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Numerically exact solution of the many emitter–cavity laser problem: Application to the fully
quantized spaser emission
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A numerically exact solution to the many emitter–cavity problem as an open many body system is presented.
The solution gives access to the full, nonperturbative density matrix and thus the full quantum statistics and
quantum correlations. The numerical effort scales with the third power in the number of emitters. Notably the
solution requires none of the common approximations such as good/bad cavity limit. As a first application the
recently discussed concept of coherent surface plasmon amplification—spaser—is addressed: A spaser consists
of a plasmonic nanostructure that is driven by a set of quantum emitters. In the context of laser theory it is a laser
in the (very) bad cavity limit with an extremely high light matter interaction strength. The method allows us to
answer the question of spasing with a fully quantized theory.
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I. INTRODUCTION

For decades open many body quantum systems consisting
of a set of many (N ) externally driven two level quantum
emitters (QEs), e.g., dye molecules or quantum dots, coupled
to a lossy cavity/optical mode have been subject to extensive
research [1–6]. These systems provide access to a manifold
of interesting physics and real life applications, such as
lasers, parametric amplifiers, and atomic coherent states. Such
model systems have been discussed in the context of quantum
computing [3,4] and quantum plasmonics [5,6]. In quantum
information processing the coherent exchange of quantum
information between QEs and cavity mode requires strong
coupling, which can be reached by increasing the number
of QEs [4]. This is desirable, since increasing the emitter
numbers allows for a greater parameter range for light matter
interaction strength and cavity lifetime at device operating
conditions. In the field of quantum plasmonics, the model
system (see Fig. 1) was utilized to address the feasibility
of spasing—i.e., surface plasmon amplification by stimulated
emission of radiation [5–7].

The closed system version of the cavity–N emitter model
is exactly solvable and is known as the Tavis-Cummings
model [8]. The open system counterpart is usually described by
a Born-Markov quantum master equation or, rather, Lindblad
equation to include external pumping and losses. There are
several approximation schemes for solving the system—e.g.,
based on the coherent state positive P representation [1,2,5]
or expansion in an infinite hierarchy of operator expectation
values [6,9]. In this paper we introduce a nonperturbative
expansion scheme for the Lindblad equation of many emitters
coupled to one optical mode. The method is based on a number
state representation. The exponential number of QE degrees
of freedom is reduced by assuming identical emitters with
identical couplings and dephasings without any use of further
approximations. The complexity of the solution then scales
with the third power of the emitter number, so that large
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scale simulations with high emitter numbers are feasible while
keeping the full information of the density matrix.

As a first application, the method is applied to the recent
topic of coherent plasmon amplification—spaser. The spaser
was introduced by Bergman and Stockman [7]. The spaser
was suggested to provide a coherent source in the emerging
field of nanoplasmonics [10–19]. A spaser is the surface
plasmon analogon of a laser: The cavity is replaced by a
metal nanoparticle providing bosonic surface plasmon modes,
while gain and pump are completely analogous to classical
lasers with active gain medium (atoms, quantum dots).
However, claims concerning the experimental realization by
Noginov et al. (Ref. [20]) have been discussed controversially
and questioned, mostly on the basis of a semiclassical
theory [5,6,21–23].

Using the fully quantized theory, we confirm that (i) for
realistic parameters the spaser behaves like a thresholdless
laser, for which the input-output curve cannot be used as
indication for spasing and (ii) in a realistic scenario, too
high pump rates are required to reach the spaser limit, which
is in agreement with the literature using a semiclassical
approach [21–23]. Related studies of spasers (semiclassical or
single plasmon limit, respectively) of a single QE coupled to a
plasmon mode were done in Ref. [24]. In particular, we present
an analysis of the statistics of the created plasmon and exciton
distribution to decide for which parameters the system is
spasing. Also, from the calculated full probability distribution,
one can distinguish different limits such as thermal or coherent
plasmon distributions, which determine specific g(2) functions,
i.e., plasmon-plasmon correlations. (The g(2) of the plasmons
might be measured from the light emitted from the plasmons
of the metal nanoparticles using a Hanburry-Brown-Twiss
experiment [25,26].) Since only the full plasmon statistics
determines whether the device is spasing, the calculation of
the full probability distribution of the plasmon numbers {pn}
(defined later in detail) as in our method is a major advance.
Previously, the quantum statistics of plasmons of a metal
nanoparticle coupled to one (two) quantum dots were analyzed
under resonant excitation [27,28]. However, to discuss spaser
action a high number of quantum emitters under incoherent
off-resonant excitation should be investigated, e.g., something
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FIG. 1. (Color online) Scheme of the metal nanoparti-
cle/quantum emitter system. The system consists of a metal
nanoparticle represented by the number states |m〉p of a single
plasmon mode and a large number of quantum emitters with states
vi and ci for quantum emitter i surrounding the metal nanoparticle.

at least in the order of tens or hundreds of emitters [6].
Typically the number of emitters required for spasing will
depend on the coupling between emitters and plasmons and
the various decay channels in the system. In order to get the
full information about the system a sophisticated theoretical
approach aiming at the full density matrix is necessary.

