energy

In order to evaluate Eqs. (1) and (2), the specific form of
electron Green’s function GR needs to be known. To this end,
the electron Matsubara functions in Eqs. (A32) and (A33) are
expanded by using Dyson’s equation with a suitable electron-
phonon interaction potential. As a consequence, one can get a
closed form of Matsubara Green’s functions g2,3 and g4,1 [see
Eqs. (A32) and (A33)] when only the first-order term in the
expansion is retained. Since the procedure is well established
and can be found in most textbooks on Green’s function theory
(see Chap. 5 of Ref. [15] and Ref. [23]), we only present the
results here. Specifically, we have

ImGR
li

(k,E)

= − 1

π

Im�i(k,E)

[E − Ei(k) − Re�i(k,E)]2 + [Im�i(k,E)]2 (3)

and
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+ [P (�ων) + �(E + �ων)]δ(E + �ων − Ei(k′))}, (4)

where Bii(k,k′) is the overlap integral between the lattice
periodic part of the Bloch states with wave vectors k and k′.
The matrix elements gν(k′ − k) for the acoustic, piezoelectric,
nonpolar optical and polar optical carrier-phonon interaction,
respectively, are given by [24]

|g1(q)|2 = 
2
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2cl

q4

(q2 + λ2)2
, (5)

|g2(q)|2 = e2
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|g4(q)|2 = e2
�ωop(q)

2ε∗
q2
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. (8)

Here, cl and ct are the longitudinal and transverse elastic
constants, respectively, c̄ is the average elastic constant c̄ =
cl/3 + 2ct/3,vs is the sound velocity, and ε∗ is the effective
inverse dielectric constant ε∗−1 = ε−1

∞ − ε−1
0 . The phonon
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TABLE I. Material parameters used in the calculation of electron
self-energy for electron-phonon interaction. Values of the parameters
are obtained or derived from Refs. [26,27].

Parameter Unit Ge Si

vl 105 cm/s 5.31 9.0
vt 105 cm/s 3.61 5.41
cl 1011 dyn/cm2 12.85 16.58
ct 1011 dyn/cm2 6.68 7.96
ε0 – 16.2 11.9
ε∞ – 16.2 11.9
�ωop meV 37.04 61.2

d eV 8.1 7.1
KAV – 0 0
D(L6,c) 108 eV/cm 9.05 9.35
D(�v) 108 eV/cm 12.17 13.24

occupation factor P (�ων) is given by the Bose-Einstein dis-
tribution, which is P (�ων) = 1/[e�ων/(kBT ) − 1]. The coupling
constants of these interactions are defined as 
d , the effective
deformation potential; D is the optical coupling constant and
KAV is the average electromechanical coupling coefficient. In
this work, since both Si and Ge are centrosymmetric crystals,
the corresponding KAV = 0 [25]. For other material systems
that do not posses this property, the piezoelectric scattering
is nonzero and its contribution to the self-energy should be
included. To simplify the calculation, we further assumed a
linear dispersion for LA phonons and a constant phonon energy
for optical phonons [23], which is a good approximation in
silicon and germanium.

Values of these constants used in this work can be found in
Table I. As it was stated above, the Thomas-Fermi screening
has been adopted in modeling the electron-electron interaction
for its simplicity. Unlike in the Auger process, where the
electron-electron interaction is at the center of interest thus
requiring the use of a more rigorous screening model, in the
case of absorption and radiative recombination, this interaction
is usually of less importance, therefore the Thomas-Fermi
model is generally considered as a good approximation [23].

C. Band Structures

Since the full band structures are crucial in order to include
the band nonparabolicity effect in the calculation, a reliable
model of band structures is highly desirable. In the literature,
electronic structure calculations for both Si and Ge have been
carried out either within the density-functional-theory (DFT)
framework or using the empirical pseudopotential method
(EPM), whereas in the former calculation scheme, all-electron
approaches and the state-of-the-art GW approaches [28] have
produced many high-quality band structures. On the other
hand, the EPM scheme, though less accurate than the ab initio
techniques, is also widely used in the community due to its
simplicity, high computational efficiency and the flexibility
that the resulting electronic structures can be optimized to
closely match the experimental and/or the ab initio results.
Furthermore, the number of plane waves used to expand
the electron wave functions in EPM is finite, which greatly
simplifies all the calculations involving the overlap integral.

As a result, in this work, we intend to compute the band
structures from EPM. The key information needed in the
EPM model is the screened effective atomic potential for each
atomic species in the material. The determination of these
atomic potentials in standard approaches has relied on the
fitting of form factors in order to reproduce a small set of band
features that can be known experimentally. Unlike the case of
compound materials, for elemental semiconductors, such as Si
or Ge, the form factors correspond to the matrix elements of the
potential operators. Although, the form factors only need to be
known on a discrete number of wave vectors, the knowledge
of the functional dependence [29] of the screened atomic
potential on the wave vector is actually paramount to obtain
an electronic structure that can accurately reflect the effect of
strain [30] and carrier-phonon interaction [31]. In this work,
we have determined the screened atomic potentials for both Si
and Ge so that the calculated electronic structures reproduce
not only the correct energy transitions, but also the effective
masses of electrons and holes and the hydrostatic deformation
potentials. Besides the screened atomic potentials, a spin-orbit
correction is also considered in our EPM model since the effect
is significant in Si as well as in Ge. The crystal Hamiltonian is
therefore given by

H =
[

�
2

2m0
∇2 + VLOC(r)

]
+ HSO (9)

in which the second term in Eq. (9) is the spin-orbit part of the
Hamiltonian. The relativistic correction for a state with wave
vector k is introduced as a perturbation term, and the spin-orbit
matrix elements are given by [32–34]

〈Ki,ν |HSO|Kj,ν ′ 〉
= σνν′ · (Ki × Kj )

× [λA sin(Gi − Gj ) · τ − iλS sin(Gi − Gj ) · τ ], (10)

where σνν′ is the Pauli matrix, Gi and Gj are the reciprocal
lattice vectors, Ki,j = Gi,j + k, and τ is the atomic position
vector. The symmetric and antisymmetric spin parameters
λS and λA are given by

λS = (λ1 + λ2)

2
, (11)

λA = (λ1 − λ2)

2
, (12)

where λ1,λ2 are defined as

λ1 = μB(1)
nl (Ki)B(1)

nl (Kj ), (13)

λ2 = γμB(2)
nl (Ki)B(2)

nl (Kj ). (14)

The parameter γ is set to be the ratio of the spin-orbit energy
of the free cation and anion atoms [35] (γ = 1 for Si and Ge),
and μ has to be adjusted to obtain the correct spin-orbit energy
for the material. The values of B(i)

nl (k) are then computed for
all the atomic species i in the crystal according to

B(i)
nl (k) = C

∫ ∞

0
j l(kr)R(i)

nl (r)r2dr, (15)

where j l(kr) is the spherical Bessel function of order l,R(l)
nl (r)

is the atomic wave function corresponding to the quantum
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TABLE II. Optimized parameters of the local potential model.

Parameter Unit Ge Si

V0 Ry −0.5303 −0.7000
V3 Ry −0.2425 −0.2177
V8 Ry 0.0210 0.064 84
V11 Ry 0.0479 0.079 82
V19 Ry 0.0 0.0
γ – 1.0 1.0
μ – 0.00142 0.0115

numbers n and l, and C is a constant [34] that satisfies

lim
k→0

B(i)
nl (k)

k
= 1. (16)

We note that in Eq. (15), the formulation used for R(l)
nl (r) is

crucial to facilitate the evaluation of B(i)
nl (k). In the present

work, R(l)
nl (r) is expanded through a set of suitable basis func-

tions obtained with the Roothaan-Hartree-Fock method [36],
and consequently, B(i)

nl (k) can be calculated according to an
analytical expression [37].

