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A theoretical framework for pump-probe photoemission is presented. The approach is based on a general
formulation using the Keldysh formalism for the lesser Green’s function to describe the real-time evolution of
the electronic degrees of freedom in the initial state after a strong pump pulse that drives the system out of
equilibrium. The final state is represented by a time-reversed low-energy electron-diffraction state. Our one-step
description is related as close as possible to Pendry’s original formulation of the photoemission process. The
formalism allows for a quantitative calculation of time-dependent photocurrent for simple metals where a picture
of effectively independent electrons is assumed to be reliable. The theory is worked out for valence- and
core-electron excitations. It comprises the study of different relativistic effects as a function of the pump-probe
delay.

DOI: 10.1103/PhysRevB.91.035119 PACS number(s): 78.47.D−, 78.47.J−, 79.60.−i

I. INTRODUCTION

Angle-resolved photoemission has developed over several
decades into a technique of choice for determining the elec-
tronic structure of new crystalline materials and represents a
mature tool in materials physics [1]. Particularly, time-resolved
photoemission spectroscopy (TR-PES) has been advanced on
the experimental side in recent years. To study the nonequi-
librium dynamics of electronic degrees of freedom on a
femtosecond time scale, different pump-probe photoemission
experiments have been employed [2–16]. Here, we present
a general theoretical framework which can be applied to
simple metals where a treatment of the electron dynamics
in a picture of essentially independent particles may be
adequate. The formalism also accounts for relativistic effects;
for example, it captures the simultaneous appearance of spin-
orbit coupling and magnetic exchange splitting. In principle,
it can be applied to different pump-probe photoemission
setups involving valence bands as well as core levels. To
keep the complexity at a reasonable level, we focus on a
valence-pump–core-probe situation in the present study. We
sketch the computation of the atomic contribution of the initial
state to the time-dependent photocurrent and point out the ne-
cessity to implement a full time-dependent multiple-scattering
technique for other contributions to the time-dependent
photocurrent.

The most successful theoretical framework available to deal
with photoemission from solid surfaces is the one-step model
as originally implemented by Pendry and coworkers [17–19].
The main idea is to describe the excitation process, the
transport of the photoelectron to the crystal surface, and the
escape into the vacuum [20] as a single quantum-mechanically
coherent process including all multiple-scattering events [21].
Nowadays, it allows for photocurrent calculations ranging
from a few eV to more than 10 keV [22–25] at finite
temperatures and from arbitrarily ordered [26] and disordered
systems [27] and may also include effects of strong electron
correlations [28–30]. However, a general and quantitative
one-step formulation of time-resolved phenomena in angle-
integrated or angle-resolved photoemission is still missing.

Only a few theoretical approaches to TR-PES have been
published within the last few years. Initial descriptions of
TR-PES in terms of Keldysh Green’s function techniques [31]
were published by Freericks et al. [32–34] and Eckstein and
M. Kollar [35], followed by work from other groups [36,37].
Moreover, the first realistic description of two-photon photoe-
mission has been worked out [38], as well as a many-body
formulation of core-level photoemission [39].

One of the major problems, as discussed in the literature,
mainly in the context of strongly correlated systems, consists
of the calculation of the lesser component of the Keldysh
Green’s function for a realistic system while avoiding an
equal-time approximation or similar severe simplifications.
As this function has two independent time arguments, the
numerical effort can be tremendous, even for simple model
systems. There is, however, another class of complications
that is relevant to the theoretical description of real materials:
In order to obtain the photocurrent as a function of the
pump-probe delay, one has to calculate the lesser Green’s
function for a semi-infinite stack of atomic layers and for
a realistic electronic potential, which is typically available
from band-structure formalisms such as the Korringa-Kohn-
Rostoker (KKR) method [40]. Furthermore, equally important,
final-state multiple-scattering and matrix-element effects have
to be taken into account, as well as the presence of the surface
itself.

For the case of equilibrium photoemission, those problems
have been addressed and successfully solved in the past:
The first and most simple version of an independent-electron
approximation for the photocurrent was given by Berglund
and Spicer [20], namely, with the so-called three-step model
of photoemission in which the process is divided into three
independent steps (excitation, transport, and escape into the
vacuum; see above). To overcome obvious deficiencies of
the three-step model, a multiple-scattering or “dynamic”
approach was suggested, first for the final state [41,42] and
later on for both initial and final states [19] in order to
treat self-energy corrections on equal footing. With Pendry’s
one-step approach [18] to angle-resolved photoemission a
numerically tractable scheme was introduced which rests on
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the one-particle Green’s function in the local-density approx-
imation (LDA) of band-structure theory [43]. Photoemission
is described as a single coherent quantum process. Explicit
effects of strong Coulomb correlations are still disregarded.
Furthermore, the use of the sudden approximation for the final
state allows us to adopt an independent-particle description of
the photoelectron in the framework of low-energy electron-
diffraction theory [17].