II. MODEL

We start with the Tavis-Cummings Hamiltonian [8], i.e.,
the QEs have identical properties and the same coupling g to
the cavity mode. The free Hamiltonian of emitters and mode
takes the form

H0 = �ωspb†b + �εc

∑
i

a†
ci
aci

+ �εv

∑
i

a†
vi
avi

, (1)

with the boson plasmon creation and annihilation operators
b†,b, the Fermi creation and annihilation operators a†,a for
the electrons with valence and conduction band levels vi and
ci , the plasmon frequency ωsp, and electron frequencies εc and
εv . We use semiconductor notation [29] throughout this paper
but the Pauli spin matrix notation is easily recovered by set-
ting σ z

i = a
†
ci
aci

− a†
vi
avi

, σ+
i = a

†
ci
avi

, and σ−
i = a†

vi
aci

. The
QE–cavity mode Tavis-Cummings interaction Hamiltonian
assumes linear coupling g and rotating wave approximation:

HI = �

∑
i

g(a†
vi
aci

b† + a†
ci
avi

b). (2)

In the electronic ground state of the emitters |g〉e all
electrons are in the confined valence band state; it is con-
structed from the electron vacuum band state |vac〉e through
|g〉e = ∏

i a
†
vi
|vac〉e. The electron states are expanded using

exciton states, starting with the single exciton states |i1〉e =
a
†
ci1

avi1
|g〉e with quantum emitter i1 excited, and the two

exciton states |i1,i2〉e = a
†
ci2

avi2
|i1〉e with quantum emitters i1

and i2 excited. We can define a general multiexciton state
|{ik}〉e = ∏

h∈{ik} a
†
ch

avh
|g〉e with all quantum emitters h in set

{ik} excited. The cavity mode is described by the plasmon
number states |m〉p.

The complete emitter–cavity mode dynamics is described
by the density matrix ρ. The Liouville–von Neumann equa-
tions together with dissipative corrections L (linewidth and
relaxation processes in emitters and metal nanoparticle)
describe the full system dynamics:

∂tρ = − ı

�
[H,ρ]− + Lρ. (3)

The Lindblad superoperator [30] has the form Lρ =∑
k

γk

2 (2AkρA
†
k − A

†
kAkρ − ρA

†
kAk). Typical processes mod-

eled by the superoperator are spontaneous emission of the
QEs, phase destroying processes, cavity loss, and pumping.
Radiative decay of the excitons is described by AE,i = a†

vi
aci

,
γE,i = γx ; coupling of the plasmon mode to an external
bosonic mode continuum by Asp,1 = b, Asp,2 = b†, γsp,1 =
γsp(m + 1), γsp,2 = γspm with m = 1/{exp[�ωsp/(kBT )] −
1}; pure dephasing of the quantum emitter polarizations by
A

pure

E,i = (a†
ci
aci

− a†
vi
avi

), γ
pure

E,i = γpd , and incoherent pump-

ing of the quantum emitters by A
pump

E,i = a
†
ci
avi

, γ
pump

E,i = P .
The incoherent pump term is known to quench boson output
in laser/spaser devices caused by polarization damping, but is
nonetheless appealing due to its simplicity [31]. We will use
the spaser example to introduce our method as it makes the
presentation more comprehensible. Note that whether these
equations describe a laser or a spaser just depends on the
parameter domain and on the interpretation whether b,b†

denote plasmon or photon operators.
The matrix elements of the full system density matrix have

the general form

〈m|p〈{ik}|eρ|{ih}〉e|m′〉p. (4)

Since all emitters and couplings are assumed to be iden-
tical, it is only important for the density matrix element
〈mL|p〈{ik}|ρ|{ih}〉|mR〉p, how many emitters are excited only
in state |{ih}〉 and |{ik}〉 and how many emitters are excited
in both states. Therefore many matrix elements of the density
matrix are identical; this property reduces the numerical effort
for a high number of emitters to a feasible level. We define

〈mL|p〈{ik}|ρ|{ih}〉|mR〉p =: ρ[nLR,nL,nR,mL,mR ] (5)

with nLR the number of excited emitters both in the left {ik}
and right side {ih}({ik} ∩ {ih}) of the density matrix element,
nL the number of excited emitters only in the left side {ik}
({ik} \ {ih}) and nR the number of elements only in the right
side {ih} ({ih} \ {ik}) of the density matrix element indices.