The parameters of the local potentials and the spin-orbit
corrections employed in the calculation of Si and Ge band
structures are reported in Table II. The functional dependence
of the screened atomic potentials on the wave vector is
numerically described by a spline interpolation, which is
presented in Fig. 1 for a specific case. Notice that the features
of the interpolation depend on the behavior of the electronic
structure under strain. When calculating the band structures,
the Hamiltonian in Eq. (9) is diagonalized using a closed
set of 226 spinors (113 plane waves) for a suitable set of k
vectors. As it will be explained in the next section, this set
of k vectors is optimized for each band in order to capture
the details of the band edges while maintaining the data sets
of wave-function expansion coefficients in a manageable size.
The calculated band structures of relaxed Ge and Si using

FIG. 1. (Color online) Wave-vector-dependent screened atomic
potential employed in the calculation of Si and Ge electronic structure.
a0 is the lattice constant.

FIG. 2. Calculated electronic structures of relaxed (a) Ge and
(b) Si.

the EPM approach outlined above, are presented in Fig. 2.
For further comparison, the fundamental gaps and effective
masses in different valleys are listed in Tables III and IV for
Ge and Si, respectively, from GW calculations, experimental
data, and this work. To conclude this section, in Fig. 3, we
calculated the change of the fundamental energy gaps as a
function of the applied strain. A strain applied along the
[100] direction is considered as the case of the growth of Ge
on [100] Si. Figure 3(a) presents the calculated valence and
conduction band energies of Ge at the �, �100,�001, and L6,c

points in the first Brillouin zone. We notice that for relaxed
Ge, the calculated energy separation between �7,c and L6,c

is approximately 0.143 meV, while this number between the
minima at �100 and L6,c is about 0.174 meV. Consequently,
the intervalley energy difference between �100 and �7,c is
only around 30 meV, which gives rise to the possibility of
changing Ge into a direct gap material. Indeed, as is shown in
Fig. 3(a), when applying a tensile strain along [100] direction,
the energy of the �7,c valley drops more rapidly than that of
the L6,c valley, and at the tensile strain of 2% the two valleys
have the same energy, effectively transiting the material into a
direct band-gap material. Figure 3(b) gives the results of the
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TABLE III. Calculated and experimental energy gaps and effec-
tive masses for Ge.

Parameter Unit This Work GW + SOa Exp.b

�6v eV −12.2 −12.53 −12.66
�7v eV −0.291 −0.32 −0.3
�7c eV 0.92 0.38 0.9
�6c eV 3.3 2.89 3.25
X5c eV 1.1 1.16 1.16
L6c eV 0.78 0.54 0.76
L3c eV 3.9 4.18 4.2

mL⊥
e m0 0.09 0.082

mL‖
e m0 1.45 1.57

m�
e m0 0.047 0.038

m�
hh [100] m0 0.286 0.284

m�
lh [100] m0 0.061 0.0438

m�
so [100] m0 0.132 0.095

m�
hh [110] m0 0.544 0.376

m�
lh [110] m0 0.054 0.0426

m�
so [110] m0 0.132 0.095

m�
hh [111] m0 0.736 0.352

m�
lh [111] m0 0.054 0.043

m�
so [111] m0 0.132 0.095

aValues calculated using GW + SO from Ref. [28].
bExperimental values from Ref [27]. m0 is the electron mass.

same calculation for Si and one can notice that the minimum
energy of the four � valleys lying in plane (100) is higher than
the two � valleys along the [100] direction where a tensile
strain is applied. It is also obvious that regardless of the strain
magnitude, the L6,c point is always above the � valleys and
the energy of the � point (not shown) never falls below 3 eV.

TABLE IV. Calculated and experimental energy gaps and effec-
tive masses for Si.

Parameter Unit This Work GW + SOa Exp.b

�1v eV −12.41 −11.63 −12.5
�′

25v eV −0.042 −0.05 −0.044
�15c eV 3.36 3.28 3.34
�1c eV 1.17 1.17
X1c eV 1.29 1.43 1.3
L1c eV 2.23 2.13 2.04
L3c eV 4.0 4.16 3.9

m�⊥
e m0 0.2 0.19

m�‖
e m0 0.928 0.92

m�
e m0 0.4

m�
hh [100] m0 0.27 0.537

m�
lh [100] m0 0.22 0.153

m�
so [100] m0 0.24 0.234

m�
hh [110] m0 0.56 0.537

m�
lh [110] m0 0.15 0.153

m�
so [110] m0 0.24 0.234

m�
hh [111] m0 0.69 0.537

m�
lh [111] m0 0.14 0.153

m�
so [111] m0 0.24 0.234

aValues calculated using GW + SO from Ref. [28].
bExperimental values from Ref [27]. m0 is the electron mass.

FIG. 3. (Color online) Calculated fundamental energy gaps of
(a) Ge and (b) Si under compressive and tensile biaxial strain.

D. Numerical implementation

One difficulty in numerically evaluating the Green’s func-
tion is related to the integration of the delta function in Eq. (4)
or equivalently, the computation of a two-dimensional integral
on a constant-energy surface in momentum space. In our
case, since the full band structures are employed, the lack
of an analytical expression for the energy dispersion E(k)
makes this integration even more challenging. In this work,
we adopted the tetrahedron method where the electron energy
E(k) and other k-dependent quantities are linearly interpolated
throughout each tetrahedron using the corresponding values at
the four vertices. This approach has proven to be efficient
and accurate [38,39]. Although higher order interpolation
schemes, such as quadratic interpolation, can provide even
more accurate results [40], their complex implementation and
computational load make the linear interpolation method more
appealing. To reduce the error introduced by the numerical
implementation, while maintaining a reasonable computation
time, instead of using a uniform mesh, we employed a band-
adaptive nonuniform mesh [39] by considering the specific
features of each band involved in a transition, where a
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dedicated tetrahedron mesh is produced to optimize the energy
interpolation. In this work, a tetrahedron mesh with 22 887
elements in the irreducible wedge (IW) is used to perform
the integration of Eqs. (1) and (2), and another mesh with
8422 tetrahedrons is employed in the evaluation of Eq. (4)
due to the different types of integrands in these equations. The
convergence of the integration has been checked using meshes
of different sizes. For example, a mesh of 32 560 tetrahedrons
in IW provides essentially the same result as the mesh of
22 887 tetrahedrons with a maximum difference always below
5%. Finally, we want to point out that the realistic density
of states involving four valence bands and eight conduction
bands are evaluated on a 35 299 tetrahedron mesh for each
strain configuration and lattice temperature. This information
is later used in the calculation of quasi-Fermi energy under
different doping/injection conditions.

As was mentioned in Appendix, when computing Eqs. (1)
and (2), we have ignored the contribution of PA inter-band
transition to the self-energy. As a result, the spectral density
functions for the two bands ImGR

li
(k,E),i = 1,2 are indepen-

dent. Therefore, by using the two spectral density functions
in Eqs. (1) and (2), one can actually analyze two-phonon
events, where an electron is first scattered in the lower (upper)
band, absorbs (emits) a photon and is eventually scattered
by another phonon reaching its final state in upper (lower)
band. Alternatively, if only one of the electron spectral density
functions is used in Eqs. (3) and (4), leaving the other to
be a delta function, one phonon event is considered instead.
Consequently, if one considers all possible cases, direct,
one-phonon and two-phonon PA events can be investigated. As
will be shown in Sec. III B, the case of two-phonon processes
is evaluated for Si, which is not possible with the traditional
SOPT method.