Our long-term goal is to provide a numerical tool which
helps to analyze time-resolved pump-probe photoemission
data from real systems and which thus makes direct contact
with the experiments. In the present paper, as a first step,
we demonstrate that a one-step formulation is also possible
in the time-dependent or nonequilibrium case. Using the
Keldysh formalism [31], the lesser Green’s function provides
the description of the time evolution of the electronic structure
on a femtosecond time scale following a strong pump pulse.
In general, this requires the solution of an integral equation
involving the S matrix that corresponds to multiple (all-
order) scattering at the time-dependent perturbation given
by the light-matter-interaction term describing the pump.
The problem can be rewritten as a Dyson equation for
the nonequilibrium double-time retarded Green’s function
starting from the equilibrium retarded (and advanced) Green’s
functions which are available from standard KKR theory [40]
and which are homogeneous in time. However, even if
one works on an LDA level and neglects explicit Coulomb
correlations in the many-body system and describes the
electrons as effectively independent, this is a very demanding
task.

Within the sudden approximation, the descriptions of the
initial state and of the final state can be separated from
each other [32]. Final-state multiple-scattering effects, dipole
selection rules, and, generally, all effects of the transition-
matrix elements as well as multiple scattering from the surface
potential are fully included by describing the final state of
the photoelectron as a time-reversed low-energy electron-
diffraction (LEED) state. To simplify the solution of the
Dyson-type integral equation for the lesser Green’s function,
we adopt an “atomic approximation”; that is, we compute the
atomic contribution of only the initial state. This should be rea-
sonable for the case of a pump-probe experiment in which the
time-dependent electronic structure in a valence band is probed
with an x-ray pulse addressing a core state. For this valence-
pump–core-probe photoemission [4,44,45] a fully relativistic
four-component formalism is necessary. Our approach should
thus also make contact with pump-probe photoemission from
high-Z materials and allows us to study, e.g., dichroic effects in
TR-PES.

This paper is organized as follows: The next section presents
the general theory of time-resolved photoemission theory. The
relation to the conventional (equilibrium) one-step theory and
other aspects are discussed in Sec. III. Section IV is devoted to
the lesser Green’s function which describes the time evolution
of the system’s initial state after a strong pump pulse. Different
types of pump-probe experiments are discussed in Sec. V,
while the explicit formulation of time-resolved photoemission
within the one-step approach is worked out in Sec. VI for an
x-ray probe addressing a core state. Section VII provides a
short summary.

II. GENERAL THEORY OF TIME-DEPENDENT
PHOTOEMISSION SPECTROSCOPY

We consider the electronic properties of a system specified
by a Hamiltonian H and assume that the system’s state is
a thermal state characterized by the inverse temperature β

and the chemical potential μ in the distant past t → −∞.
The grand-canonical density operator is given by ρ(−∞) =
Z−1 exp[−β(H − μN )], where N is the total particle number
and Z = tr exp[−β(H − μN )] is the partition function. Let
|�m〉 be the eigenstates of H and Em be the corresponding
eigenenergies. We have

ρ(−∞) =
∑
m

pm|�m〉〈�m|, (1)

with

pm = 1

Z
e−β(Em−μNm) , (2)

where Nm is the total particle number in state |�m〉.
We consider a situation where the system is subjected to

a strong light pulse, described by a light-matter-interaction
Hamiltonian V(t), which drives the system state ρ(t) out of
equilibrium. Typically, this pump pulse has a finite duration
and is followed by electronic relaxation processes on a
femtosecond time scale before slower relaxation mechanisms
involving lattice degrees of freedom become relevant. The time
evolution of the mixed state

ρ(t) =
∑
m

pm|�m(t)〉〈�m(t)| (3)

must be described nonperturbatively and is formally obtained
from the time propagation of each state of the grand ensemble,

|�m(t)〉 = Utot(t, − ∞)|�m〉, (4)

by means of the unitary time-evolution operator

Utot(t,t
′) = T exp

(
−i

∫ t

t ′
Htot(τ )dτ

)
, (5)

where T denotes chronological time ordering and Htot(t) =
H + V(t).

