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Unconventional localization transition in high dimensions
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We study noninteracting systems with a power-law quasiparticle dispersion ξk ∝ kα and a random short-
range-correlated potential. We show that, unlike the case of lower dimensions, for d > 2α, there exists a critical
disorder strength (set by the bandwidth), at which the system exhibits a disorder-driven quantum phase transition
at the bottom of the band that lies in a universality class distinct from the Anderson transition. In contrast to the
conventional wisdom, it manifests itself in, e.g., the disorder-averaged density of states. For systems in symmetry
classes that permit localization, the striking signature of this transition is a nonanalytic behavior of the mobility
edge, which is pinned to the bottom of the band for subcritical disorder and grows for disorder exceeding a critical
strength. Focusing on the density of states, we calculate the critical behavior (exponents and scaling functions)
at this novel transition, using a renormalization group, controlled by an ε = d − 2α expansion. We also apply
our analysis to Dirac materials, e.g., Weyl semimetals, where this transition takes place in physically interesting
three dimensions.
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I. INTRODUCTION

Decades of studies of transport and metal-insulator transi-
tions in disordered materials have resulted in well-established
qualitative pictures of these phenomena [1–3]. The conven-
tional wisdom prescribes that single-particle transport and
localization phenomena can be understood by considering
electron scattering only close to the Fermi surface; elastic
scattering through states far from the Fermi surface is believed
to only finitely renormalize the parameters of the low-energy
excitations, without any qualitative consequences.

However, such qualitative picture is not always correct, as
has been known since the pioneering works in Refs. [4–6],
which showed that the transport and localization in materials
with Dirac quasiparticle dispersion are qualitatively affected
by elastic scattering between all states, even far from the
Fermi surface. For example, in three-dimensional (3D) Dirac
materials, the scattering contribution from the full band is
known to lead to a disorder-driven phase transition between
weak- and strong-disorder phases [5,6]. This picture has been
extensively elaborated on and is now widely accepted [7–14].

In our recent paper [11], we have demonstrated [in a
controlled renormalization-group (RG) analysis] that such
single-particle interference far from the Fermi surface is not
specific to Dirac materials; it dramatically affects transport
and the metal-insulator transition in any semiconductor or
a semimetal in sufficiently high dimensions. This applies, in
particular, in the case of the quadratic quasiparticle dispersion
in dimensions d � 4 and in the case of Dirac Hamiltonians in
dimensions d � 2.

As discussed in Ref. [11], in a material with quasiparticle
kinetic energy

ξk = akα (1.1)

in the dimensions d > dc ≡ 2α, quasiparticle states near the
bottom of the band experience renormalizations from all
the other states in the band in the presence of a random
short-range-correlated potential. This leads to a quantum phase
transition already in the single-particle properties as a function
of the disorder strength, as summarized in Fig. 1. Depending

on whether the disorder strength � is above or below a critical
value �c, the effects of quenched random potential grow or
decrease at small momenta, respectively.

As a result, the density of states close to the bottom of
the band exhibits a critical behavior as a function of disorder
strength, unlike its smooth dependence on both energy and
disorder strength in the more familiar case of d < 2α.

A well-known example of materials corresponding to
the case of d > 2α is the recently realized [15–19] Weyl
semimetals, 3D materials with Dirac-type linear quasiparticle
dispersion [20,21] (d = 3, α = 1). While localization in a
single-valley Weyl semimetal due to potential disorder is
forbidden by symmetry [21,22], the weak-to-strong-disorder
transition persists and manifests itself in, e.g., the critical
behavior of the conductivity σ (�) ∝ |� − �c|ν(d−2), that has
been analyzed microscopically for small but finite doping
in our recent paper, Ref. [11], and also for zero doping in
Refs. [5,23,24]. The critical behavior of the density of states for
3D Dirac quasiparticles has been studied in Refs. [5,9,14,24].

As we have also demonstrated there, disordered semicon-
ductors with the conventional quadratic quasiparticle spec-
trum (α = 2) in d > 4 dimensions are also characterized
by a critical disorder strength. Although one might think
that such predictions are of purely academic interest, the
properties of high-dimensional semiconductors are observable
experimentally: a disordered semiconductor with a quadratic
spectrum in arbitrary dimension d can be mapped [25,26] to a
one-dimensional periodically kicked quantum rotor, similar
to those already realized [27–29] in cold atomic gases to
simulate Anderson localization in 1D and 3D. Thus such
kicked rotors present a flexible experimental platform for
observing the unconventional localization physics of high-
dimensional semiconductors explored here. Also, our results
can be tested in numerical simulations of Anderson localiza-
tion transition in high dimensions [30–33] close to the band
edge.

In contrast, in subcritical dimensions, d < 2α, the RG anal-
ysis shows that the effects of disorder grow at smaller momenta
and are most important close to the Fermi energy. This is
consistent with the common assumption, widely used in the
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FIG. 1. (Color online) Critical behavior of weak short-correlated
disorder in materials with power-law quasiparticle dispersion ξk ∝ kα

in dimension d . In low dimensions d < 2α, the effects of disorder
grow at small momenta (strong-disorder regime), while in high
dimensions d > 2α, there is a quantum phase transition between the
strong-disorder and weak-disorder regimes. The insets show the RG
flow of the dimensionless measure of the disorder strength relative to
kinetic energy γ (K) ∼ [K	(K)]−1 with decreasing the characteristic
momentum K , where 	(K) is the mean free path.

literature [1,2,34], that one may consider only quasiparticles
near the Fermi surface when describing transport and metal-
insulator transitions in metals and conventional semiconduc-
tors. In this paper, we further study the weak-to-strong disorder
transition in materials with d > 2α, such as high-dimensional
semiconductors and semimetals, particularly focusing on the
disorder-averaged density of states.

We conclude Introduction by summarizing our key results
and experimental predictions. Then in Sec. II we introduce the
model for a semiconductor with a power-law dispersion and
short-correlated disorder. In Sec. III, we discuss the tails of the
density of states that emerge below the edge of the conduction
band due to rare fluctuations of the disorder potential (Lifshitz
tails). In Sec. IV, we develop a perturbation theory for the states
in the conduction band and obtain divergent contributions
to the effective disorder strength for dimensions higher than
critical. Sec. V is devoted to the RG treatment of the problem,
controlled by an ε = 2α − d expansion. In Sec. VI, we
study the disorder-averaged density of states, the mobility
threshold, and the localization length using scaling analysis
and complementary microscopic calculations. Section VII
deals with the density of states in Weyl semimetals. We
conclude in Sec. VIII with a summary and a discussion of
open questions.

Summary of the results

The key features of our findings for quadratically and
linearly dispersing semiconductors and Dirac semimetals is
encoded in the diagram in Fig. 1. As summarized there,
for d < 2α, the effects of random potential grow at long
wavelengths relative to the kinetic energy, which, if allowed
by symmetry and if d > 2 (in addition to d < 2α), leads
to a mobility threshold between low-energy localized and
high-energy delocalized states. In stark contrast, for d > 2α,
and disorder strength � weaker than the critical �c, the effective

FIG. 2. (Color online) The energy (E, in the conduction band)
vs disorder strength (�) phase diagram for a semiconductor in the
orthogonal symmetry class (permitting Anderson localization) above
the critical dimension, d > 2α. The disorder-averaged density of
states in different regimes is indicated. The parameter t = �/�c − 1 is
the deviation of the disorder strength � from the critical value �c. The
hatched region corresponds to localized states if d > 2. The mobility
threshold is shown as the blue curve. The dotted curve indicates a
crossover from the critical to the effective disorder-free regime.

disorder strength decreases relative to the kinetic energy for
low momenta. On the other hand, disorder stronger than critical
grows at long wavelengths, leading to a finite density of states
and localization (if permitted by symmetry). This leads to a
disorder-driven quantum phase transition that underlies all our
results.

We study this transition using scaling analysis and a
complementary microscopic calculation, based on the RG
analysis, controlled by

ε = 2α − d (1.2)

expansion, and compute a number of physical observables.

1. Density of states

We find that the density of states exhibits the critical
behavior (which has been proposed previously in Ref. [14]
for 3D Dirac quasiparticles)

ρ(E,�) = E
d
z
−1�

[
(� − �c)/E

1
zν

]
, (1.3)

with the limiting cases summarized in Fig. 2. Here, z and ν are
respectively the dynamical and the correlation length critical
exponents and �[x] is a universal scaling function.

There are three different regimes of the critical behavior of
the density of states ρ(E,�).