As a final note, we want to point out that the matrix element
that describes the dipole interaction in Eq. (A8) is a quantity
averaged over all polarizations ê. When the polarization effect
needs to be studied, we will explicitly evaluate the matrix
elements for a specific polarization state.

III. RESULTS AND DISCUSSION

In this section, we will discuss the results obtained by
applying the method outlined in Sec. II to the calculation of
the absorption coefficients and radiative recombination rates in
relaxed and strained Ge and Si. A schematic of the important
absorption paths in relaxed Ge is illustrated in Fig. 4.

A. Germanium

We first consider the case of relaxed and strained bulk Ge.
Figure 5(a) presents the calculated photon-energy-resolved
absorption coefficient in two sets of lines. The first set, on
the right side of the plot, is for relaxed bulk Ge, and the
second set, on the left side, is for 1.4% tensile strained
bulk Ge. The solid lines (red color) represent the calculated
absorption coefficient at the temperature of 77 K, while the
dashed lines (green color), dash-dot lines (black color), and
dash-two-dot lines (purple color) are for the temperatures of
150, 225, and 300 K, respectively. To validate the accuracy of
our numerical model, the experimental data of the absorption

FIG. 4. (Color online) Detail of the calculated Ge electronic
structure near the band edges including the direct, indirect HH-CB,
and SO-HH transition paths for electrons. The absorption transition
paths are represented by the arrows in the figure while the gain
transitions are the reverse processes.

coefficient measured at 77 and 300 K [41] are included as
well, which are represented by the open symbols (squares for
77 K and circles for 300 K). As one can see in Fig. 5(a),
in the case of unstrained intrinsic Ge, the numerical results
match very well with the experimental data for both 77 and
300 K in the whole range of the measured photon spectrum.
These comparisons provide a high degree of confidence in the
predictive ability of the numerical method and the reliability
of our ensuing analysis of the strain effect on the absorption
coefficients and radiative recombination rates. As an additional
note, we would like to point out that for the results presented
in this section, contributions of the transitions from LH and
HH to the first conduction band are summed together because
of the difficulties of separating one transition from the other
in the presence of the band mixing between LH and HH under
strain. Furthermore, since the higher conduction bands and
lower valence bands are generally less populated, they provide
a negligible correction to our results in the range of photon
energy considered here. Consequently, they are selectively
included in the calculation of optical transitions based on their
relative carrier populations.

Comparing the absorption spectra for different lattice
temperatures T in Fig. 5(a), it is apparent that when T

decreases, at the same amount of tensile strain, the shape
of the curves barely changes despite the fact that the curves
tend to shift toward higher photon energy and the tail near the
absorption edge shrinks. The shift of curves with temperature is
consistent with the experimental data [27], where the increase
of lattice temperature makes both direct and indirect band
gaps shrink nearly uniformly. Additional information about the
tails of the absorption curves can be obtained from Fig. 5(b),
in which the contributions to the total absorption coefficient
(solid lines) from the PA indirect (dashed lines) and direct
(dash-dot lines) processes are plotted in two tensile strain
configurations: ε = 0 and 2.1% at 300 K for n-type Ge
(Nd = 1019 cm−3). As is shown, the PA indirect transition
from �v to Lc states predominantly gives rise to the tails of
absorption curves since the corresponding photon energy is
just slightly above the indirect bang gap. When the absorbed
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FIG. 5. (Color online) Absorption coefficient spectra of Ge cal-
culated with the Green’s function theory under different strains,
doping, and lattice temperatures at thermal equilibrium. (a) Intrinsic
Ge with relaxed lattice structure (right group) and with ε = 1.4%
biaxial tensile strained structure (left group) are compared with the
measured data for intrinsic relaxed Ge at 77 K (open circles) and
300 K (open squares) [41]. The style and color of lines represent
the corresponding lattice temperatures. (b) Results of 1019 cm−3

n-doped Ge at 300 K with a tensile strain ε = 0 (right group) and
ε = 2.1% (left group). The contributions from direct (dash-dot lines)
and PA indirect processes (dashed lines) are compared with the total
absorption coefficient (solid lines).

photon energy gets larger, the direct transition process starts to
be dominant, resulting in a sudden increase in the absorption
curves. Back to Fig. 5(a), due to the fact that at low temperature,
the average number of phonons in the crystal decreases, the
strength of indirect transitions is reduced as well. In both cases
of relaxed (ε = 0%) and tensile strained material (ε = 1.4%),
the indirect part in the total absorption gradually diminishes
when T decreases from 300 to 77 K. In fact, for a tensile
strain of ε = 1.4% and a photon energy equal to the direct
band gap, the indirect absorption process only accounts for
about 2% of the total absorption at 77 K, whereas the number
for the same process is 48% at 300 K. For the unstrained

material (ε = 0), although the indirect transition is weaker at
lower temperature, the difference is not significant due to the
relatively large energy separation between Lc and �c valleys
making the indirect transition consistently dominant.

From the analysis of the relaxed Ge band structure in
Fig. 2(a), the phonon-assisted indirect transition generally can
be divided into three contributions. The first one is from the
�v to Lc, which is largely responsible for the absorption at
lower photon energy. A second contribution, coming from the
�v to Xc transition, which is only relevant when the photon
energy is larger than the direct band gap. Finally, the last one,
from the region around �v to �c, which is usually negligible
due to the small matrix element for phonon scattering [see
Eqs. (5)–(8)]. Although the PA transitions from �v to Lc in
relaxed Ge is the dominant absorption mechanism for the
photons with energy between the fundamental indirect gap
and the direct gap, it should be noted, however, that all the
possible transitions need to be considered when the absorbed
photon energy gets larger than the direct band gap. In fact,
as demonstrated by the right group of lines in Fig. 5(b), for
photon energies higher than the direct gap, even though the
direct process is dominant, the indirect process still accounts
for ≈41% of the total absorption making the PA process never
negligible. This is in stark contrast to direct-gap materials,
such as HgCdTe or InAsSb [42].

When a tensile strain is added to the system, as in the case of
ε = 2.1% in Fig. 5(b), the situation changes. It can be noticed
that the tail of absorption spectrum, which is obvious in the
curve obtained for relaxed Ge, fades as the strain increases.
Indeed, as is shown in Fig. 3, when the tensile strain increases,
the direct band gap shrinks faster than the indirect band gap,
making the direct process gradually more important than its
indirect counterpart and eventually becoming the dominant
one. Specifically, at ε = 2.1%, the energy difference between
the Lc and �c valleys almost vanishes and the indirect tail of
the absorption spectra completely merges into the direct part.
This band-gap reduction also explains the shift of absorption
edge to a lower photon energy under increasing tensile strain.
The same trend can also be observed in Fig. 5(a) for the strain
of ε = 0% and 1.4%, where the tail significantly diminished
in the latter case at all the lattice temperatures considered.

Besides the considerable effects of strain on the absorption
behavior of Ge, it is also important to investigate its effect on
the spontaneous radiative recombination rate spectra R(�ω),
which could provide additional insight in understanding the
electroluminescence properties in both relaxed and strained
materials. Figure 6(a) presents the computed spontaneous
recombination rate R(�ω) for bulk Ge under different strain
conditions. The calculation is carried out under two kinds of
n-type doping, Nd = 1019 (solid lines) and 1020 cm−3 (dashed
lines) at a constant injection level of δn = 1018 cm−3. In
Fig. 6(b), the same quantity is calculated under a constant n-
type doping Nd = 5 × 1019 cm−3 with two different injection
levels δn = 1018 (dashed lines) and δn = 1019 cm−3 (solid
lines).