After some time delay �t following the pump, the nonequi-
librium state is probed by a second pulse that is described by
an interaction term W(t). We assume that the probe pulse
is nonzero for times t > t0 and t < t1. As we are interested
in only the electronic system properties, it is reasonable to
express W(t) in terms of only electronic degrees of freedom.
Conceptually, the electronic structure can be subdivided into
the states of primary interest, namely, occupied states and
states in a certain energy window around the Fermi energy (or
around μ) on the one hand and high-energy scattering states
on the other. To address the former, we introduce cα , which
annihilates an electron in the one-particle basis state |ϕα〉,
while the latter are addressed by an annihilator ak with a label
k for the one-particle scattering state that is occupied by the
photoelectron. Therewith,

W(t) = sW (t)
∑
k,α

(Mkαa
†
kcα + H.c.), (6)

where sW (t) describes the time profile of the probe pulse
(and is nonzero only for t0 < t < t1) and Mk,α are the
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transition-matrix elements for processes lifting a (low-energy)
electron in state |ϕα〉 to a high-energy state k = (k,σ ) charac-
terized by a wave vector k and a spin projection σ = ↑,↓.

The probability Pk(t) to detect a photoelectron with
quantum numbers k at time t is given by the expectation value,
in the system state ρ(t), of the projector 
(k) onto the subspace
of all many-electron “final” states of the form

|f 〉 = a
†
k|�n〉 . (7)

Therewith, we have adopted the sudden approximation and
assumed that the Coulomb interaction of the (high-energy)
photoelectron with the low-energy part of the system can be
neglected. |�n〉 is an arbitrary many-electron state from an
orthonormal basis set of the rest system (excluding the high-
energy scattering states). We have


(k) =
∑

|f 〉〈f | =
∑

n

a
†
k|�n〉〈�n|ak (8)

and

Pk(t) = 〈
(k)〉ρ(t) = tr[ρ(t)
(k)]. (9)

With Eqs. (3) and (8), the time-dependent photoemission
spectrum is obtained as

Pk(t) =
∑
m,n

pm|〈�n|ak|�m(t)〉|2 . (10)

The next task is to find the time dependence of states |�m(t)〉
in the presence of the additional probe pulse W(t), i.e., for
times t > t0. We have

|�m(t)〉 = U1(t, − ∞)|�m〉, (11)

where

U1(t,t ′) = T exp

(
−i

∫ t

t ′
[Htot(τ ) + W(τ )]dτ

)
. (12)

We assume that the probe pulse is sufficiently weak and treat
the time evolution perturbatively. To this end, let us introduce
the corresponding S matrix:

SW (t,t0) = Utot(t0,t)U1(t,t0). (13)

Taking the time derivative, we immediately get

i
d

dt
SW (t,t0) = Utot(t0,t)W(t)U1(t,t0). (14)

Integration then yields

SW (t,t0) = 1 − i

∫ t

t0

dt ′Utot(t0,t
′)W(t ′)U1(t ′,t0). (15)

Taking into account only the term first order in W(t), we
can replace U1(t ′,t0) by Utot(t ′,t0) on the right-hand side.
Therewith, using Eqs. (11) and (13), we find

|�m(t)〉 ≈ Utot(t, − ∞)

×
(

1 − i

∫ t

−∞
dt ′Utot(−∞,t ′)W(t ′)Utot(t

′, − ∞)

)
× |�m〉. (16)

Inserting this into Eq. (10) and recalling that W(t) = 0 for
t < t0 yield

Pk(t) =
∑
m,n

pm

∣∣∣∣〈�n|ak

∫ t

t0

dt ′

×Utot(t,t
′)W(t ′)Utot(t

′, − ∞)|�m〉
∣∣∣∣
2

. (17)

Here, we have also made use of the fact that the one-particle
high-energy scattering states are, to a very good approxima-
tion, unoccupied in |�m〉 = |�m(−∞)〉, i.e., that ak|�m〉 ≈ 0.
Making, once more, use of the sudden approximation, we have

akUtot(t,t
′) = Utot(t,t

′)ake
−iε(k)(t−t ′), (18)

where ε(k) is the dispersion of the scattering state. Further-
more,

akW(t ′)Utot(t
′, − ∞)|�m〉

= sW (t ′)
∑

γ

Mkγ cγUtot(t
′, − ∞)|�m〉. (19)

Therewith, we arrive at

Pk(t) =
∑
m,n

pm

∣∣∣∣〈�n|
∫ t

t0

dt ′Utot(t,t
′)eiε(k)t ′sW (t ′)