In a first step, the equations of motion are calculated using
the von Neumann equation including dissipators Eq. (3). In a
second step the matrix elements 〈mL|p〈{ik}|ρ|{ih}〉|mR〉p are
replaced with ρ[nLR,nL,nR,mL,mR ] yielding a closed equation of
motion system of the form

∂tρ[nLR,nL,nR,mL,mR ]

= ı[ωsp(mR − mL) + (εc − εv)(nR − nL)]ρ[... ]

+∂tρ[... ]|I + ∂tρ[... ]|diss . (6)

In order to simplify the notation, we denote only the indices,
which are changed compared to the density matrix written on
the left-hand side of Eq. (6). The emitter-plasmon coupling
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causes the formation of (multi-) exciton-plasmon polariton
states and resonances. The contribution of the quantum
emitter-plasmon coupling is given by

∂tρ[nLR,nL,nR,mL,mR ]|I
= ıg{

√
mR + 1(nLRρ[nLR−1,nL+1,...,mR+1]

+ nRρ[...,nR−1,...,mR+1])

+√
mR(nLρ[nLR+1,nL−1,...,mR−1]

+ (N − nLR − nL − nR)ρ[...,nR+1,...,mR−1])

−
√

mL + 1(nLRρ[nLR−1,...,nR+1,mL+1,... ]

+ nLρ[...,nL−1,...,mL+1,... ])

−√
mL(nRρ[nLR+1,...,nR−1,mL−1,... ]

+ (N − nLR − nL − nR)ρ[...,nL+1,...,mL−1,... ])}. (7)

The coupled density matrix hierarchy, Eq. (7), forms plasmon-
polariton states on different excitation levels similar to
a Jaynes-Cummings ladder and is known as the Tavis-
Cummings model. The large number of different terms arises
from rewriting the density matrix elements using the notation
ρ[. . . ]. The underlying processes are of minor complexity,
since the action of each interaction is only to either increase
or decrease the number of excitations or plasmons on the left
or right side (row and column) of the density matrix. Besides
the contributions from the system Hamilton operator Eqs. (1)
and (2), also the dissipative contributions have to be written in
the new formalism:

∂tρ[nLR,nL,nR,mL,mR ]|diss

= γx{(N − nLR − nL − nR)ρ[nLR+1,... ]

− (2nLR + nL + nR)/2ρ[... ]} − γpd (nL + nR)ρ[... ]

+P {nLRρ[nLR−1,... ] − [N − nLR − (nL + nR)/2]ρ[··· ]}
+ γsp,1{

√
(mL + 1)(mR + 1)ρ[...,mL+1,mR+1]

− (mL + mR)/2ρ[... ]}
+ γsp,2{√mLmRρ[...,mL−1,mR−1]

− (mL + mR + 2)/2ρ[... ]}. (8)

This gives a complete set of equations to describe the
dynamics of the coupled quantum emitters, plasmon system.
Nondiagonal elements of ρ[... ] (i.e., nL,nR,|mL − mR| > 0)
are only included up to numerical convergence.

III. COHERENT SURFACE PLASMON AMPLIFICATION

Applying the introduced model to the spaser implies that
we assume the coupling between the quantum emitters and the
plasmon mode to be identical for every quantum emitter. This
is an approximation, but corresponds to using a mean value for
the coupling. A coupling between the quantum emitters and
plasmon particle can be derived, e.g., using the dipole approach
of Ref. [27]. This is a model assumption, but not unrealistic,
since the quantum emitters are distributed randomly around
the metal particle with a typical average distance to the metal
nanoparticle [7,20]. In addition, the metal particle plasmon
resonance is spectrally broad compared to the emission lines.
Also deviations from the mean quantum emitter frequency

are of minor importance for the coupling to the plasmons.
Different dipole orientations could play a role in the emitter-
plasmon interaction. Geometries where the surface plasmon
and emitter dipole moments are parallel lead to the strongest
couplings, therefore we believe the effects from these parallel
contributions to be dominant. The magnitudes of all system
parameters are discussed in the Appendix .