We first consider the case of constant injection presented in
Fig. 6(a), where, because of the faster reduction of direct band
gap than the indirect one under increasing tensile strain, the
shoulder in the curve due to PA indirect processes shrinks
and eventually merges into the peak corresponding to the
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FIG. 6. (Color online) Radiative recombination rates of Ge at
300 K are computed under (a) different doping concentrations of
5 × 1019 (dashed lines) and 1020 cm−3 (solid lines) with the same
injection of 1018 cm−3; (b) different injection of 1018 (dashed lines)
and 1019 cm−3 (solid lines) with the same n-doping of 5 × 1019 cm−3.
Numbers adjacent to each curve represent values of the corresponding
biaxial tensile strain.

direct recombination process. This is clearly consistent with
the previous results obtained for the absorption coefficients.
Furthermore, identical reasoning also explains the enhance-
ment effect of increasing doping concentration on the indirect
radiative rate among different strain conditions. In fact, for
relaxed Ge, due to the higher density of states and lower
electron energy in Lc valley compared to �c, a large fraction of
electrons ionizing from the dopant will reside in Lc, making
the enhancement of the PA indirect rate most significant in
this case as is shown in Fig. 6(a). When the strain increases,
more electrons tend to be in �c valley, effectively lowering
the enhancement of PA indirect process. Specifically, when
increasing the doping concentration at ε = 2.1%, no visible
change of the indirect radiative rate can be observed. Different
behavior of increasing doping and injection concentrations
can be investigated by comparing the results from Fig. 6(a)
to that from Fig. 6(b), in which we can observe that by
increasing the injection level, the PA process gets uniformly
enhanced, while adding dopants hardly changes the radiative

rate at the indirect absorption edge. This can be understood
by considering the carrier distribution in the material. Similar
to the aforementioned analysis, when extra donors are added
to the system, as is the case of Fig. 6(a), more electrons
will reside in Lc valley with the available hole concentration
remaining the same in �v . Consequently, only a small part of
the additional electrons can recombine with holes due to the
lack of additional holes in �v . As a result, processes occurring
at the indirect absorption edge are not significantly enhanced.
When the carrier injection is increased instead, both electrons
and holes are added to the system ensuring that the holes will
not limit the recombination process. Therefore the PA indirect
processes are enhanced in the whole spectrum, which gives rise
to the differences between Figs. 6(a) and 6(b). For this reason,
we can conclude that increasing the carrier injection level is a
more efficient way to enhance the radiative recombination rate
than using high doping. One should be aware that, however,
at high injection, other recombination mechanisms, such as
Auger recombination and free carrier absorption will become
significant, which will in turn limit the radiative rate that
could be achieved otherwise. It is also noteworthy that in both
Figs. 6(a) and 6(b), when the tensile strain exceeds 2.1%, for
which Ge becomes a direct band-gap material, there is no
further increase of R(�ω) due to strain.

To conclude the discussion about Fig. 6, we compare
our results with the calculations performed by Virgilio and
coworkers [2]. We noticed that our results are generally in
agreement with those presented in Figs. 3 and 4 of Ref. [2], in
which the radiative recombination rate was obtained using
the SOPT. While the peak values and the trend of the
recombination rate as a function of the photon energy from
the two works are similar, a number of differences need to
be mentioned. In particular, one can notice that sharp corners
are present in the curves shown in Figs. 3 and 4 of Ref. [2].
We speculate that this may be due to the difference between
the numerical approaches used in the calculations, especially
the band structures for Ge. In fact, in our model, instead of
considering the two principal transitions �v to �c and �v to
Lc separately, where a simple parabolic band approximation
can be employed, we use the full band structure with all the
possible recombination paths beyond the two major transitions
covered. This methodological difference distinguishes our
results from those in Ref. [2] by having a smooth interim
region between the two peaks, where processes involving
higher energy states in �c,Lc, and Xc valleys are included.

The temperature dependencies of the radiative recombina-
tion rate for both relaxed and strained bulk Ge are examined
in Fig. 7 with a 5 × 1019 cm−3 n-type doping and 1018 cm−3

carrier injection. Figure 7(a) presents the results for relaxed
Ge and Fig. 7(b) provides the same information for a tensile
strain of ε = 1.4%. As is shown in Fig. 7(a), two features
representing the PA indirect and direct processes are presented
for all four lattice temperatures. As the temperature decreases,
the peak corresponding to the direct process is significantly
reduced, while the shoulder that accounts for the indirect
process practically retains its magnitude. Given that all of the
four curves are computed using the same carrier concentration
and assuming that the dopants are fully activated at all
temperatures of interest, the change in the shape of the radiative
rate can be understood by considering the relative carrier
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FIG. 7. (Color online) Temperature dependence of the radiative
recombination rate in Ge obtained with biaxial tensile strain of
(a) 0.0% and (b) 1.4% under the same doping/injection condition,
i.e., 5 × 1019 cm−3/1018 cm−3.

distributions between the regions around �c and Lc valleys.
When the temperature decreases, the probability of occupation
for electrons at higher energies in the conduction bands,
particularly around the �c valley, will be reduced significantly
according to the quasi-Fermi distribution. This leads to a
decrease of the direct radiative recombination rate, which
drops from a peak value of 7.4 × 1025 cm−3 s−1 eV−1 at 300 K
down to 6.5 × 1023 cm−3 s−1 eV−1 at 77 K. As to the indirect
process, due to the large density of states and low electron
energy in the Lc valley, the change in the electron occupation
probability will not significantly impact the overall electron
population in Lc valley, making the indirect recombination
rate remain the same.

As it can be expected, the outcome of the same analysis
changes if strain is added to the system. Figure 7(b) presents the
calculated radiative recombination rate for ε = 1.4% tensile
strained Ge. We can notice that in this situation the peak
corresponding to the direct process, in contrast with the case

FIG. 8. (Color online) Peak values of optical gain coefficient in
Ge as a function of strain conditions are calculated under various
(doping,injection) levels (see legend). The gain is obtained solely
from the transition between CB-HH and CB-LH with no free carrier
absorption or spin-orbit to HH absorption included.

of relaxed Ge, increases in magnitude as the temperature
decreases. This behavior can be traced back to the interplay
between the Lc-�c intervalley energy separation and the
position of the electron quasi-Fermi energy. For relaxed Ge,
due to the large energy separation between Lc and �c, which
is 0.143 eV compared to 0.047 eV for the case of ε = 1.4%,
and the higher density of states of Lc valley, the electron
quasi-Fermi level at 77 K is 0.07 eV below the direct band
edge (at �c), while in strained Ge, the electron quasi-Fermi
level is 0.03 eV above the direct band edge. This leads to a �c

valley that is mostly empty at low temperatures in the former
case, and an always partially filled �c valley even at 77 K in the
latter case. Additionally, for strained Ge when the temperature
is reduced, in order to maintain the same carrier injection, more
electrons will be concentrated around the �c valley, making the
radiative recombination happen in a very small range of photon
energies. Consequently, the peak value of the recombination
spectrum increases while the width of the peak shrinks. As to
the relaxed structure, the lack of electrons in the �c valley at
low temperature makes the peak of the direct recombination
fall dramatically. We noted that this carrier concentration effect
also happened in indirect recombination from Lc, as observed
in Fig. 7(a), but is much weaker.