×
∑

γ

Mkγ cγUtot(t
′, − ∞)|�m〉

∣∣∣∣
2

. (20)

Reformulating this result by expanding the modulus square
and using

∑
n |�n〉〈�n| = 1, we have

Pk(t) =
∫ t

t0

∫ t

t0

dt ′dt ′′sW (t ′)sW (t ′′)e−iε(k)(t ′−t ′′)

×
∑
αβ,m

M∗
kβMkαpm〈�m|Utot(−∞,t ′)c†βUtot(t

′,t ′′)

× cαUtot(t
′′, − ∞)|�m〉. (21)

This can be written in a compact form by switching to the
Heisenberg picture, i.e., cα(t) = Utot(−∞,t)cαUtot(t, − ∞):

Pk(t) =
∑
αβ

M∗
kβMkα

∫ t

t0

dt ′sW (t ′)
∫ t

t0

dt ′′sW (t ′′)e−iε(k)(t ′−t ′′)

×〈c†β(t ′)cα(t ′′)〉. (22)

The one-particle correlation function is the lesser component
of the Keldysh Green’s function. It is given by an equilibrium
expectation value but is time inhomogeneous as the Heisenberg
time dependence is governed by the full and explicitly time-
dependent Hamiltonian Htot(t) = H + V(t).

III. DISCUSSION

Equation (22) was first derived by Freericks et al. [32] in
a similar way. It nicely defines the main tasks of a theory
of time-dependent pump-probe photoemission: The problem
consists of computing the lesser Green’s function which
describes the temporal evolution of the electronic degrees of
freedom after the pump pulse. As this is assumed to drive the
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system strongly out of equilibrium, a linear-response approach
or, generally, a perturbative calculation must be disregarded,
and ideally, Dyson’s equation with respect to V(t) should be
solved without approximation. Within a picture of effectively
noninteracting electrons, this is equivalent to a time-dependent
multiple-scattering approach where all scattering events, at
all times and in the entire lattice, are summed up. This is a
formidable task.

The second problem consists of the realistic computation of
the transition-matrix elements in Eq. (22). For those we have
to consider the light-matter-interaction term W(t) in Eq. (6).
We apply the dipole approximation which is well justified for
sufficiently large wavelengths, i.e., for photon energies below
about 10 keV. In the real-space representation and using a
relativistic four-component notation, which is needed for later
purposes, we have

W (r,t) = W (t) = −sW (t)α · A0,W , (23)

where A0,W denotes the spatially constant amplitude of the
electromagnetic vector potential. The three components αk of
the vector α are defined as the tensor product αk = σ1 ⊗ σk

for k = 1,2,3, where σk denote the Pauli spin matrices.
While the lesser Green’s function in Eq. (22) describes time-

dependent multiple scattering from the pump pulse V(t) in the
“initial” state, the matrix elements also include the “final”
state of the photoemission process. This is a one-particle
scattering state that is characterized by k = (k,σ ) and that
has the correct asymptotic behavior, i.e., is a simple plane
wave “at the detector” far away from the system. Here, we
will make use of the standard layer-KKR formalism [46] to
represent this state as a time-reversed LEED state [17].

The real-space representation of the pump pulseV(t) has the
same form as the probe. In both cases the excitation is mediated
by a light pulse where the corresponding electromagnetic field
can essentially be described by a monochromatic plane wave.
The time profile of the pump pulse sV (t) can be different
from that of the probe sW (t). We assume that the dipole
approximation is well justified for both the pump and the
probe. The strength of the two pulses can be largely different.
This fact is encoded in the absolute magnitude of the vector
potential.

The conventional, i.e., equilibrium, expression of the
photocurrent is easily rederived from Eq. (22) by assuming
V(t) ≡ 0. This immediately implies a time-homogeneous
lesser Green’s function. We also set sW (t) ≡ 1 and consider
the limits t0 → −∞ and t → ∞. After a change of variables
dt ′dt ′′ = dtreldtav, with trel = t ′ − t ′′ and tav = (t ′ + t ′′)/2, one
finds for the transition probability per unit time

wk = Pk

t − t0

=
∑
αβ

M∗
kβMkα

∫ ∞

−∞
dtrel e

−iε(k)trel〈c†β(trel)cα(0)〉. (24)

Using the spectral sum rule

〈c†β(t)cα(0)〉 =
∫ ∞

∞
dω f (ω)Aαβ(ω)eiωt , (25)

where f (ω) = 1/[exp(βω) + 1] is the Fermi function, we have

wk = 2π
∑
αβ

M∗
kβMkαf (ω)Aαβ(ω), (26)

with ω = ε(k) and the single-electron spectral density Aαβ(ω).
This is the well-known golden-rule formula for the equilibrium
photocurrent [18].