Close to the critical disorder strength, � ≈ �c, the density
of states is given by a power-law ρ(E,�) ∝ E

d
z
−1 and is

disorder-strength-independent. For low energies and subcrit-
ical disorder (� < �c), the energy dependence of the density
of states coincides with that of a disorder-free system, but
with a disorder-dependent enhancing prefactor that diverges
as the transition is approached (� → �c − 0): ρ(E,�) ∝
(�c − �)−dν(z/α−1)Ed/α−1, Fig. 3. For low energies and strong
disorder (� > �c), the density of states is smeared by disorder
and is thus finite and only weakly energy dependent.

For a semiconductor [a material with the quasiparticle
dispersion (1.1) in the orthogonal symmetry class], we find
the critical exponents z and ν in the RG framework with small
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FIG. 3. The low-energy density of states in a disordered semi-
conductor in a dimension d above 2α for subcritical disorder strength
(� < �c).

ε in the one-loop approximation:

ν = −ε−1, (1.4)

z = α − ε

4
. (1.5)

For instance, in the case α = 2, d = 5, which can be particu-
larly easily realized numerically, using the tight-binding model
on a square lattice, and also simulated in quantum-kicked-rotor
systems, Eqs. (1.4) and (1.5) give ν = 1 and z = 9/4. We
emphasize, however, that the respective ε = −1 is not small
and may require a similar high-loop calculation to accurately
describe experimentally and numerically observed values of
the exponents ν and z.

Disorder not only affects the states in the conduction band
of a semiconductor, but also leads to the formation of “Lifshitz
tails” [35–38], deeply localized states below the edge of the
conduction band that occur due to rare fluctuations of the
disorder potential.

We find that the nature of the Lifshitz tail depends crucially
on whether or not the dimension d is above or below critical, in
the case of Gaussian disorder considered in this paper. Unlike
the conventional case of low dimensions, broadly studied in the
literature [35–38], for d � 2α, the density of states just below
the edge of the conduction band is exponentially suppressed
at weak disorder and weakly depends on energy:

ρLifshitz(0) ∝ exp

(
− A

|ε|
�c

�

)
, (1.6)

where A is a constant of order unity.
We note that the position of the band edge is shifted upon

renormalization, and we define the energy E in the conduction
band [cf. Eq. (1.3)], as well as Lifshitz tail relative to the
renormalized edge.

Because of the exponential suppression of the tail in the
limit of weak disorder or small ε, here the conduction band
can be clearly distinguished from the Lifshitz tail in these
limits, and the band edge is clearly defined [39]. This should
be contrasted with the conventional case of low dimensions,
where the contribution of the Lifshitz tail can be significant

FIG. 4. (Color online) Mobility threshold E∗(�) showing a non-
analytic behavior [given by Eq. (1.8) close to the critical point] as a
function of the disorder strength � in higher dimensions (d > 2α).
In the blue (grey) wedgelike region, the critical behavior is that of
the Anderson universality class with the localization length (1.7),
and outside it is determined by the high-dimensional critical point
(� = �c, E = 0) studied here.

near the bottom band, and thus the band edge is not well-
defined.

2. Mobility thresholds and localization length

Another profound consequence of single-particle interfer-
ence effects in high dimensions is the unusual behavior of
the mobility threshold [the energy E∗(�) separating localized
and delocalsed states] as a function of the disorder strength,
in contrast to its conventional smooth behavior in low dimen-
sions. Slightly above the critical dimension (0 < −ε � 1) the
mobility threshold is pinned to the bottom [39] of the band for
subcritical disorder, � < �c, and rapidly grows with disorder
strength for stronger disorder, � > �c, as illustrated in Figs. 2
and 4.

Furthermore, we show that the critical properties of the lo-
calization transition in higher dimensions are richer than those
below the critical dimension. According to the conventional
wisdom, in the vicinity of the Anderson transition localized
wave functions are characterized by a localization length that
diverges at the transition as

ξloc(E,�) ∝ |E∗(�) − E|−νA (1.7)

with a finite mobility threshold E∗ in the conduction band
and a correlation-length exponent νA which is believed to be
universal and to depend only on the dimension d and the
symmetry class, provided the latter allows for localization. In
particular, the exponent νA is believed to be independent of the
quasiparticle dispersion in a given symmetry class.

In contrast, we find that the phenomenology in high dimen-
sions (d > 2α) is richer. For � > �c, the critical behavior is
indeed described by Eq. (1.7) with a universal exponent νA, but
with the mobility threshold vanishing as � approaches �c + 0
[see also Eq. (1.3)],

E∗(�) = c(� − �c)zν, (1.8)

and remaining zero for � < �c. For � = �c, however, the
localization length of the E = 0 state diverges according to

ξloc(�) ∝ (� − �c)−ν (1.9)

035133-3



S. V. SYZRANOV, V. GURARIE, AND L. RADZIHOVSKY PHYSICAL REVIEW B 91, 035133 (2015)

FIG. 5. The phase diagram for a disordered Weyl semimetal
(d = 3, α = 1) illustrating weak-to-strong-disorder phase transition
at E = 0. Unlike a semiconductor in the orthogonal symmetry class
(Fig. 2), in Weyl semimetals there are no localized states for the
sufficiently smooth disorder potential under consideration. The values
of the exponents in the density of states ρ(E) are calculated using a
perturbative one-loop RG scheme for Dirac quasiparticles, controlled
by an ε = 2 − d expansion.

with the universal exponent ν given by Eq. (1.4) in the limit of
small ε.

Finally, for subcritical disorder, � < �c, the localization
length changes rapidly in a small energy interval, in which the
conduction band crosses over to the Lifshitz tail. Indeed, we
demonstrate that in the conduction band quasiparticle states are
delocalized for � < �c, because the disorder strength vanishes
upon renormalization, while in the tail, the localization length
is of the order of the correlation length of the potential.

3. Weyl semimetal

In addition to semiconductors with a scalar Hamiltonian of
the kinetic energy of quasiparticles, we study the density of
states in Weyl semimetal, where electrons are characterized by
the Dirac-type dispersion Ĥ(k) = vσ̂ · k.

Although there is no localization in Weyl semimetal in
the presence of smooth random potential, such system still
exhibits the disorder-driven phase transition, manifested in,
e.g., the density of states, as summarized in Figs. 5 and 6.
These results are obtained using an RG approach (similar to
the calculation for a semiconductor) controlled by small ε with
ε = −1 set at the end of the calculation.

II. MODEL

As discussed in Introduction, in this paper, we study a
single-particle problem in the presence of a quenched random
potential and analyze the effects of the latter on the single-
particle density of states and other related properties.

We consider a semiconductor with the quasiparticle Hamil-
tonian

ĥ = a|k|α + U (r) (2.1)

in the conduction band, where a|k|α is the kinetic energy
of a quasiparticle with momentum k, and U (r) is a weak
Gaussian disorder potential with zero average 〈U (r)〉dis = 0
and a correlation function

〈U (r)U (r′)〉dis = ϒ(r − r′). (2.2)

FIG. 6. The renormalized density of states in a disordered Weyl
semimetal (d = 3, α = 1) near the Dirac point for subcritical disorder.
It illustrates the crossover from the linear-in-E form (controlled by the
3D critical point close to � = �c and E = 0) to disorder-free quadratic
E2 form at lowest energies, with a universal prefactor enhanced by
disorder.

We take the latter to decay quickly on distances |r − r′| larger
than the characteristic length r0.

If the disorder potential is caused by neutral impurities,
lattice defects or vacancies, r0 is of the order of the typical size
of these impurities or defects. Disorder in semiconductors and
semimetals can be represented also by screened Coulomb im-
purities [40], in which case r0 is given by the screening radius.
For doped semiconductors, the screening is determined by the
concentration of dopants, for intrinsic semiconductors—by
electrons thermally activated from the valence band or by
electron and hole puddles that emerge due to the fluctuations
of the impurity concentration [40–42].

In what follows, we refer to r0 as the “impurity size.” As we
show in Sec. IV, the scale K0 = r−1

0 serves as an ultraviolet
momentum cutoff for the interference effects in the conduction
band, which lead to the renormalization of the states close to
the bottom [39] of the band.

If processes under consideration involve momentum states
with wavelengths exceeding r0, the disorder can be considered
δ-correlated,

〈U (r)U (r′)〉dis = �δ(r − r′), (2.3)

where � = ∫
ϒ(r)dr.