One of the most compelling reasons to study the tensile
strained Ge is the possibility to turn the indirect band-gap
material into a direct one, potentially leading to the design
of an efficient and CMOS-compatible laser. Therefore, in
addition to the absorption coefficient, we have also calculated
the optical gain of strained Ge at 300 K under various
doping/injection conditions. Figure 8 shows the peak gain
values as a function of applied tensile strain, where each
curve represents a different doping/injection condition. It can
be observed that the peak of the optical gain for a given
doping/injection concentration increases almost linearly with
the tensile strain, and a maximum value of 5400 cm−1 is
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FIG. 9. (Color online) Absorption coefficient spectra for unpolarized [(a) and (b)] and polarized [(c) and (d)] light are examined with
(doping, injection) of (1020 cm−3,1019 cm−3) [for (a) and (c)] and (1020 cm−3,1020 cm−3) [for (b) and (d)]. Throughout (a)–(d), dashed lines
represent the results from CB-HH and CB-LH transitions, and the solid lines give the total absorption by adding the results from SO-HH
process to the preceding quantities. Note that in (a) and (b) different colors stand for different tensile strains, while in (c) and (d) blue and red
lines are for TM and TE polarized light, respectively.

attained at a tensile train of 2.7% for an equal doping/injection
concentration of 1020 cm−3. As in the conclusion drawn from
Fig. 6, here the importance of carrier injection can also be
observed. In Fig. 8 (solid, dashed and dot-dash), regardless
of the strain conditions, a relative minor increase of the gain
with doping level is presented when the carrier injection δn is
1018 cm−3. On the other hand, for example, at ε = 2%, when
keeping the doping level at 5 × 1019 cm−3 while changing the
injection level from δn = 1018 to 1020 cm−3, the gain increases
by about an order of magnitude. This observation still holds for
other strain conditions. It is also interesting to point out that,
though minor compared to the gain achieved by increasing
the injection, higher doping usually leads to a moderate gain
increase at small strain values. This increase is largely due
to the reciprocal space filling in the Lc valley, which occurs
under high doping concentration leading to a marginally higher
carrier population in the �c valley even at a small injection [43].
Finally, we note that for all of the calculated gain values, the
PA process always contributes to 20%–30% of the total gain,
making it an indispensable part in a credible model of optical
processes in Ge.

Our calculations presented so far indicate that highly
strained Ge in conjunction with high injection is the best
option to attain high optical gain. However, this is probably
not the case in reality when all the other injection-induced
absorption processes are taken into consideration. As an
example, in addition to the previously calculated gain from the
recombination between CB-HH and CB-LH, we also analyzed
the effect of the transition from the spin-orbit (SO) band to HH,
which is believed to be a major source of extra absorption,
especially at high injection [44].

Figures 9(a) and 9(b) present the gain profiles for 1.4%
and 2.1% tensile strained Ge calculated from the CB-HH
and CB-LH transitions (dashed lines) as well as the results
after adding the SO-HH contributions (solid lines). Same
quantity for relaxed Ge is also included as a comparison.
It can be immediately observed that the large optical gain
achieved in the previous calculation is significantly reduced
by the absorption process due to the SO-HH transition. For
a carrier injection level of 1019 cm−3, the gain peak value
suffers a 50% reduction for both 2.1% and 1.4% tensile strain
conditions. As to an injection of 1020 cm−3, the reduction is
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even more dramatic that, as illustrated in Fig. 9(b), the optical
gain is completely canceled by the strong SO-HH absorption.
Indeed, at such a high carrier injection level, a large number
of free holes will appear at the top of valence band, which in
turn enhances the hole transitions to the SO band. This effect
has already been observed by Süess and coworkers (Ref. [5],
Fig. 5) in the case of a tensile strained Ge microbridge. As
shown in Fig. 8, it is clear that higher injection will generally
provide higher optical gain regardless of strain and doping
conditions. However, the effect of SO-HH absorption process
shows that there is a soft limit, typically around 5 × 1019 cm−3,
on the injection level that can be applied before the gain starts
decreasing and eventually disappearing. On the other hand,
although the SO-HH absorption can be minimized at relatively
low carrier injection density, in order to achieve a usable optical
gain the injection level cannot be lower than 1018 cm−3. In
fact, there are other types of absorption processes such as
intraconduction band absorption (ICBA) and intravalence band
absorption (IVBA) (both initial and final states are in the same
band) [45] that need to be overcome. As a comment to the SO-
HH absorption, we noticed that this process is predominately
due to the direct transition, for the indirect absorption only
accounted for about 10−4 of the total absorption.

We have also investigated the effect of polarization ê on the
gain profile for a fixed tensile strain of 2.1%, which is demon-
strated in Figs. 9(c) and 9(d). A similar effect of SO-HH ab-
sorption is also observed as was the case for unpolarized light.
In fact, due to this absorption, the optical gain for both TM and
TE modes [calculated from Eq. (A8)] is suppressed at an injec-
tion level of 1020 cm−3. However, it should be noted that for the
injection of 1019 cm−3, the TM mode exhibited an optical gain
of 4797 cm−1 in contrast to a much lower value of 191 cm−1

for TE mode as the result of transition selection rules [22].
To conclude this section on the results pertaining to

Ge, we would like to point out that, although there is a
general agreement on the importance of free-carrier absorption
(FCA) in the Ge lasing medium, different definitions of
FCA have been used in the literature [25,44,45]. In this
paper, to facilitate the comparison of the absorption results
from this work with others’ we have treated the FCA as
the combination of inter and intraconduction/valence band
absorption. Consequently, the SO-HH transition is actually
part of the FCA observed experimentally. As is indicated in
Fig. 9, the SO-HH absorption is significant between a photon
energy of 0.3–0.6 eV, but diminishes at the lower end, which
corresponds to the spin-orbit split energy. We also found that,
the SO-HH absorption at the photon energy corresponding to
the peak optical gain calculated using our numerical model,
with an injection between 1019 and 1020cm−3, reproduces
the absorption cross section model presented in Ref. [44],
and the corresponding hole absorption cross sections of σh =
4.4 × 10−3 and 9.43 × 10−3 nm2 are obtained for relaxed and
1.4% strained Ge respectively. However, when the injection
level goes above 1020 cm−3, the SO-HH absorption increases
in a logarithmic fashion with the injection level rather than
linearly. This can be understood by the small density of states at
SO band. At high injection (e.g., 1020 cm−3), even the SO band
starts accumulating holes, which in turn reduces the available
electrons that can be excited to the HH band, leading to a
reduced absorption. On the other hand, when analyzing the

experimental data [44,46], the relation of FCA-hole concen-
tration is almost linear even above p = 1020 cm−3, suggesting
that other type of absorption, namely, the IVBA, is dominating.
Indeed, the IVBA and ICBA can usually be modeled with the
simple Drude model, which gives a linear dependence of the
absorption coefficient on the carrier concentration [25]. We
then conclude that the SO-HH absorption is important when
the hole concentration is below 1020 cm−3. At higher carrier
concentration, the IVBA and ICBA dominate over the SO-HH
transition and need to be included in the calculation instead.
To our knowledge, no direct experimental data or theoretical
model for IVBA and ICBA in strained Ge has been established
at this time, making it difficult to estimate the overall FCA
contribution. However, if one considers the experimental data
of relaxed Ge available in the literature [46,47], it is clear that
IVBA and ICBA will lead to a significant gain reduction for
photon energies below 0.3 eV. Consequently, we speculated
that the same could be true for strained Ge as well, which
could make reaching lasing conditions in Ge even more
challenging. As a final remark, it is worthy of note that at the
highest doping and injection conditions, the Thomas-Fermi
screening may not be adequate to describe the screening effect
in the material. Instead, a more rigorous dynamic screening
involving electron-plasma interaction should be included in
the electron Green’s function. As shown by Bardyszewski
and coworkers [21], with this additional correction the optical
gain from the CB-HH and CB-LH transitions becomes slightly
larger. Nevertheless, our approach provides a baseline value for
the gain and captures the most important physical phenomena
which are responsible for the optical properties of strained Ge
under various doping/injection conditions.