IV. INITIAL-STATE GREEN’S FUNCTION

The time-dependent correlation function in Eq. (22) can
be considered to be a component of the one-particle Keldysh
Green’s function Gαα′ (z,z′). Some of its basic properties will
be discussed here for the case of effectively noninteracting
electrons; that is, we will not account for time-dependent
correlations in the sense of many-particle interactions. Gen-
erally, the Green’s function is defined for arguments z,z′ on
the Keldysh-Matsubara [31] contour C in the complex time
plane as

iGαα′ (z,z′) = 〈T cα(z)c†α′(z′)〉, (27)

where T denotes the contour ordering and the expectation
value refers to the “free” system H, while z results from time
evolution with the “total” Hamiltonian Htot(t) = H + V(t),
with

H =
∑
αα′

T0;αα′c†αcα′ (28)

and

V(t) =
∑
αα′

Vαα′ (t)c†αcα′ . (29)

The Green’s function can be obtained from Dyson’s equation,

G(z,z′) = G0(z,z′) +
∫

C

dz′′G0(z,z′′)V (z′′)G(z′′,z′), (30)

where bold symbols refer to matrices in the orbital indices α,α′.
G0;αα′ (z,z′) denotes the free Green’s function for V(z) ≡ 0 and
is easily expressed in terms of the hopping matrix T 0 as [47]

iG0(z,z′) = e−iT 0(z−z′)
[

�c(z,z′)
1 + exp[−β(T 0 − μ)]

− �c(z′,z)

exp[β(T 0 − μ)] + 1

]
, (31)

where �c(z,z′) is the contour step function. For our purposes it
is sufficient to consider the lesser component of G(z,z′) which
is obtained for z on the upper branch and z′ on the lower
branch of the Keldysh contour; that is, z is “earlier” than z′

on the contour and thus iG<
αα′ (t,t ′) = −〈c†α′ (t ′)cα(t)〉. This can

formally be written as

iG<(t,t ′) = −T e
−i

∫ t

t0
dτ [T 0+V (τ )] 1

eβ(T 0−μ) + 1

× T̃ e
i
∫ t ′
t0

dτ [T 0+V (τ )]
, (32)

where T̃ is the antichronological time ordering.
We are seeking for a more suitable representation which

also allows us to set up a time-dependent multiple-scattering
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approach. To this end we define the S matrix SV related to
(all-order) perturbation theory in the pump pulse:

SV (t,t ′) = U0(t0,t)U(t,t ′)U0(t ′,t0). (33)

Here, U0(t,t ′) = exp[−iT 0(t − t ′)] is the matrix represen-
tation of the free time-evolution operator, and U(t,t ′) =
T exp[−i

∫ t

t ′ dτ (T 0 + V (τ ))] is the representation of the in-
teracting time-evolution operator. The equation of motion for
SV (t,t ′) is easily derived. We have

i
∂

∂t
SV (t,t ′) = V t (t)SV (t,t ′), (34)

where the double time dependence appears due to the use
of the interaction picture, V t (t) = U0(t0,t)V (t)U0(t,t0). The
corresponding integral equation reads

SV (t,t ′) = 1 − i

∫ t

t ′
dt ′′V t ′′ (t

′′)SV (t ′′,t ′). (35)

For t > t0, the time-evolution matrices can also be ex-
pressed in terms of the retarded and advanced Green’s func-
tions, iGR

0 (t,t ′) ≡ i�(t − t ′)U0(t,t ′) and iGA
0 (t,t ′) = i�(t ′ −

t)U0(t,t ′), i.e.,

V t (t) = GA
0 (t0,t)V (t)GR

0 (t,t0). (36)

Therewith, we have (for t,t ′ > t0)

SV (t,t ′) = 1−i

∫ t

t ′
dτ GA

0 (t0,τ )V (τ )GR
0 (τ,t0)SV (τ,t ′), (37)

and with Eq. (32) and the definition of the S matrix, we get

iG<(t,t ′) = −GR
0 (t,t0)SV (t,t0)

1

eβ(T 0−μ) + 1

× SV (t0,t
′)GA

0 (t0,t
′). (38)

With Eq. (32) we can write

iG<(t,t ′) = −GR(t,t0)
1

eβ(T 0−μ) + 1
GA(t0,t

′). (39)

The retarded Green’s function GR(t,t ′) can be obtained from
the following integral equation:

GR(t,t ′) = GR
0 (t,t0) +

∫ t

t ′
dτ GR

0 (t,τ )V (τ )GR(τ,t ′), (40)

which is derived from Eqs. (33) and (37). The advanced
Green’s function is given by GA(t,t ′) = [GR(t ′,t)]†. This
completes the formal calculation of the lesser Green’s function.