In this paper, in the case of a semiconductor, we neglect
electron scattering to the valence band, valid, for instance, in
the case of a sufficiently large band gap �, separating the
conduction and the valence bands, which exceeds the width
of the conduction band or the disorder-determined ultraviolet
(UV) energy cutoff aKα

0 . However, in the case of a Weyl
semimetal, there is no band gap, and we therefore take into
account scattering between the conduction and the valence
bands.
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Throughout the paper, we assume that the dimension d is
integer, while the exponent α can be fractional. In particular,
the parameter

ε = 2α − d (2.4)

can be arbitrarily small.

III. LIFSHITZ TAILS AND RARE-REGIONS EFFECTS
IN HIGH DIMENSIONS

While typical fluctuations of the disorder potential can be
treated in a perturbative RG analysis, discussed in the main
part of the manuscript, rare regions of space with large disorder
potential require more subtle nonperturbative analysis and lead
to the formation of states with arbitrarily low energies E below
the edge of the conduction band, known as “Lifshitz tail.”
Understanding the structure of such tails is indispensable for
a complete description of single-particle states in disordered
semiconductors.

Lifshitz tails have been extensively studied for conventional
semiconductors [35–38], corresponding to low dimensions
d < 2α. For a quadratic quasiparticle dispersion, it has been
estimated for the density of states ρ(E) deep in the Lifshitz
tail in dimension d that ln ρ(E) ∝ −|E|2−d/2 in the case
of Gaussian disorder considered in this paper (in principle,
the result is nonuniversal and will differ for non-Gaussian
disorder).

In what immediately follows, we use phenomenological
arguments, similar to those of Refs. [35–38], to obtain the
density of states in the Lifshitz tail in high dimensions, d > 2α.
We find that the structure of the tail is dramatically different
from the case of low dimensions, again uncovering the crucial
role played by the critical dimension dc = 2α. In particular,
for weak disorder or small ε, the density of states ρ(E) weakly
depends on energy, ln ρ(E) ≈ ln ρ(0), and is exponentially
small for sufficiently small energies E, including E = 0, which
is of particular interest to us. The states with large negative
energies E occur due to rare regions with large negative
disorder potential that trap particle states.

The distribution of the average disorder potential W =
1
V

∫
�

U (r)dr in a spatial region � of volume V � rd
0 is

described by the Gaussian probability density

P�(W ) =
√

2πV

�
e− W2V

2� , (3.1)

as follows from Eq. (2.3).
The density of states ρ(E) at a large negative energy E

in a semiconductor with quasiparticle dispersion ξk = akα

is determined by the fluctuations of the potential on length
scales L that exceed the characteristic impurity size r0 [the
correlation radius of the function ϒ(r)]. We thus consider the
contribution of such rare regions of deep random potential
wells of characteristic size L to the density of states.

States with energy E and typical linear size L occur due
to the potential fluctuations W ∼ −(|E| + aL−α) in spatial
regions of volume ∼Ld , where ∼aL−α estimates the kinetic
energy of the zero-point motion that raises the energy E above
W , the bottom of the potential well. The density of states ρ(E)
is determined by the “optimal fluctuation” [35–38], i.e., the

value of L, which maximizes

ln PLd (E) ∼ −(|E| + aL−α)2Ld/�. (3.2)

The dominant contribution to the density of states ρ(E) is thus
determined by the competition between large scales L, that
lower the zero-point kinetic energy, and small scales L, for
which potential fluctuations are more probable.

In subcritical dimensions, ε ≡ 2α − d > 0, the maximum
is achieved at aL−α = |E|d/ε, leading to the conventional
result

ρLifshitz(E) ∝ exp

[
−C|E|2− d

α

(
1 + d

ε

)2 (aε

d

) d
α

�−1

]
,

(3.3)

where C is a constant of order unity. The density of states (3.3)
has been obtained previously for conventional semiconduc-
tors [35–38].

In high dimensions, d > 2α, the expression (3.2) has no
maximum at finite L and grows infinitely as L → 0. Thus
the density of states in high dimensions is determined by the
shortest microscopic length scales. The minimal scale in the
model is the “impurity size” r0. Inserting L ∼ r0 in Eq. (3.2),
we obtain

ρLifshitz(E) ∝ exp
[ − C1

(|E| + C2ar−α
0

)2
rd

0 /�
]
. (3.4)

Equations (3.3) and (3.4) correctly describe the densities
of states in low (d < 2α) and high (d > 2α) dimensions,
respectively, provided the respective exponentials are signif-
icantly smaller than unity. While Eq. (3.3) thus applies in
low dimensions only for sufficiently large negative energies
|E| � a− d

ε �
α
ε , Eq. (3.4) describes the density of states in

the Lifshitz tail in high dimensions for all negative energies
provided the disorder is weak enough, � � a2r−ε

0 .
Our result, Eq. (3.4), thus shows that in high dimensions the

density of states weakly depends on energy for |E| � ar−α
0 and

decays exponentially ρ(E) ∝ exp(−C1|E|rd
0 /�) otherwise.

Gapless semiconductors. Since Eq. (3.4) applies for all
energies below the bottom [39] of the band, it can be used
to describe the smearing of the density of states at the
degeneracy point in gapless semiconductors, i.e., materials
where the conduction and the valence bands touch, such as
Weyl semimetals or graphene. In these materials, there is no
band gap, so the expression (3.4) can be used only for E = 0,
i.e., in the bottom of the conduction band (the top of the valence
band). Indeed, for E = 0, d = 3, and α = 1, Eq. (3.4) gives the
density of states ρ(0) in a Weyl semimetal, recently obtained
in Ref. [43].

IV. PERTURBATION THEORY IN THE
CONDUCTION BAND

In Sec. III, we addressed the density of states below the edge
of the conduction band due to rare fluctuations of the disorder
potential. Let us now consider the states in the conduction
band, where it is sufficient to consider the typical fluctuations
of the random potential.
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A. Phenomenological argument for the existence
of the critical dimension dc = 2α

Before turning to more technical perturbative and RG
analyzes, we assess of the role of quenched disorder using
phenomenological scaling arguments. The importance of the
random potential to a singe-particle state of momentum k can
be assessed by comparing the kinetic energy akα with the
typical fluctuation Urms ∼ [�kd ]

1
2 of the (zero-mean) random

potential, averaged over the volume k−d , set by the de Broglie
wavelength 1/k.

For d > 2α, the ratio Urms/(akα) = kd/2−α�1/2/a [∼√
γ ,

with γ being the dimensionless measure of disorder strength,
introduced in Eq. (5.12) below] vanishes with reduced momen-
tum, which reflects the irrelevance of disorder (in RG parlance)
in higher dimensions.

In contrast, for d < 2α, the effects of disorder grow at
small momenta. For d > 2 (in addition to d < 2α), we expect
the localization of particles with sufficiently low momenta
k � K∗, such that the kinetic energy a(K∗)α is of the order
of the characteristic disorder potential fluctuation Urms(K∗).
This allows us to estimate the mobility threshold in lower
dimensions:

Emob ∼ a1−2α/ε�α/ε. (4.1)

Although the above phenomenological argument allows
one to predict the existence of the critical dimension dc = 2α

and qualitatively different effects of disorder in dimensions
d > 2α and d < 2α, such argument neglects elastic scattering
of the states with characteristic momentum k through the states
K � k.

We show below that such large-momentum scattering is
important in higher dimensions, but may be neglected in
the dimensions below critical. Indeed, sufficiently below
the critical dimension [in the limit ε � �/(a2Kε

0 )], the
phenomenological estimate (4.1) of the mobility threshold is
accurate and coincides with the result [Eq. (6.20) below] of
a rigorous RG calculation. However, when approaching the
critical dimension (ε → 0), the above estimate, Eq. (4.1), is
no longer accurate, as elastic scattering between all states in
the band needs to be taken into account.

B. Perturbative correction to the disorder strength

In what immediately follows, we apply perturbation theory
to show that sufficiently below critical dimensions, 2α −
d � 1, the quasiparticle transport in a weakly disordered
semiconductor is dominated by the scattering between states
in a narrow momentum shell, |k − K| � k, whereas close to
or above the critical dimensions, d > 2α, scattering in a large
band of momenta k < K0, up to the UV cutoff K0, is important.

In the leading order in the disorder strength, the effect of
large-momentum scattering (|k − K| � k) on states with small
momenta k can be illustrated by the renormalization of the
impurity line, Fig. 7, mimicked diagramatically in Fig. 8 and
estimated as

δϒ(∼k) ∼ 4
∫

K�k

ϒ2(K)

ξ 2
K

ddK
(2π )d

, (4.2)

FIG. 7. Impurity line.

where ϒ(K) is the Fourier transform of the disorder correlation
function ϒ(r), Eq. (2.3), and ξK = aKα is the kinetic energy
of a quasiparticle with momentum K.