B. Silicon

In this section, we present the calculated optical properties
of relaxed and strained Si using the same numerical model as
we employed for Ge. Figure 10 demonstrated the absorption
coefficient for unstrained intrinsic Si at different lattice
temperatures. In order to compare the numerical results with
the experimental data, the data of Dash and coworkers [41]
measured at 77 K (open squares) and 300 K (open circles)
is also plotted in Fig. 10. One can see that the results from
the numerical model agree very well with the measured data.
When compared to the same results obtained for Ge, we notice
that for Si the PA indirect absorption process dominates the
photon absorption below 3.4 eV, whereas in Ge both direct and
PA indirect transition contribute to the total absorption. This
makes the absorption spectrum for Si increase slowly with
the photon energy in contrast to the abrupt rise observed in
the Ge spectrum. The absorption spectra for different values
of tensile strain have also been evaluated and presented in
Fig. 11 for ε = 0%, 0.7%, 1.4%, and 2.1%. As is shown, when
a tensile strain is applied, the absorption spectrum shifts to
lower photon energy while its shape remains similar since the
strain-induced shrinkage of the direct band gap has no impact
on the absorption in the interested range of photon energy.

As was explained in Sec. II D, the spectral density function
employed in the model describes the energy broadening of
the states due to different physical phenomena, for exam-
ple, phonon-electron interaction in this work. Therefore, by
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FIG. 10. (Color online) Absorption coefficient spectra for re-
laxed intrinsic Si at thermal equilibrium obtained from Green’s
function model are plotted with different lattice temperatures (colored
lines). Experimental data [41] measured at the same condition are
labeled by squares (77 K) and circles (300 K) as a comparison.

substituting a specific spectral density function in Eqs. (1)
and (2) with a delta function, one can eliminate the PA process
that pertains to a selected band transition. This enables the
study of radiative processes involving multiple phonons. In
particular, it is possible to study one-phonon and two-phonon
assisted absorption processes in the current numerical model
since two spectral functions are involved in Eqs. (1) and (2).
Using this approach, we have computed the temperature
dependence of the radiative recombination rate in relaxed Si,
which is plotted in Fig. 12 with each curve obtained at a
different lattice temperature. The Si is assumed to have an n-
type doping of 1019 cm−3 and injection of 1018 cm−3. We can
notice that besides the major peak, a secondary peak to the left

FIG. 11. (Color online) Absorption coefficient spectra for intrin-
sic Si at thermal equilibrium are calculated under the tensile strain
of ε = 0% (solid line), 0.7% (dashed line), 1.4% (dash-dot line) and
2.1% (dash-two-dot line). Lattice temperature is set at 300 K.

FIG. 12. (Color online) The spectra of radiative recombination
rate for relaxed Si are computed with the lattice temperatures ranging
from 77 to 300 K. The Si is assumed to have an n-type doping of
1019 cm−3 and injection of 1018 cm−3. Experimental data [48] from
the electroluminescence (EL) spectrum of a Si diode measured at
150 K are excerpted and converted to the same scale as the numerical
result. The converted EL data (a.u.), shown in circles, has been
multiplied by a constant number to fit the peak of the numerical
result which is calculated at the same temperature, 150 K.

of the curves also appears at all the temperatures considered.
To investigate the physical origin of the smaller peak, we have
calculated the contribution of the two-phonon process and the
two one-phonon processes by replacing one of the electron
spectral density functions with a delta function. The results
show that the two one-phonon processes separately contribute
to the main peak, while the two-phonon process is responsible
for the smaller peak only. In fact, the separation of the two
peaks is about 60 meV, approximately equal to the energy of
one optical phonon in Si, which underscores the fact that the
lower peak actually represents the two-phonon event in PA
process. Further validation of this result is obtained from the
experimental work of Green and coworkers [48,49]. Figure 12
reports the calculated data together with the experimental data
(in arbitrary units in Fig. 2(b) of Ref. [48]), which is scaled to
match the maximum value of the numerical result at 150 K.
While a direct quantitative comparison between our numerical
data and the experimental measurements may not be possible
due to the lack of information about the bias level and and the
device geometry, we can see that the shape of the calculated
radiative recombination curve (dashed line) and the position
of the peaks are very similar to the data measured at the same
temperature (150 K, open circles).

In addition to the calculated radiative recombination rates
for relaxed Si, Fig. 13 presents the corresponding values when
a tensile strain of ε = 1.4% is applied to the system. It is note-
worthy that the same low temperature carrier concentration
effect, which we have mentioned in the discussion of Fig. 7,
also appears in the case of relaxed Si, leading to a higher and
narrower recombination peak at lower temperature. As to the
results of 1.4% tensile strained Si, it is shown that the one
phonon peak has broadened so much that it almost covers
the two-phonon peak. This can be understood by considering
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FIG. 13. (Color online) The spectra of the radiative recombina-
tion rate for relaxed (right group) and 1.4% tensile strained (left
group) Si are computed with the lattice temperatures ranging from 77
to 300 K.

the change in the density of states associated to the six valleys
at the conduction band minima, �-point. When the strain is
applied, the sixfold � valleys split into a fourfold lower valley
and a twofold upper valley, reducing the actual density of
state at the conduction band edge. Consequently, in order to
maintain the same carrier concentration, electrons will relocate
to the higher energy states, leading to a broader radiative
recombination spectrum. We want to conclude this section
by comparing the spectrum for Ge presented in Fig. 7 with
the one computed for Si, where it can be noticed that the
two-phonon peak never appears in the plots of Ge, even in
the case of relaxed material. This difference is due to several
reasons. First, the conduction band density of states of relaxed
Ge is similar to the one of ε = 1.4% tensile strained Si. At
the same doping/injection conditions, the broadening of the
one-phonon peak in Ge is comparable to the strained Si, and
same as the case in Fig. 13, the two-phonon peak is engulfed.
Second, the small optical phonon energy in Ge makes the
two-phonon peak even closer to one-phonon peak than in the
case of Si. As an additional effect, this leads to the former one
being even harder to distinguish from the total spectrum.

As a final note, we want to point out that based on our
calculation at 300 K, with a carrier injection of 1018 cm−3 and
an n-type doping of 1019 cm−3, the optical gain at the indirect
band edge of silicon is only about 10−2 cm−1, which is orders
magnitude lower than the FCA at the same photon energy [4].
In fact, Baker-Finch and coworkers [50] recently measured the
FCA in 1019 cm−3 n-type doped silicon at 1110 nm and found
a value of 68 cm−1, which overwhelms the optical gain from
phonon-assisted interband transition.

IV. CONCLUSIONS

We have developed a generalized numerical model based on
the Green’s function formalism and full band structures, which
can be used to investigate the PA process in strained indirect
band gap semiconductor materials. Deformation potential
theory combined with the empirical pseudopotential model

was used to generate a high-quality band structure under both
relaxed and strained conditions, which ensured that all of the
band anisotropy was properly described, thus eliminating the
errors introduced by parabolic band approximations. We have
validated the model by comparing the calculated absorption
coefficient spectra of unstrained, intrinsic Ge and Si with the
corresponding experimental data at 77 and 300 K. It is shown
that the model can accurately reproduce the experimental data
for both Ge and Si.