V. DISCUSSION OF DIFFERENT PUMP-PROBE
SPECTROSCOPIES

The integral equation for GR(t,t ′) poses a time-dependent
multiple-scattering problem for a three-dimensional solid or,
more realistically, for a semi-infinite system bounded by a
surface. In combination with Eq. (22), it provides us with a
quantitative description of different pump-probe experiments.
Clearly, the solution appears to be a demanding task.

Typically, the pump pulse V(t) excites electrons from
occupied to unoccupied valence states below the vacuum level,
while the probe pulse W(t), after some defined time delay,
excites valence electrons from the explicitly time-dependent

and nonequilibrium state into high-energy scattering states
such that they can escape into the vacuum. For those valence-
pump–valence-probe experiments, the numerical evaluation of
the theory is most demanding.

A simplification of the formalism is possible, however, for
the important case of two-photon photoemission experiments
(2PPE) [29,48–50]. Namely, from the theoretical perspective,
a 2PPE experiment actually is just a pump-probe-type exper-
iment in which the intensity of the pump pulse is comparable
to the intensity of the probe. This means that Eq. (40) can
be treated perturbatively to a good approximation, and the
series obtained by iteration can be cut by neglecting terms
of the order O(V 2), for example. This leaves us with an
expression for the Green’s functions GR(t,t ′) that is amenable
to a straightforward numerical calculation since it is given
in terms of only GR

0 (t,t ′) = GR
0 (t − t ′), i.e., in terms of the

equilibrium retarded Green’s function which is homogeneous
in the time arguments. This quantity is defined as the Fourier
transform of the following quantity, which is available from
standard layer-dependent KKR techniques [51]:

GR
0 (r,r ′,E) = −4ik

∑
jn�

�+
jn�(r>)�†

jn�(r<)

− 4ik

�

∑
jn��′

�jn�(r)(tjn�)−1

×
( ∫

�

dkτnn
j��′ − δ��′ tjn�′

)

× (tjn�′ )−1�
†
jn�′(r′). (41)

Here, we have switched to the real-space representation.
�+ and � represent the single-site solutions for the nth
cell in the j th layer in a semi-infinite slab geometry, and
τ is the KKR scattering path operator for the j th layer.
t denotes the single-scattering matrix for the nth cell in
the j th layer, and � is the area of the layer unit cell.
Besides valence-pump–valence-probe and 2PPE experiments,
a valence-pump–core-probe setup is frequently used [4,44,45].
Here, the pump pulse excites valence-band electrons with a
photon energy of a few eV to unoccupied valence states. After
a controlled time delay, the response of a core level is probed in
a second step with a corresponding x-ray probe pulse. The first
part of this pump-probe experiment is described by GR(t,t ′),
which must be obtained from the integral equation (40)
and accounts for the time evolution of the nonequilibrium
electronic structure after an intense pump pulse. In contrast
to 2PPE, this time evolution usually cannot be captured in
a linear-response formalism; that is, a perturbative approach
expanding in V is not applicable here. There is, however, a
simplification for the case of a probe pulse addressing core
electrons, namely, restricting oneself to a single-scattering
center in the solution of Eq. (40) for the retarded Green’s
functions GR(t,t0). For the case of an x-ray probe addressing
a core state, the propagator refers only to this core state, as
is obvious from the central equation (22). Within the one-step
model, this results in an “atomic contribution” of the initial
state to the full time-dependent photocurrent, while a full
summation over all multiple-scattering events is included in the
formalism for the final state. This shall be worked out in detail
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in the following section. In the case of almost-dispersion-free
core states, this should be an excellent starting point. Clearly,
the ultimate test case for the atomic approximation will
be the direct comparison with corresponding experimental
data [4,44,45,52,53].