With the self-consistent theoretical framework, Eqs. (6)–
(8), a thorough theoretical analysis of the plasmon-quantum
emitter system is carried out: We calculate the full time
evolution of the system starting in the thermal equilibrium
state at room temperature. The plotted quantities are steady
state values of system observables as a function of the pump
rate. We focus on the probability to find k plasmons

Ppl(k) =
N∑

n=0

(
N

n

)
ρ[n,0,0,k,k] (9)

or excitons

Pex(k) =
(

N

k

) ∑
m

ρ[k,0,0,m,m], (10)

in the system. Further quantities are the average number of
plasmons

〈b†b〉 =
∑
m

mPpl(m) (11)

and excitons

nC = 〈μ†
exμex〉/|μ|2 =

N∑
n=1

nPex(n), (12)

as well as the plasmonic and exciton intensity-intensity
correlation

〈b†b†bb〉 =
∑
m

m(m − 1)Ppl(m) (13)

and

〈μ†
exμ

†
exμexμex〉/|μ|4 =

N∑
n=1

n(n − 1)Pex(n) (14)

with μ
†
ex = μ

∑
i a

†
ci
avi

, where μ is the exciton dipole moment.
To understand these quantities as a function of the pump

rate, one has to recognize that the dynamics of the plasmon
quantum emitter system is governed by a strong imbalance
of dephasings of the material parameters of the different
constituents of the spasers. The plasmon dephasing is orders
of magnitudes larger compared to the emitter dephasing,
regardless if the emitter is a dye or quantum dot. For the
numerical evaluation, we assume a spherical metal nanopar-
ticle and a spherical but random distribution of the quantum
emitters in a surrounding shell; all parameters can be found in
the Appendix. We choose parameters close to Ref. [20], but
smaller metal nanoparticles and using silver instead of gold, a
choice which actually should improve the possibility of spaser
action, since it increases coupling and decreases dissipation.
So all conclusions in the paper do apply for gold in a even
more bonded way.

As a first step to analyze the operation of a spaser the
average number of plasmons is calculated in dependence on
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(a) (b)

FIG. 2. (Color online) (a) Plasmon number expectation value
over pump rate and (b) number of excitons in the quantum emitter
system relativ to the number of emitters.

the pump rate [Fig. 2(a)]. We see that the average number
of plasmons has a peak at intermediate pump rates and
approaches zero for high pump rates, which is a known
quenching effect of the incoherent pump term [31]. The
absence of a clear kink (transition from spontaneous to
stimulated plasmon emission) in this input-output curve is
a feature of a thresholdless system [32] [note the logarithmic
scale of Fig. 2(a)]. The thresholdless behavior indicates [31,32]
that the input-output curve cannot be used as indication for
spasing, which is in agreement with the literature [6].

This property should hold for all conceivable spaser
parameters: From Eq. (3) it is possible to derive rate equations
for the spaser in complete analogy to the laser rate equations.
Using equations similar to Ref. [9], the Purcell enhancement of
the spontaneous emission rate γ = γx + γl , which is included
in our description, is set as

γl = 4
g2

γx + γsp + P + 2γpd

. (15)

The β factor is β = (1 + γx/γl)−1 showing that β ∼ 1 holds,
since for realistic spaser parameters γl is magnitudes larger
than γx .

As a second step, we discuss at what pump rates the emis-
sion in Fig. 2(a) actually corresponds to coherent plasmons,
i.e., spasing. In Fig. 2(b) the average number of excitons is
plotted over the pump rate, which saturates for high pump rates
at the number of quantum emitters. We observe that the buildup
of the peak in the average plasmon number in Fig. 2(a) occurs
in the regime in which the average number of excitons grows
linearly [see Fig. 2(b)]. In laser physics this is a well-known
indication for the onset of lasing [31]—consequently we can
view it as an indication for spasing within the theory, which is
not, however, observable in an experiment.

A sufficient condition for spasing is the presence of
a Poissonian plasmon distribution. However, typically in
experiments the determined quantity is the plasmon-plasmon
(photon-photon) correlation function g

(2)
pl : It is defined as

g
(2)
pl (τ = 0) = 〈b†b†bb〉/〈b†b〉2; a value of 1 suggests a co-

herent distribution—the Poissonian limit of Ppl ; Eq. (9) and a
value of 2 suggests a thermal distribution. It can be measured
from photons emitted from the metal nanoparticle using an
intensity-intensity correlation of photons in a Hanbury-Brown
Twiss experiment [25]. The g

(2)
pl function is plotted as a

function of the incoherent pump rate P for 10 and 30 quantum

FIG. 3. (Color online) The g(2) functions as a function of the
pumprate for (a) N = 10 and (b) N = 30.