Using the proposed numerical model, we have calculated
the radiative recombination rate of strained Ge to investigate
the effect of different doping levels, injection and temperatures
on the PA indirect and direct processes. These results provide
additional insight into the possible ways to increase the photon
emission in the material. The calculated optical gain for
Ge indicates that while high carrier injection δn in tensile
strained material could effectively enhance the gain through
the transition of CB-HH and CB-LH, extremely high δn,
regardless of the tensile strain, would inevitably suppress the
total optical gain by introducing strong SO-HH absorption.
Specifically, at δn in excess of 1020 cm−3, the attainable gain
from CB-HH and CB-LH is totally canceled by the SO-HH
transition, leaving a net absorption in the material. We have
also evaluated the gain for TE and TM polarized light. A total
gain of 4749 cm−1 is predicted by our calculation for TM light
in 2.1% tensile strained Ge with n-type doping of 1020 cm−3

and injection of 1019 cm−3. However, by adding other types
of absorption such as free carrier absorption, the achievable
optical gain may be reduced.

Finally, radiative recombination properties of relaxed and
strained Si were studied. We have indicated that the proposed
model can indeed elucidate and reproduce the experimental
data for the two-phonon events in the PA recombination
process. The numerical model presented in this work is proved
to be an effective tool to investigate the optical processes in
indirect-gap semiconductors. In addition, this model can be
further extended to inspect the nonradiative recombination
mechanisms, such as Auger process, which compete with the
optical gain at high-injection conditions and is currently being
developed.
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APPENDIX: FORMULA DERIVATION

The initial starting point of the derivation for the absorption
coefficient and radiative recombination rate in Green’s func-
tion theory is the total Hamiltonian for the system of interest,
which includes the Hamiltonian of electrons, photons and their
interaction:

H = 1

2m0
[−i�∇ − eA(r,t)]2 + V (r) + V

+
∑

k

�ωka
†
kak, (A1)
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where the vector potential of the radiation field is given by

A(r,t) = 1√
N

∑
k

A(k,t)eik·r,

(A2)

A(k,t) =
√

�

2ωphvε
ê(ake−iωpht + a

†
−keiωpht ).

By neglecting the nonlinear interaction term A2(r,t), Eq. (A1)
can be expanded and re-grouped as

H = Helec + Hphoton + He−photon (A3)

in which

Helec = − �
2

2m0
∇2 + V (r) + V

=
∑
l,k,σ

El(k)C†
l,k,σCl,k,σ , (A4)

Hphoton =
∑

k

�ωka
†
kak, (A5)

He−photon = − e

m0
A(r,t) · P. (A6)

We notice that, besides the electron kinetic energy and periodic
potential operators for the host crystal V (r),Helec also includes
the electron-phonon and the electron-electron interaction V .
As a result, the carrier energies E(k) and the electron creation
and annihilation operators C

†
l,k,σ ,Cl,k,σ then represent the

realistic band structure of the bulk material. In our model,
this requirement is fulfilled by employing the bands from a
local empirical pseudopotential model in which the screened
atomic potentials are optimized to reproduce a number of
experimental band data, such as: effective masses, transition
energies and deformation potentials. By representing the
momentum operator P in the base of electron eigenvectors,
Eq. (A6) for a given photon frequency can be written as

He−photon =
∑
i,j

PijA(k,t)C†
i Cj (A7)

with

Pij = − e

m0
〈i |ê · P| j 〉 , i,j ∈ {(l,k,σ )}, (A8)

where i,j represent two different particle states in the band
structure. Assuming that only the dipole interaction contributes
to the interband transition, the number operator for electrons
(holes) in band l for all the wave vectors k and spin states σ , is
N̂l = ∑

k,σ C
†
l,k,σ Cl,k,σ , and will commute with all the terms

in Eq. (A3) except for He−photon, which is the starting point of
our derivation. In the following equations, without affecting
the final results, we shall drop the time dependence of A(k,t)
and simply rewrite it as A for convenience.

Defining the system density operator as ρ(t) =
|ψ(t)〉〈ψ(t)|, the number of electrons in the conduction band
can be expressed as Nc(t) = Tr[ρ(t)N̂c]. From the Schrodinger
equation, the time evolution of ρ(t) can be obtained as follows:

∂ρ(t)

∂t
= 1

i�
[H,ρ(t)] (A9)

and the time evolution of Nc(t) is

d

dt
Nc(t) = 1

i�
Tr(ρ(t)[N̂c,H ]) ≡ 1

i�
〈[N̂c,H ]〉. (A10)

We have introduced the common notation of trace operator in
Eq. (A10) and will keep using it thereafter. Applying the basic
rules of commutator algebra, Eq. (A10) can be simplified as

[N̂c,H ] = [N̂c,HI ]

=
⎡
⎣∑

k,σ

C
†
lc,k,σCl,k,σ ,

∑
i,j

PijC
†
i CjA

⎤
⎦

=
∑
1,2

P1,2C
†
1C2A�c

1,2 ≡ Hc
I (A11)

with

�c
1,2 = δlc,l1 − δlc,l2 , (A12)

where δi,j is the Kronecker delta function. Introducing a grand
canonical ensemble, the density operator of the system at
equilibrium can be written as

ρ0 = e
�−H̄0
kB T (A13)

with

H̄0 = H0 − μcNc − μvNv, (A14)

where H0 = Helec + Hphoton is the unperturbed system Hamil-
tonian and the perturbation from electron-photon interaction
is HI = He−photon as it will be denoted below. � is the
thermal dynamic potential of the system and is defined through
exp ( − �/(kBT )) = Tr[exp ( − H̄0/(kBT ))]. We assume that
the perturbation is adiabatically turned on at t0 → −∞, after
which the electron and hole ensembles in the conduction
and valence bands remain at thermal equilibrium within
themselves with the corresponding Fermi levels noted as μc

and μv .
By using linear response theory, the density operator of the

system can be expanded to first order as

ρ(t) = ρ0 + ρ1(t). (A15)

Combining Eq. (A15) with Eq. (A9) and retaining the lowest
order of nonvanishing terms, we have

i�
∂ρ1(t)

∂t
= [H0,ρ1(t)] + [HI ,ρ0]. (A16)

In order to find a closed form of ρ1(t) and evaluate Nc(t), we
consider the equivalent quantity of ρ1 in the interaction picture
ρ̃1(t), with ρ1(t) = e−iH0t/�ρ̃1(t)eiH0t/�. The time derivative of
ρ1(t) is given by

i�
∂ρ1(t)

∂t
= [H0,ρ1(t)] + e−iH0t/�i�

∂ρ̃1(t)

∂t
eiH0t/�, (A17)

and a direct comparison between Eqs. (A16) and (A17) yields

ρ̃1(t) = 1

i�

∫ t

−∞
[H̃I (t ′),ρ0]dt ′, (A18)

H̃I (t) = eiH0t/�HIe
−iH0t/�. (A19)
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Combining Eqs. (A10), (A11), and (A18) and recalling that at
equilibrium Tr(ρ0H

c
I ) = 〈Hc

I 〉0 = 0, one obtains

d

dt
Nc(t) = 1

(i�)2

∫ t

−∞
dt ′

〈[
H̃ c

I (t),H̃I (t ′)
]〉

0, (A20)