VI. ONE-STEP MODEL OF CORE-LEVEL PUMP-PROBE
SPECTROSCOPY

To formulate a one-step theory of valence-pump–core-
probe photoemission, a fully relativistic formalism for the
final state is necessary. We therefore rewrite Eq. (22) in the
real-space and a four-component spinor representation:

Pk(t) =
∫

d3r ′
∫

d3r ′′ f †
k (r ′)W (t ′)

∫ t

t0

dt ′
∫ t

t0

dt ′′e−iε(k)(t ′−t ′′)

×G<(r ′,t ′,r ′′,t ′′)W †(t ′′)fk(r ′′). (42)

Here, G<(r ′,t ′,r ′′,t ′′) is a 4 × 4 Green’s function matrix. fk

represents a single-particle-like final state of the photoelectron
in the form of a time-reversed LEED state and is a four-
component spinor. The 4 × 4 matrix W (t) is given by Eq. (23).
The lesser Green’s function is obtained from Eq. (39) in
real-space representation,

G<(r,t,r ′,t ′) = i

∫
dEF (E)

∫
d3r ′′

∫
d3r ′′′GR(r,t,r ′′,t0)

×�E(r ′′)�†
E(r ′′′)GA(r ′′′,t0,r ′,t ′), (43)

where F (E) = 1/{exp[β(E − μ)] + 1} denotes the Fermi
distribution function and the spinors �E define an orthonormal
basis set with T0�E = E�E . The occupied energy eigenstates
�E needed here can be obtained from relativistic KKR
theory [46]. KKR-theory also provides us with the retarded
(advanced) Green’s function GR

0 (GA
0 ), constructed as a tensor

product of two four-spinors [54].
In the modern version of the KKR method [46], the

electronic structure of a system, including valence as well
as core states, is directly and efficiently represented in terms
of the retarded one-electron Green’s function. This appealing
feature is achieved by using multiple-scattering theory. The
same multiple-scattering KKR technique is used in the context
of photoemission theory to construct the final state as a time-
reversed LEED state. For these reasons, the KKR multiple-
scattering formalism provides the initial-state Green’s function
and the final-state scattering state in a consistent way and on
equal footing and is thus the method of choice.

As noted in the preceding section, we will focus on the
“atomic” contribution of the initial state to the total time-
dependent photoemission yield. For simplicity, we additionally
assume spherically symmetric single-cell potentials v(r) =
v(r). Therewith, an ansatz separating radial and angular
dependencies becomes convenient. For all types of Green’s
functions, G<, GR, and GA, we have

G<,R,A(r,t,r ′,t ′) =
∑
��′

g
<,R,A
��′ (r,t,r ′,t ′)χ�(r̂)χ †

�′(r̂′), (44)

where χ�(r̂) denote the relativistic spin-angular functions [55]
with the spin-orbit (κ) and the magnetic (μ) quantum num-
bers [55] combined as � = (κ,μ). Using this, the radial parts

of the quantities in Eq. (43) are related by

g<
��′(r,t,r ′,t ′) = i

∫
dEF (E)

∑
�′′,�′′′

∫
dr ′′r ′′2

∫
dr ′′′r ′′′2

× gR
��′′(r,t,r ′′,t0)�E,�′′(r ′′)

×�
†
E,�′′′ (r ′′′)gA

�′′′�′(r ′′,t0,r ′,t ′). (45)

This equation is considerably simpler and very amenable to a
numerical approach based on the KKR formalism.

Likewise, the central Dyson equation for the retarded
Green’s function, Eq. (40), can be simplified. In the real-space
representation we have

GR(r,t,r ′,t ′) = GR
0 (r,t,r ′,t ′) −

∫ t

t ′
dt ′′sV (t ′′)

∫
d3r ′′

×GR
0 (r,t,r ′′,t ′′)α · A0,VGR(r ′′,t ′′,r ′,t ′).

(46)

Here, as for the probe, we assume that the dipole approxima-
tion is valid:

V (r,t) = −sV (t)α · A0,V . (47)

A0,V denotes the constant amplitude of the vector potential of
the pump field, and sV (t) is the time profile of the pump pulse.
Using the ansatz (44) to get the atomic contribution, we find
a coupled system of Volterra integral equations of the second
kind for the radial part of the retarded Green’s function:

gR
��′(r,t,r ′,t ′) = gR

0,��′(r,t,r ′,t ′) −
∑

�′′�′′′
D�′′�′′′

∫ t

t ′
dt ′′sV (t ′′)

×
∫

dr ′′r ′′2gR
0,��′′(r,t,r ′′,t ′′)

dv(r ′′)
dr ′′

× gR
�′′′�′(r ′′,t ′′,r ′,t ′). (48)

We also made use of a representation of the dipole operator
[see Eq. (47)] in terms of the gradient of the cell potential
v(r). Again, the resulting system of equations is considerably
simplified and can be implemented numerically. At this point
the calculation of the atomic contribution is complete.