For short-correlated disorder, which we consider in this
paper, the function ϒ(K) decays fast beyond the cutoff
momentum K0 = r−1

0 , and the renormalization of the impurity
line can be rewritten in terms of modification of the disorder
strength �, Eq. (2.3),

δ� ∼ 4Cd

�2

a2

∫ K0

k

dK

K2α−d+1
, (4.3)

where Cd = Sd/(2π )d and Sd is the area of a unit sphere in a
d-dimensional space.

1. Subcritical dimensions

Consistent with the phenomenological analysis of
Sec. IV A, in the dimensions d < 2α the integral in Eq. (4.3)
is dominated by momenta K ∼ k near the lower limit, and

δ� ∼ 1

2α − d

�

k	(k)
, (4.4)

where we have introduced the quasiparticle mean free path (cf.
Appendix A for a detailed calculation of the mean free path)

	(k) = α2a2k2α−d−1

2πCd�
. (4.5)

The quantity k	(k), entering Eq. (4.4), is an important
parameter in the conventional Anderson localization theory
in the dimensions d (sufficiently) above 2. If this parameter is
large, k	(k) � 1, the respective states are delocalized, accord-
ing to the so-called Ioffe-Regel criterion [44,45]. Otherwise,
k	(k) ∼ 1, and the respective states are either localized and
do not contribute to transport or are close to localization. In
d � 2, all states are localized.

Conventional semiconductors in 2D and in 3D are charac-
terized by quadratic quasiparticle spectrum (α = 2), Fig. 1, and
thus correspond to the dimensions below critical, 2α − d � 1.

FIG. 8. The leading-order diagrams for the renormalization of the
impurity line due to scattering through states with large momenta.
Large momentum K significantly exceeds the other incoming and
outgoing momenta. Diagrams (a)–(d) have equal values.
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Then Eq. (4.4) shows that for states with k	(k) � 1, the
large-momentum scattering produces only small corrections
to the disorder strength δ� ∼ �/[k	(k)] and can be neglected.

Thus, in conventional semiconductors, one can apply the
usual transport theory and disorder-averaging techniques [1],
with quasiparticle scattering confined inside a small momen-
tum shell near the Fermi surface and neglecting the other states
in the band.

2. Dimensions close to or above critical

When approaching the critical dimension, d → 2α, the
renormalization of the disorder strength (4.4) by interference
processes involving large momenta dramatically increases. In
the dimensions d > 2α, the integral in Eq. (4.4) is dominated
by large momenta close to the ultraviolet cutoff K0 = r−1

0 ;

δ� = 4Cd

�2

a2

1

d − 2α

1

rd−2α
0

. (4.6)

The modification of the disorder strength by processes involv-
ing momenta ∼K0 can become very large and diverges in the
limit of δ-correlated disorder r0 → 0. Such effects cannot be
treated perturbatively and require adequate renormalization-
group analysis, to which we turn in the next section.

V. RENORMALIZATION GROUP ANALYSIS

In order to address the effects of random potential beyond
the above phenomenological and perturbative approaches, in
this section, we develop a logarithmic renormalization-group
description for the states in the conduction band in the critical
dimension d = 2α and address the other dimensions by means
of an

ε = 2α − d (5.1)

expansion.
Similar renormalization-group descriptions have been de-

veloped for systems with Dirac-type quasiparticle dispersion
in two and three dimensions (2D and 3D), such as the Ising
model [4], integer-Hall-effect systems [7], d-wave supercon-
ductors [8], topological insulators [9], graphene [10], and Weyl
semimetals [5,6,11].

For concreteness and because of its central role in char-
acterising the system, we focus on the disorder-averaged
single-particle density of states

ρ(E) = − 1

π
Im

〈
1

V

∫
dr GR(r,r,E)

〉
dis

(5.2)

in the conduction band, where 〈GR(r,r′,E)〉dis is the disorder-
averaged retarded Green’s function. In the supersymmetric
representation [2] (here used as a convenient tool, although
Keldysh and replica representations can be equivalently
utilized),

〈GR(r,r,E)〉dis = −i

∫
DψDψ†e−L0−Lints(r)s∗(r), (5.3)

L0 = −i

∫
ψ†[E + i0 − a|k̂|α]ψ dr, (5.4)

Lint = 1

2
�

∫
(ψ†ψ)2dr, (5.5)

where ψ = (χ, s)T and ψ† = (χ∗, s∗) are a row and a column
of anticommuting (Grassman) χ , χ∗ and commuting s, s∗
fields, and k̂ = −i∂r.

In Eq. (5.5), we have taken the random potential to be
zero-mean and δ-correlated, as the low-energy states under
consideration are smooth on the scale r0 = K−1

0 . Integrating
out the modes with the highest momenta in an infinitesimal
shell Ke−l < k < K leads to a modified expression for the
density of states:

ρ(E) = 1

πV
Re

[
λ(K)

∫
DψDψ†dr e−L̃0−L̃ints(r)s∗(r)

]
(5.6)

with a renormalized Lagrangian L̃0 + L̃int,

L̃0 = −i

∫
ψ†[λ(K)(E + i0) − a|k̂|α]ψ dr, (5.7)

L̃int = 1

2
�̃(K)

∫
(ψ†ψ)2dr, (5.8)

where the resulting effective couplings λ(K) and �̃(K) flow as

∂lλ = Cd

a2
�̃λK−ε, (5.9)

∂l�̃ = 4Cd

a2
�̃2K−ε, (5.10)

with the initial values �̃(K0) = � and λ(K0) = 1 (for a detailed
derivation of the RG equations see Appendix B).

The renormalized Lagrangian retains the δ-correlated dis-
order form,

〈U (r)U (r′)〉 = �̃(K)δ(r − r′), (5.11)

with �̃(K) characterising the renormalized disorder strength.
The parameter λ(K) plays the role of the inverse quasiparticle
weight.

We note that the edge of the conduction band also flows
under the RG. Thus, throughout the paper, the energy E is
implicitly understood to be measured from the renormalized
band edge.

The form of the flow equations (5.9) and (5.10) for dimen-
sionful couplings suggests an introduction of a dimensionless
measure of disorder strength

γ (K) = 4Cd

a2
�̃(K)K−ε, (5.12)

in terms of which the RG equations reduce to a simple form:

∂lλ = γ λ/4, (5.13)

∂lγ = εγ + γ 2. (5.14)

The RG equations (5.13) and (5.14) are similar to those for
systems with Dirac-type quasiparticle dispersion, extensively
studied in the literature [4–11,13,46]. We discuss the RG
equations for such Dirac materials and the critical behavior,
that follows from them, in Sec. VII.
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We note that the dimensionless parameter γ (k) is related to
the mean free path 	(k), Eq. (4.5) as

γ (k) = 2α2

π

1

k	(k)
(5.15)

and is also a square of the ratio Urms(k)/(akα) of the rms value
of the random potential to the kinetic energy at momentum
k (see Sec. IV A). In realistic system α ∼ 1, so γ (k) is of
the order of the parameter [44,45] [k	(k)]−1, which plays an
important role [1,2,34] in the studies of disordered metals and
semiconductors.

Thus, the parameter γ (K) reflects the localization prop-
erties of the states with momenta of the order of K in
d > 2 dimensions (cf. also Appendix A). Namely, according
to the Ioffe-Regel criterion (and as supported by detailed
microscopic calculations [2,3]), the state with energy E is
delocalized if γ (KE) � 1 with KE given by Eq. (5.16). If
disorder grows upon renormalization, the mobility threshold
is reached at the value of the momentum cutoff K , such that
γ (K) ∼ 1.

Termination of the RG. To utilize our RG approach for
a computation of a physical quantity at energy E [e.g.,
the density of states ρ(E)], we stop integrating out high-
momentum modes when the momentum cutoff K reaches an
E-dependent value KE , such that

λ(KE)E ∼ aKα
E, (5.16)

as determined by the quadratic part of the Lagrangian,
Eq. (5.7).

On the other hand our RG approach is perturbative in the
dimensionless disorder strength γ and is thus only valid for
γ � 1. This therefore places a condition (E > E∗) on the
minimum energy that can be studied within this analysis in a
regime where disorder is relevant at low energies.

The RG procedure must also be terminated if the density of
states ρ(E), derived from Eqs. (5.6)–(5.8), becomes smaller
than the density of states ρLifshitz(0) in the Lifshitz tail near
the edge of the band, emerging due to rare strong fluctuations
of the disorder potential. Indeed, the latter occur as instantons
in the disorder-averaged quasiparticle action [47,48] and thus
cannot be taken into account by a perturbative RG procedure.
If the instanton contribution to the density of states dominates,
the contributions from the typical disorder fluctuations are no
longer important.