[
Hc

I ,HI

] =
∑
1,2

∑
3,4

P1,2P3,4�
c
1,2[C†

1C2A,C
†
3C4A]. (A21)

Here, H̃ c
I (t) and H̃I (t ′) are the operators in the interaction

picture of the corresponding quantities in the Schrodinger
picture. To represent the commutator in Eq. (A20) in the
form of Green’s function, we define two new operators:
D1 = C

†
1C2A and D2 = C

†
3C4A, so that the trace of the new

commutator 〈[D̃1(t),D̃2(t ′)]〉0 can be found by first evaluating
the trace below:

〈D̃1(t)D̃2(t ′)〉0

= Tr(ρ0e
iH0t/�D1e

−iH0t/�eiH0t
′/�D2e

−iH0t
′/�)

= ei(t−t ′)(μc�
c
1,2+μv�1,2c)/�〈d1(t − t ′)d2(0)〉0, (A22)

where the operator d(t) = eiH̄0t/�De−iH̄0t/� and Baker-
Hausdorff theorem [15] has been used to simplify the
noncommuting operator N̂ and D. Equation (A20) then
becomes

d

dt
Nc(t) = 1

i�2

∑
1,2;3,4

P1,2P3,4�
c
1,2

∫ t

−∞
dt ′

× ei(t−t ′)(μc�
c
1,2+μv�1,2c)/�GR(1,2; 3,4; t − t ′)

(A23)

GR(1,2; 3,4; t) = 1

i
θ (t)〈[d1(t),d2(0)]〉0. (A24)

As is shown, in Eq. (A24), we used the commutator instead
of the anticommutator to define the three-particle retarded
Green’s function since the operator D consists of two fermions
and one boson, making it a bosonlike operator. θ (t) is the
usual unit step function. The time-dependent retarded Green’s
function can be further manipulated by Fourier transform and
Lehmann representation [16]. Performing the procedure of
frequency summation in Green’s function theory, we found
that GR(t) can be expressed in terms of the imaginary part of
its Fourier component, which is given by

GR(t) = −i

∫ ∞

−∞
dE′ImGR(E′)eiE′t/�. (A25)

Using the definition of the Dirac delta function:
∫ ∞
−∞ eiωtdt =

2πδ(ω), a direct evaluation of Eqs. (A23)–(A25) yields

d

dt
Nc(t) = −2π

�

∑
1,2;3,4

P1,2P3,4ImGR(μc − μv). (A26)

We are now in the position to evaluate the retarded Green’s
function ImGR(E), which will be derived from the Matsub-
ara function of the system. Define the three-particle Matsubara
function g(τ ) as

g(τ ) = −〈Tτ (C†
1(τ )C2(τ )A(τ )C†

3(0)C4(0)A(0))〉 (A27)

with

Ci(τ ) = eH̄τ/�Cie
−H̄ τ/�, τ ≡ it, (A28)

where Tτ is the τ -ordering operator which arranges the oper-
ators with the earliest τ to the rightmost. Though Eq. (A27)
can be calculated to any order by expanding the corresponding
Dyson’s equation, we shall only retain the lowest order of
g(τ ) by using the free-particle Green’s function of photons to
approximate each term obtained by applying Wick’s theorem
to Eq. (A27) [15]. As a result, this approximation will ignore
the polariton effect in the solid and consequently assuming that
only electrons will interact with phonons. It should be noted
that we did not approximate the electron Green’s function with
its free-particle one. Instead, we formally adopt the full Green’s
function of electrons (holes) and put the discussion about
its specific form in Sec. II B, where the electron self-energy
including the related four kinds of electron-phonon interaction
is presented. From Wick’s theorem,

g(τ ) � −〈Tτ (C†
1(τ )C2(τ )C†

3(0)C4(0))〉 〈TτA(τ )A(0)〉 .

(A29)

The photon part is given by [15]

gph(τ ) ≡ 〈TτA(τ )A(0)〉 � �

2ωphvε
e−τωphθ (τ ), (A30)

and the electron part can be formally written as

g2(τ ) = − 〈TτC
†
1(τ )C2(τ )〉〈TτC

†
3(0)C4〉

+ 〈TτC4(0)C†
1(τ )〉〈TτC2(τ )C†

3(0)〉
= − δ1,2δ3,4n1n3 + g2,3(τ )g4,1(−τ )δ2,3δ4,1 (A31)

with

g2,3(τ ) = 〈TτC2(τ )C†
3(0)〉, τ > 0, (A32)

g4,1(τ ) = 〈TτC4(τ )C†
1(0)〉, τ < 0. (A33)

Here, Eqs. (A32) and (A33) are the full Matsubara functions
for one fermion (electron, hole). The same technique used in
deriving Eq. (A25) can also be used to represent Eqs. (A32)
and (A33) in terms of the imaginary parts of the corresponding
electron retarded Green’s function. With τ > 0, we find that

g2,3(τ ) = 1

π

∫ ∞

−∞
dE′

1ImGR
2,3(E′

1)e−τE′
1/��(E′

1), (A34)

g4,1(−τ ) = 1

π

∫ ∞

−∞
dE′

2ImGR
4,1(E′

2)eτE′
2/�[1 − �(E′

2)].

(A35)

Combining Eqs. (A29), (A30), (A34), and (A35), and substi-
tuting iωn with ω + iδ to get the retarded Green’s function
from the Matsubara function, the system retarded Green’s
function in Eq. (A26) becomes

ImGR(E) = �

4π2ωphvε

∫ ∞

−∞
dE′

1

∫ ∞

−∞
dE′

2

× �(E′
1)[1 − �(E′

2)]ImGR
2,3(E′

1)ImGR
4,1(E′

2)

× δ(E + E′
2 − E′

1 − �ωph)δ2,3δ4,1. (A36)
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One should be aware that in the derivation above, we have
always assumed that the time in the Green’s function fulfills
the condition t > 0. In the case of t < 0, however, the physical
process reverses, i.e., the transition from band 1 to band 2
reverses as well. Consequently, when considering the total
absorption for the material, both processes need to be involved
and a reverse term should be added to Eq. (A36). This will
lead to a similar equation as Eq. (A36) except that the Fermi
factor now becomes �(E′

1) − �(E′
2) to account for the net

absorption from band 1 to band 2. In the case of the radiative
recombination rate, only one process should be included and
Eq. (A36) gives the correct Green’s function. Using these
relations,

α(�ωph) = dNc

dt

/ (
I

�ωph

)
, (A37)

with I = �ωphnc0/4v and remembering that the subscript 1,
2, . . . represent a group of states in the band structure (l,k,σ ),
the final expression for the net absorption coefficient between

band 1 and 2 (assuming that E2(k) > E1(k)) is

α12(�ωph) = 2π

nrc0vωphε0

∑
k

|P1,2(k)|2

×
∫

dE′
1

∫
dE′

2(�(E′
1) − �(E′

2))

× δ(μc − μv + E′
2 − E′

1 − �ωph)

× ImGR
l1

(k,E′
1)ImGR

l2
(k,E′

2). (A38)

The corresponding radiative recombination rate per unit
volume per energy interval from band 2 to band 1, therefore
becomes

R21(�ωph) = 2nrωph

π�c3
0vε0

∑
k

|P1,2(k)|2

×
∫

dE′
1

∫
dE′

2�(E′
2)(1 − �(E′

1))

× δ(μc − μv + E′
2 − E′

1 − �ωph)

× ImGR
l1

(k,E′
1)ImGR

l2
(k,E′

2). (A39)
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