emitters in Figs. 3(a) and 3(b), respectively. Before and after
the onset of spasing the g

(2)
pl has values near 2 suggesting

a thermal distribution (spontaneous emission of plasmons).
Whereas for intermediate pump rates, where linear increasing
plasmon numbers in Fig. 2 suggested spasing, g(2)

pl approaches
1 indicating coherent plasmon emission. Comparing Figs. 3(a)
and 3(b) with Fig. 2, it is clear that the region of coherent
plasmon states cannot be deduced from the input-output curve
for the spaser described for realistic experimental parameters.
Also, the necessary pump rate for spasing is extremely high
(two to three orders of magnitudes higher than QD lasers [9]),
due to the extremely high plasmon dephasing rate. The
necessary pump rates rather increase for higher numbers
of quantum emitters instead of decreasing. So we conclude
that it is probably very difficult to achieve the spasing limit
experimentally, which is in agreement with Refs. [21,23].

In general, a g
(2)
pl of 1 is only a necessary but not a sufficient

criterion for a coherent state. Therefore we discuss the full
plasmon distribution function before and after the spasing
transition. In Fig. 4(b) we see that for pump rates above the
spasing threshold the distribution Ppl(n) [Eq. (9)] changes
from a thermal to a Poisson-like distribution as expected.

FIG. 4. (Color online) A plot over the plasmon number distribu-
tion for two pump rates (P = 0.01,0.7 fs−1) before and after the onset
of spasing.
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Additionally to a g
(2)
pl function of plasmon system, a g(2)

ex

for the exciton system g(2)
ex = 〈μ†

exμ
†
exμexμex〉/〈μ†

exμex〉2 can
be defined to the statistics of the exciton system: The excitons
behave like bosons except that the corresponding Fock space is
truncated at the number of emitters N , which can have severe
influences on the statistical properties. In Figs. 3(a) and 3(b)
g(2)

ex is plotted. The exciton g(2)
ex does not reach the coherent limit

g(2)
ex = 1 in the spasing regime, it remains slightly above. The

same is true before the spaser transition, suggesting deviations
from classical light for light emitted from the excitons for a
g(2)

ex > 2. Anyway for an increasing number of emitters g(2)
ex is

getting closer to 1, suggesting coherent light emitted from the
quantum emitters for very high emitter numbers. The behavior
of g(2)

ex for increasing emitter numbers suggest Pauli blocking as
the origin of the nonbosonic properties of the emitter excitons
and as the source of the deviations from the coherent state.

IV. SUMMARY AND CONCLUSION

In summary, we introduced a numerically exact method to
handle a system of N identical, externally driven quantum
emitters coupled to a lossy optical mode. We applied the
new formalism to the question of spasing (so far evaluated
for 10 and 30 emitters) and found that although it is, in
principle, possible it is very unlikely to be experimentally
achieved and that the claims of realization in Ref. [20] are
probably incorrect. Our method is not, however, limited to the
spaser; it constitutes a general and numerically exact solution
to open many quantum emitter–optical mode/cavity systems.

In particular, it does not rely on techniques such as adiabatic
elimination or linearized fluctuations.
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APPENDIX: PARAMETERS AND LIFETIMES

Following the calculation [27] for a single emitter, we
derive an averaged coupling assuming a spherical distribution
g = 3/2

√
3ηR3/(ε0�)μ/(r3

2 − r3
1 )ln(r2/r1). Here R, r1, and r2

are metal nanoparticle radius and inner and outer shell radii
surrounding the nanoparticle, μ is the quantum emitter tran-
sition dipole moment, and η = [∂ωε′(ω = ωsp)]−1 the inverse
derivative of the real part of the relative dielectric function
ε′(ω) at the dipole plasmon frequency ωsp. The Fröhlich
condition ε′(ωsp) = −2εh with host dielectric constant εh sets
ωsp. The quantum emitter dipole moment is μ = 0.7 e nm,
gives a spontaneous emission rate of γx = 0.003 ps−1. The
pure dephasing rate is γpd = 3 ps−1. We consider a small silver
nanoparticle of R = 6 nm, surrounded by a 6 nm shell, i.e.,
r1 = 6 nm, r2 = 12 nm, with dielectric constant of εh = 3,
shifting the silver plasmon energy into the visible, resulting
in a coupling strength and plasmon damping rate of �g =
19.7 meV and γsp = 80 ps−1. The plasmon transition dipole
moment is [27] χ = εh

√
12πε0�ηR3 = 16.2 e nm.
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