In high dimensions d > 2α the density of states (3.4) in
the Lifshitz tail does not experience renormalizations from
the interference effects in the conduction band, because it
originates from rare fluctuations of the random potential on
the scale of the disorder correlation length r0, i.e., from the
momentum modes close to the ultraviolet cutoff K0. However,
the density of states (3.3) just below the critical dimensions,
0 < 2α − d � 1, is subject to renormalizations.

Critical point. Below critical dimensions (ε > 0), γ (l)
always flows to larger values, according to Eq. (5.14). This
encodes the conventional wisdom that the effective random
potential becomes stronger at the bottom [39] of the band. For
2 < d < 2α, this is consistent with the usual expectation of
the existence of a mobility edge that evolves smoothly in the
conduction band as a function of disorder strength.

In qualitative contrast to this conventional expectation, for
supercritical dimension, d > 2α, γ (l) is irrelevant, flowing to
the γ = 0 disorder-free Gaussian fixed point for γ smaller
than the critical value

γc = −ε, (5.17)

in accordance with the phenomenological analysis of
Sec. IV A. Instead, for disorder strength exceeding the critical
γc, γ (l) flows to larger values, reflecting the relevance of strong
disorder in higher dimensions. These two regimes are then
separated by a critical fixed point γc.

Thus, for d > 2α (ε < 0), the renormalization flow leads
to a disorder-driven quantum phase transition. Namely, the
effects of the random potential on the states near the edge of
the band may be significant or negligible depending on whether
or not the disorder strength � exceeds the critical value

�c = −ε
Kε

0a2

4Cd

. (5.18)

Below, we show how this transition manifests itself in the
density of states near the edge of the band and the position of
the mobility threshold.

Solution of the RG equations. The RG flow equations (5.9)
and (5.10) [(5.13) and (5.14)] can be solved exactly [11] with
the result

�̃(K) = �

1 − �
�c

+ �
�c

(
K0
K

)ε , (5.19)

λ(K) = [�̃(K)/�]1/4. (5.20)

If the renormalization procedure is terminated at weak
disorder, γ � 1, the action (5.6)–(5.8) with renormalized
parameters (5.19) and (5.20) can be used to compute low-
energy physical observables, such as conductivity [11] and the
density of states, evaluated in the next section.

VI. DENSITY OF STATES AND MOBILITY THRESHOLD

A. Scaling analysis for the density of states

The existence of the critical point in a semiconductor
[material with quasiparticle dispersion (1.1) in the orthogonal
symmetry class] in d > 2α dimensions suggests that the
density of states exhibits a critical behavior near this point.
Such behavior is dramatically different from the conventional
case of low dimensions (d < 2α), where the critical point is
absent and the disorder-averaged density of states and mobility
threshold is known to be a smooth function of the disorder
strength [2,31,49].

In what immediately follows, we use general scaling
arguments to describe the density of states near the critical
point. In the next sections, we confirm this critical behavior by
a microscopic calculation in the limit of small ε.

According to the conventional phenomenology, near a
continuous transition one expects the existence of a single
dominant correlation length scale

ξ (�,E) = E− 1
z g

[
(� − �c)/E

1
zν

]
, (6.1)

where ν and z are the correlation-length and dynamical critical
exponents respectively, and the energy E is measured from
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the renormalized edge of the band [39]. For small energies
[E � E∗ = c(� − �c)zν] and supecritical disorder (� > �c) it
diverges as

ξ (�) ∝ |� − �c|−ν . (6.2)

We note that, in contrast, the transition across a nonzero energy
E∗ (mobility threshold) is described by the conventional-
Anderson-transition critical behavior, where a distinct local-
ization length ξloc ∝ |E − E∗(�)|−νA diverges, while the cor-
relation length ξ remains finite, see Fig. 4. Finally, sufficiently
close to the critical point (� ≈ �c),

ξ ∝ E− 1
z . (6.3)

Following the conventional paradigm [50], near critical
point physical quantities are expected to be expressible in
terms of this divergent correlation length. According to this,
we expect the density of states to have the scaling dimensions
of density over energy, ρ ∼ ξ−d/E, and thus to exhibit the
form

ρ(E,�) = E
d
z
−1�

[
(� − �c)/E

1
zν

] + ρsmooth, (6.4)

where �(x) is a universal scaling function. Here, ρsmooth

is an analytic contribution to the density of states in the
conduction band, derived from the same rare-regions effects
as the Lifshitz tail. In what follows, we consider the states
in the conduction band and neglect the latter nonperturbative
instantonic contribution, Eq. (3.4), since it is suppressed by
sufficiently large energy E and small ε.

Based on Eq. (6.4) we expect that close to the critical
disorder strength, � ≈ �c, �(x → 0) → const and the density
of states near the edge of the band depends on the energy as

ρ(E) ∝ E
d
z
−1. (6.5)

If the disorder is stronger than critical, � > �c, the states
with sufficiently small energies are localized, and their density
is smeared by disorder. Requiring that the density of states
is energy-independent dictates that in this limit �(x) →
xzν(d/z−1), leading to a prediction of

ρstrong ∝ (� − �c)(d−z)ν . (6.6)

For subcritical disorder, � < �c the dimensionless disorder
strength flows to smaller values under the RG, leading the
absence of localization in the conduction band (provided d > 2
in addition to d > 2α). The density of states vanishes when
approaching the (renormalized) edge of the band (until the
Lifshitz tail is reached), but may depend on the strength
of disorder. Assuming that the disorder �̃(K) strength and
the parameter λ(K) in the renormalized Lagrangian (5.7)
saturate at constant values as K → 0 [as is also supported
by the microscopic RG analysis, cf. Eqs. (5.19) and (5.20)],
we expect the resulting energy dependence of the density of
states to be given by the disorder-free expression ∝E

d−α
α . This

requires that the scaling function in this regime has the form
�(x) ∝ |x|−dν(z/α−1), which from Eq. (6.4) then gives

ρ(E,�) ∝ (�c − �)−dν( z
α
−1)E

d−α
α . (6.7)

In this regime, the density of states thus exhibits a universal
prefactor, that singularly enhances the disorder-free density of
states, diverging as the transition at � = �c is approached from

below. The three regimes, described by Eqs. (6.5)–(6.7), are
summarized in Fig. 2.

B. Scaling analysis for the mobility threshold

In the previous section and in Sec. VI A, using scaling
and a detailed RG analysis, we have found that for d > dc

and subcritical disorder strength � < �c, the effective disorder
strength vanishes at low energies, and all states in the
conduction band remain extended. Thus, for � < �c, we expect
the mobility threshold to be stuck inside or just above the
Lifshitz tail, and in the ε → 0 limit pinned to the bottom [39]
of the conduction band.

In contrast, if the disorder is stronger than critical, the dis-
order strength flows to larger values, leading to the localization
of states with sufficiently small energies. If the energy is not
sufficiently small, the RG flow may be terminated while the
disorder is still weak, leading to the absence of localization.

Thus, for � > �c, we predict the existence of a finite
mobility threshold E∗(�) in the conduction band that separates
localized and delocalized states. According to the scaling
theory, we predict the mobility threshold, E∗ ∝ ξ−z, to have
the universal scaling form

E∗(�) ∝ (� − �c)zν . (6.8)

According to the scaling hypothesis, the energy scale E∗,
Eq. (6.8), also happens to be the characteristic energy scale
at which the high-energy density of states (6.5) for � < �c

crosses over to the density of states (6.7) in the effective
disorder-free regime, see Fig. 2.

C. Scaling analysis for the localization length

We first note that the correlation length ξ (E,�), Eq. (6.1),
of the state with energy E for disorder strength � in general
should be contrasted with the localization length ξloc(E,�)
near the Anderson transition [near the mobility threshold E =
E∗(�)], studied in this section.

Because for � = �c the Anderson transition occurs at zero
energy, the two localization lengths, ξloc and ξ , are proportional
to each other near the critical point (� = �c, E = 0). This
allows us to develop a scaling theory, similar to that of
Sec. VI A, for the localization length

ξloc(E,�) = (� − �c)−νh
[
(� − �c)/E

1
zν

]
, (6.9)

where h(x) is a universal scaling function.
Close to the critical point (� = �c, E = 0), the scaling

of the localization length for sufficiently-low-energy states
[E � c(� − �c)−ν] is thus given by Eq. (6.2) for disorder
close to critical. However, for � > �c and as E → E∗(�), the
critical behavior of the localization length is of the Anderson-
transition universality class [see Eq. (1.7)], with the correlation
length ξ remaining finite. This dictates the following � � �c

form of the localization length:

ξloc(�,E) ∝ (� − �c)−ν

[
E

(� − �c)zν
− c

]−νA

= (� − �c)ν(zνA−1)[E − c(� − �c)zν]−νA, (6.10)

where νA is the correlation-length exponent of the Anderson
transition. Equation (6.10) holds for energies in the vicinity of
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the mobility threshold E∗(�) = c(� − �c)zν , within the blue
(grey) wedge-shaped region in Fig. 4.

We emphasize that the divergence of the localization
length is characterized by different critical exponents at the
(high-dimensional) critical point � = �c, E = 0 and at � > �c,
E = E∗(�). Indeed, at the former, the correlation-length and
dynamical exponents are given by ν and z, respectively, while
for � > �c, by νA and [51,52] zA = d.

The localization transition for subcritical disorder (� < �c)
occurs in a narrow interval of energies close to the bottom
of the band, where the states cross over to the Lifshitz tail.
Expecting that the nature of such transition is thus affected
by rare regions strong-disorder effects, we leave it for future
studies. In what follows, we complement the above scaling
analysis by a microscopic derivation of Eqs. (6.5)–(6.8) and
compute the critical exponents ν and z and the associated
scaling functions microscopically in the limit of small ε =
d − 2α < 0.

D. Microscopic calculation of the density of states and mobility
threshold in high dimensions, d > 2α

In the absence of disorder, the density of states in the
conduction band is given by

ρclean(E) = CdE
d−α

α

αa
d
α

, (6.11)

and the Lifshitz tail is absent.
In the presence of disorder, the density of states ρ(E) can be

calculated microscopically from the renormalized Lagrangian,
Eqs. (5.6)–(5.8), with the cutoff KE , determined by Eq. (5.16).
Provided the renormalized disorder remains weak, γ (KE) �
1, this can be done in a controlled perturbative expansion
in γ (KE), with the lowest-order contribution given simply
by the quadratic part of the Lagrangian, Eq. (5.7), utilizing
the renormalized parameters �(KE) and λ(KE), Eqs. (5.19)
and (5.20).

To this leading order in γ (KE), we thus find

ρ(E,�) = λ(KE) ρclean[λ(KE)E] (6.12a)

= Cd

αa
d
α

[λ(KE)]
d
α E

d−α
α (6.12b)

= Cd

αa
d
α

[
1 − �

�c

+ �

�c

(
K0

KE

)ε]− d
4α

E
d−α

α , (6.12c)

where the momentum KE , at which the RG flow is terminated,
is a function of energy E, determined by the condition

E

[
1 − �

�c

+ �

�c

(
K0

KE

)ε]− 1
4

∼ aKα
E, (6.13)

as follows from Eqs. (5.16), (5.19), and (5.20).
Because the disorder strength �̃(K) always increases under

the RG flow, according to Eq. (5.10), the parameter λ(K) is
always larger than unity. Therefore, the low-energy density of
states (6.12b) in a disordered system exceeds that (6.11) in a
disorder-free system. Thus impurities have transferred states
from high energies E > aKα

0 to lower energies.

Examining Eqs. (6.12c) and (6.13) it is clear that the
density of states exhibits three qualitatively different regimes,
distinguished by the range of the momentum cutoff KE (or
correspondingly energy E) and on whether the disorder is
stronger or weaker than critical.

Indeed, comparing the terms 1 − �/�c and
(�/�c)(K0/KE)ε in Eqs. (6.12c), (6.13), (5.19), and (5.20)
suggests an introduction of the momentum scale

K∗ = K0

∣∣∣1 − �c

�

∣∣∣− 1
ε

(6.14)

and the corresponding energy scale E∗ = a(K∗)α/λ(K∗)
given by

E∗ = aKα
0

∣∣∣1 − �c

�

∣∣∣ 1
4 − α

ε

. (6.15)

The three regimes are defined by the energy E and disorder
strength: (1) disorder close to critical, � ≈ �c, corresponding
to the energy range, such that K∗ � KE < K0; (2) subcritical
disorder and low energies, � < �c and KE � K∗; (3) super-
critical disorder and low energies, � > �c and KE � K∗.

The analysis of whether corresponding energy-E states are
localized can be carried out similarly to the case of a usual
metal [2]. In d � 2 dimensions, all the states are localized.
In the dimensions d > 2, there is a mobility threshold E∗,
corresponding to KE∗	(KE∗) ∼ 1 [γ (KE∗) ∼ 1], that separates
localized and delocalized states. In what immediately follows,
we compute the density of states in these three regimes.

1. Critical disorder

In the case of disorder close to critical, � ≈ �c, correspond-
ing to the interval of energies E∗ � E < aKα

0 , Eq. (6.11),
relating the momentum KE to the energy E, simplifies to

KE = K0

(
E

aKα
0

) 4
4α−ε

. (6.16)

This, together with Eq. (6.12c), yields the critical density of
states in this energy interval

ρ(E) ∼ CdK
d−α
0

αa

(
E

aKα
0

) 3d−2α
2α+d

. (6.17)

For energies of the order of or larger than the ultraviolet cutoff,
E � aKα

0 , the density of states crosses over to that of a clean
semiconductor, Eq. (6.11).

2. Subcritical disorder

In this regime of � < �c, defined by KE < K∗, the system
is sufficiently away from the critical disorder strength �c, so
that �

�c
( K0
KE

)ε in Eqs. (6.12c) and (6.13) can be neglected in
comparison with 1 − �/�c. Equation (6.12c) then immediately
gives

ρ(E) = Cd

αa
d
α

(
1 − �

�c

)− d
4α

E
d−α

α , (6.18)

a result that applies for subscritical disorder and sufficiently
low energies E � E∗, as illustrated in Fig. 2. The disorder-
averaged low-energy density of states is asymptotically that
of a disorder-free semiconductor, with the only effect of the
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random potential to enhance the density of states through a
universal multiplicative prefactor, that diverges near the critical
point. For weak disorder, � � �c the renormalization is weak,
and the density of states (6.18) is close to that (6.11) of a clean
semiconductor.

3. Supercritical disorder

For disorder stronger than critical, � > �c, the dimen-
sionless measure of disorder γ (K) ∼ [k	(k)]−1 grows upon
renormalization. It reaches values of order unity at momentum
cutoff KE ∼ K∗, below which our perturbative (in γ ) RG is
no longer trustworthy.

However, one can apply phenomenological arguments of
Sec. IV A with the renormalized strength of disorder �∗ ∼
a2(K∗)ε at the RG breakdown point (γ ∼ 1). At this point,
the root mean square U ∗

rms ∼ [�∗(K∗)d ]
1
2 of the renormalized

random potential is comparable to the kinetic energy a(K∗)α .
Therefore we expect that the states with energy E < E∗, where
E∗ is given by Eq. (6.15), are strongly influenced by such
strong random potential and are thus localized. Conversely,
for E > E∗ and d > 2, the random potential is a small
perturbation and the states are delocalized.

Given that γ ∼ [k	(k)]−1 [see Eq. (5.12)], this conclusion
is also consistent with the Ioffe-Regel criterion of localization
(supported by rigorous analytic calculations [2,3]). We thus
conclude that for d > dc the energy scale E∗(�), Eq. (6.15),
defines the mobility threshold for the strong disorder regime
� > �c, separating localized and delocalized states (so long as
d > 2), as illustrated in Figs. 2 and 4. Because the disorder is
strong for states with energies E < E∗, the density of states is
energy-independent and is determined by the amplitude of the
disorder potential fluctuations.

From Eqs. (6.12c) and (6.14), we obtain the density of states
for � > �c in the energy interval 0 < E � E∗:

ρ(E) ∼ CdK
d−α
0

αa

(
� − �c

�

) 3
4 − α

ε

. (6.19)

E. Subcritical dimensions, d < 2α

Below critical dimensions (ε > 0), the disorder strength
grows with decreasing energy E, appearing to diverge as KE

approaches K∗. The dimensionless measure of disorder, γ (K)
reaches values of order unity at momentum cutoff Kmob =
K∗[1 + |�c|/�̃(K)]1/ε ∼ K∗, below which our perturbative
(in γ ) RG is no longer trustworthy. Similarly to the case of
supercritical disorder in higher dimensions, the momentum
Kmob corresponds to the mobility threshold Emob, if d > 2 (in
addition to d < 2α), all states with E < Emob being localized.

Using the condition γ (K) ∼ 1 and Eqs. (5.16), (5.20),
and (6.14), we obtain the mobility threshold in such lower
dimensions:

Emob = aKα
0

(
�

a2Kε
0

) 1
4
(

1 + |�c|
�

) 1
4 − α

ε

. (6.20)

Finally, we note, that sufficiently below critical dimension,
ε � 1, Eq. (5.19) shows that, in agreement with the pertur-
bation theory of Sec. IV, the renormalization of the disorder
strength is negligible, i.e., �̃(K) ≈ � so long as the disorder
is weak, γ � 1. In contrast, just below the critical dimension

(0 < ε � 1) the parameters of the system are significantly
renormalized due to elastic scattering between states in the
whole conduction band.

VII. WEYL SEMIMETAL

Weyl semimetal is a 3D material characterized by Dirac
quasiparticle dispersion of long-wave excitations,

Ĥ = vσ̂ · k, (7.1)

with σ̂ being a (pseudo)spin-1/2 operator.
Generically, one expects an even number of Dirac points

in the first Brillouin zone (a consequence of Dirac fermion
doubling problem on a lattice [53]). However, for a sufficiently
smooth random potential, that we will assume here for sim-
plicity, scattering between Dirac points (internodal scattering)
may be neglected, restricting the analysis to the vicinity of one
point only.

We first note that, unlike the case of a semiconductor
described by the model (2.1), quasiparticles in Weyl semimetal
cannot be localized in the absence of internodal scattering.
This follows from the observation that a Weyl fermion is
characterized by a nonzero Berry flux through a closed surface
surrounding the Dirac point in the momentum space [21]. Thus
WSM may be considered as a surface of a 4D topological
insulator in the AII class [22]. Surface states of a topological
insulator cannot get localized by disorder, and, thus, neither
can Weyl fermions near one Dirac point.

Despite the absence of the Anderson transition in Weyl
semimetal, a weak-to-strong disorder transition manifests
itself in a critical behavior of a variety of physical observables,
in particular the disorder-averaged density of states, to whose
analysis we now turn.

The RG analysis for disordered materials with Dirac-type
quasiparticle dispersion is similar to that for high-dimensional
semiconductors, described in Sec. V, and have been carried
out in a number of previous works [4–11,13]. The critical
dimension in the case of quasiparticles with linear dispersion,
Eq. (7.1), is dc = 2α = 2, and thus the RG treatment of
disorder and the aforementioned weak-to-strong disorder
transition (unlike, conventional semiconductors studied in
earlier sections) is of direct physical relevance in 3D Dirac
materials, WSM.

In order to have a “controlled” RG calculation in WSM, it
is essential to analytically continue the model to an arbitrary
dimension d and then perform an ε = 2 − d-expansion. We
do this by analytically continuing the quasiparticle dispersion
according to

Ĥ = vk
1
2 + ε

2 σ̂ · k, (7.2)

and setting ε = −1 at the end of the calculation.
Perturbative RG analysis, quite similar to that of Sec. V,

together with such ε-expansion [5,9,11] leads in the one-loop
approximation to the flow equations:

∂lλ = γ λ/2, (7.3)

∂lγ = εγ + γ 2, (7.4)

that have the same form as Eqs. (5.13) and (5.14), except
for a different prefactor, 1/4 → 1/2, in Eq. (7.3) and in the
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definition of the dimensionless disorder strength

γ (K) = 2Cd

v2
�̃(K)K−ε. (7.5)

Following the scheme of Sec. V, we immediately find the
critical exponents in 3D (i.e. for WSM),

ν = 1, z = 3
2 , (7.6)

and the critical disorder strength

�c = π2v2/K0, (7.7)

which have also been obtained in the previous
works [5,9,11,13]. The values of the critical exponents
close to (7.6) have also been found numerically in Ref. [14].

Although localization in Weyl semimetals is forbidden
by symmetry in the absence of internodal scattering, the
disorder-driven phase transition manifests itself in the
conductivity and the density of states. The conductivity of
Weyl semimetals for small finite doping has been calculated
microscopically in Ref. [11].

The density of states in a Weyl semimetal can be evalu-
ated similarly to that of a high-dimensional semiconductor,
described in detail in Sec. VI, by solving the above flow
equations (7.3) and (7.4) and using the quadratic part of the
quasiparticle Lagrangian with renormalized couplings, which
is justified for weak renormalized disorder γ (KE) � 1.

In the absence of disorder,

ρ
Weyl
clean(E) = E2

2π2v3
. (7.8)

For disorder strength � close to the critical �c, the RG analysis
yields

ρ(E) ∼ K0

v2
E (7.9)

in the energy interval E∗
Weyl � E < vK0, where

E∗
Weyl = vK0

∣∣∣1 − �c

�

∣∣∣ 3
2

(7.10)

is the crossover energy scale that for � < �c delineates linear
(critical, E > E∗) and quadratic (disorder-free, E < E∗)
behavior of the density of states.

For subcritical disorder, � < �c, and energies 0 < E �
E∗

Weyl, the flows (7.3) and (7.4) crossover from the vicinity of
the critical point to the disorder-free Gaussian fixed point. In
this regime, we find the disorder-free E2 scaling of the density
of states as a function of energy, enhanced by a universal sin-
gular prefactor that diverges as � approaches the critical value:

ρ(E) = 1

2π2v3

(
1 − �

�c

)− 3
2

E2. (7.11)

A strong random potential, � > �c, is relevant, leading to
the density of states smeared by disorder and independent of
energy in the interval for |E| � E∗

Weyl:

ρ(E) ∼ K2
0

v

(
1 − �c

�

) 3
2
. (7.12)

The critical regimes, described by Eqs. (7.9)–(7.12), are
summarized in Fig. 5.

VIII. CONCLUSION

A. Summary

In this work, we have studied noninteracting quasiparticles
with power-law dispersion moving in a weak random potential.
We demonstrated that in contrast to low dimensions (where for
2 < d < 2α, a conventional Anderson localization transition
takes place), for d > 2α, such system in addition exhibits a
disorder-driven transition in a new universality class. Among
other physical properties, it manifests itself in a universal
critical behavior of the disorder-averaged density of states and
in the sharp dependence of the mobility threshold on disorder
strength �. In particular, the mobility threshold vanishes for �

smaller than a critical value. These results are summarized by
Figs. 1–6.

B. Outlook

In light of our finding of a novel localization transition and
its phenomenology in high dimensions, natural future research
directions include its interplay with interactions, more generic
band structures (e.g., including other bands) and disorder
symmetries, spin-orbital coupling, magnetic field, etc.

Another issue that our work raises is the nature of the
high-dimensional localization transition for � < �c, across the
mobility edge, located close to the edge of the conduction
band. Although one may expect that this transition is in
the conventional Anderson-localization class, this question
deserves further investigation.

Also, we suggest that a localization transition on the
Cayley tree, believed to correspond to the infinite dimension
d = ∞, deserves further investigation, as it may realize the
high-dimensional phenomenology studied here. Indeed, it
is well-known that including states with energies far from
the Fermi level is necessary to describe localization and
transport on Cayley tree [2,54,55], similarly to the case of
high-dimensional semiconductors considered in this paper.
We thus expect models on Cayley tree to display the striking
phenomenology uncovered here, leading to, e.g., a critical
behavior of the disorder-averaged density of states or novel
universality classes of the localization transition.

Another class of systems that exhibit similar unconven-
tional single-particle interference effects, which involve elastic
scattering between all states in the band, is lattice models with
strong on-site disorder and weak intersite hopping [56,57],
describing, e.g., strongly disordered insulators or granulated
superconductors in the insulating states. Because such systems
can be analyzed by means of a similar RG approach,
with momentum states replaced by (quasi-)localized on-site
states, we expect superconductor-insulator transitions and
metal-insulator transitions in such systems to display similar
phenomenology.
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APPENDIX A: MEAN FREE PATH IN A WEAKLY
DISORDERED SEMICONDUCTOR

In this Appendix, we compute the mean free path for a
quasiparticle with energy E in a d-dimensional semiconductor
with short-range-correlated disorder. Let us consider first the
case of very weak disorder, � � �c. Then the mean free path
is dominated by elastic scattering in a narrow momentum
shell around the surface apα = E in momentum space. The
renormalizations due to the elastic scattering through the states
far from this surface can be neglected.

The self-energy part can then be found by integrating over
momentum states p with energies close to E:

�R(E) = −�

∫
GR(p,E)

dp
(2π )d

(A1)

with the bare Green’s function

GR(p,E) = (E − apα + i0)−1. (A2)

The mean free path is then given by

	(k) = − v(k)

2 Im �R(E)
, (A3)

where E = aka and v(k) = αakα−1 is the velocity corre-
sponding to the momentum k. Using Eqs. (A1)–(A3), we
immediately arrive at the result (4.5) for the mean free path in
a weakly disordered semiconductor.

If disorder is not very weak (� ∼ �c or � > �c), quasi-
particle properties experience renormalization from elastic
scattering between all states in the band. By applying the
RG procedure, described in Sec. V, it is possible to remove
high momenta from the system and reduce the problem to
considering only momentum states with energies close to E.

In particular, if disorder is not very weak but still smaller
than critical, � < �c, the system flows towards vanishing dis-
order, and the elastic scattering rate in the renormalized system
can be obtained in the Born approximation similarly to the case
of a usual low-dimensional metal or a semiconductor [1]. The
renormalized disorder strength can be sufficiently small for
applying the Born approximation also in the case � > �c and
small ε = d − 2α � 1, if the RG procedure is terminated by
sufficiently large energy E, while the disorder is still weak.

The self-energy part for a quasiparticle with energy E then
is given by Eq. (A1) with the replacement E → λ(k)E inside
the argument of the Green’s function (A2) on the right-hand
side,

λ(k)E = akα. (A4)

The respective mean free path can be also defined by
Eq. (A3), leading to Eq. (4.5). Then the small parameter γ (k) ∼
[k	(k)]−1 � 1 plays the same role in the renormalized system
as it does in a usual metal [1] or a very-weakly-disordered

nonrenormalized system; it suppresses diagrams with crossed
impurity lines.

Indeed, single-particle interference effects involve quasi-
particle propagators with equal energies E. The suppression
of diagrams with crossed impurity lines occurs due to an addi-
tional constraint [1] of the form |apα

1 ± apα
2 ± · · · ± apα

N | �
−Im �R(E) on the quasiparticle momenta p1,p2, . . . ,pN

near the surfaces apα
1 = apα

1 = · · · = apα
N = λ(k)E. Such

diagrams are suppressed if k	(k) � 1 with the mean free path
	(k) defined by Eq. (A3).

APPENDIX B: DETAILS OF THE RG ANALYSIS

In this section, we provide details of the renormalization-
group analysis for the density of states (5.6) and the quasiparti-
cle Lagrangian (5.7). On each step of the RG procedure we split
the supervectors ψ , ψ† into the “fast” ψf , ψ

†
f and “slow” ψs ,

ψ
†
s parts, including respectively the larger (Ke−l < k < K)

and the smaller (k < Ke−l) momentum components of the
fields ψ , ψ† and, perturbatively in the weak random potential,
integrate out the fast components.

The Lagrangian of the quasiparticles separates into a sector
containing only fast fields, a sector of the slow fields and the
“interaction” Lagrangian Li that couples fast and slow degrees
of freedom:

L(ψ†,ψ) = L(ψ†
f ,ψf ) + L(ψ†

s ,ψs) + Li(ψ
†
s ,ψs,ψ

†
f ,ψf ),

(B1)

where L(ψ†,ψ) = L0(ψ†,ψ) + Lint(ψ†,ψ), Eqs. (5.7) and
(5.8), and

Li(ψ
†
s ,ψs,ψ

†
f ,ψf )

= �̃

∫
(ψ†

f ψf )(ψ†
s ψs)dr + �̃

∫
(ψ†

s ψf )(ψ†
f ψs)dr

+ �̃

2

∫
(ψ†

f ψs)(ψ
†
f ψs)dr + �̃

2

∫
(ψ†

s ψf )(ψ†
s ψf )dr.

(B2)

Integrating out the fast field results in (i) the renormalization of
the Lagrangian of the slow modes and (ii) the renormalization
of the preexponential factor in the expression (5.6) for the
density of states.

Renormalized Lagrangian. To the leading order in the small
disorder strength (one-loop approximation) the Lagrangian of
the slow modes is renormalized according to

L(ψ†
s ,ψs) → L(ψ†

s ,ψs) + 〈Li〉f − 1
2 � L2

i �f , (B3)

where 〈. . .〉f = ∫
Dψ

†
fDψf . . . e−L(ψ†

f ,ψf ), and � . . . � is a
similar notation for irreducible (connected) correlators.

The renormalization of the quadratic part of the Lagrangian
is determined by the term 〈Li〉f ,

δL0(ψ†
s ,ψs) = 〈Li〉f = �̃

∫
〈(ψ†

s ψf )(ψ†
f ψs)〉f dr

=
∫

dr ψ†
s (r)ψs(r)

· �̃
∫

dp
(2π )d

i

E · λ(K) − apα + i0
, (B4)
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FIG. 9. Diagram corresponding to the renormalization of the
quadratic part of the Lagrangian.

and, in terms of the disorder-averaging perturbation theory,
corresponds to the diagram in Fig. 9.

In deriving Eq. (B4), we used the correlator

〈ψf kψ
†
f k〉f = 1FB · i

E · λ(K) − akα + i0
(B5)

of the Fourier-transform of the supervectors ψ
(†)
f k =

1√
V

∫
ψ

(†)
f (r) exp(∓ikr) dr, with 1FB being the unity matrix

in the space of fermionic and bosonic components of the
supervectors.

The renormalization (B4) of the quadratic part of the
Lagrangian leads to a shift of the edge of the conduction band
and a modification of the coupling λ:

λ(Ke−l) · E → λ(Ke−l) · E + λ(Ke−l) · δE + δλ · E, (B6)

where

δE = �̃

∫
Ke−l<p<K

dp
(2π )d

1

apα

= �̃CdK
d−α

a(d − α)
[1 − e−(d−α)l] (B7)

describes the shift of the edge of the band. Throughout the
paper, we measure the energy E from the edge of the band,
i.e., on each step of the RG procedure absorb δE into the
redefinition of the energy E: E + δE → E. The modification
of the parameter λ in the limit of small ε = 2α − d reads

δλ = �̃λ

∫
Ke−l<p<K

dp
(2π )d

1

a2p2α

≈ Cd

a2
�̃λK−ε · l (B8)

and leads to the RG equation (5.9).
The renormalization of the disorder strength �̃ [of the

quartic term in the Lagrangian, Eq. (5.8)] is described by

irreducible (connected) pairwise correlators of different terms
in the right-hand-side of Eq. (B2) and corresponds to the
diagrams in Figs. 8(a)–8(d).

In particular, the contribution of the irreducible (connected)
correlator of the first and the second terms in Eq. (B2),

− �̃2

2

∫
� [(ψ†

f ψf )(ψ†
s ψs)](r)[(ψ†

s ψf )(ψ†
f ψs)](r′)

�f drdr′

= − �̃2

2

∫
(ψ†

s ψs)(r)ψ†
s (r′)〈ψf (r′)ψ†

f (r)〉f

×〈ψf (r)ψ†
f (r′)〉f ψs(r′)drdr′, (B9)

equals the diagram in Fig. 8(c). Interchanging the expressions
in the square brackets in Eq. (B9) corresponds then to
the diagram 8(d), which has the same value. Similarly,
the correlator of the second term in Eq. (B2) with itself
corresponds to the diagram 8(b), of the third and the fourth
terms—to the diagram 8(a). The other correlators vanish. The
four correlators, corresponding to the diagrams Fig. 7(a)–7(d),
contribute equally to the renormalization of the disorder
strength � and lead to the RG flow equation (5.10).

Preexponential factor renormalization. Integrating out the
fast fields ψf and ψ

†
f renormalizes not only the Lagrangian but

also the preexponential factor in the expression for the density
of states, Eq. (5.6).

Indeed, due to the correlations between the fast components
of the supersymmetry-breaking preexponential factor
∝ ∫

ψβ(r)ψ†
β(r)dr = ∫

ψsβ (r)ψ†
sβ(r)dr + ∫

ψfβ (r)ψ†
fβ (r)dr

and the Lagrangian Li , the former is renormalized as∫
ψ†

s (r)ψs(r)dr →
∫

ψ†
s (r)ψs(r)dr

−
∫

〈ψfβ (r)ψ†
fβ (r)Li(ψ

†
s ,ψs,ψ

†
f ,ψf )〉f dr. (B10)

Using Eqs. (B2), we find straightforwardly that the modifica-
tion (B10) is equivalent to multiplying

∫
ψ

†
s (r)ψs(r)dr by 1 +

δλ/λ ≡ λ(Ke−l)/λ(K). Therefore, as a result of integrating
out the fast fields, the expressions (5.6)–(5.8) reduce to the
same form with all the effects of the fast fields encoded in the
renormalized parameters λ and �̃.
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