We finally combine the results for the initial state with the
layer-KKR multiple-scattering approach describing the final
state. This provides us with the time-dependent photoemission
yield in the following form:

Pk(t)=
∑

��′�′′�′′′jn

A
†
jn�D��′M��′�′′�′′′ (t)D†

�′′�′′′Ajn�′′′ . (49)

Here, the radial matrix elements are defined as

M��′�′′�′′′(t) =
∫ t

t0

dt ′
∫ t

t0

dt ′′sW (t ′)sW (t ′′)e−iε(k)(t ′−t ′′)

×
∫

dr ′r ′2
∫

dr ′′r ′′2φf †
� (r ′)

dv(r ′)
dr ′

× g<
�′�′′(r ′,t ′,r ′′,t ′′)

dv(r ′′)
dr ′′ φ

f

�′′′ (r ′′), (50)

where v is the spherical single-cell potential. Furthermore, A

denote the spherical coefficients of the high-energy wave field:

Ajn� =
∑
�′

A
(o)
jn�′ (1 − X)−1

��′n. (51)
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The effect of multiple scattering within the j th layer can be
represented by a matrix X, and the bare coefficients A(o) are
given by

A
(o)
jn�′ =

∑
gs

4πil
′
(−2s)(−)μ

′−sC�′
s

[
u+

jgsY
s−μ′
l′ (k̂+

2g)eik+
2g·rn

+u−
jgsY

s−μ′
l′ (k̂−

2g)eik−
2g·rn

]
. (52)

rn is the distance vector from the origin to the position of the
nth atom in the layer unit cell. The plane-wave amplitudes
u+ and u− can be calculated recursively by standard (KKR)
multiple-scattering techniques [21,40]. D are the relativistic
angular dipole matrix elements [21]:

D��′ =
∑

s=± 1
2

(−2s)C�
s DNR

l,μ−s,l′,μ′+sC
�′
−s , (53)

where C�
s denote the Clebsch-Gordan coefficients and

DNR
l,μ−s,l′,μ′+s represent the nonrelativistic angular matrix el-

ements [18], which are given by

DNR
LL′ = 4π

3
A0 Y ∗

1m(Â0) Clml′m′1(−m−m′) (54)

in terms of the Gaunt coefficients C.
In Eq. (49), the k dependence, i.e., the dependence on the

quantum numbers of the photoelectrons, enters Pk(t) through
the wave field describing the final state [Eqs. (51) and (52)] and
also through the time-dependent phase factor via ε(k) absorbed
in the radial matrix elements [Eq. (50)]. The main experimental
control parameter, the time delay, enters the theory through the
time distance between the two pulses with profiles sV (t) (pump
pulse) and sW (t) (probe pulse) where the former appears in
the integral equation (48) for the initial-state retarded Green’s
function while the latter appears more explicitly in Eq. (50).

VII. SUMMARY

We have presented a theoretical framework for time-
resolved pump-probe photoemission involving only electronic
degrees of freedom. The theory addresses systems in which
explicit Coulomb correlations can be neglected safely and
which can be treated within a picture of effectively independent
electrons moving in a one-particle potential that is obtained
from standard band-structure calculations. The present ap-
proach aims at an ab initio description of photoemission from
real materials that may complement pure model studies for
strongly correlated systems carried out previously.

The key quantity to describe time-revolved photoemission
is the lesser Green’s function. We have shown that this is
theoretically and numerically accessible, even for real systems.
Within the Keldysh formalism and treating the time-dependent
pump pulse in all-order perturbation theory, we express the
lesser Green’s function in terms of the retarded and advanced
Green’s functions. The latter are obtained by solving a standard

Dyson equation in which the perturbation is given by the pump
pulse. The main point of the present paper is to show how to
treat this in a real-space representation for realistic materials
as opposed to model systems.

Furthermore, the description of the transition induced by the
probe pulse as well as the final high-energy scattering state of
the photoelectrons has been done in a fully relativistic, four-
component formalism which resolves all quantum numbers
of the photoelectron. Thereby, the theory covers ultraviolet
as well as soft or hard x-ray photon energies and spans
the same regime as the conventional equilibrium theory of
angle-resolved photoemission. The central idea of our paper
is to straightforwardly extend the traditional and highly
successful one-step formulation. Formally, this gives access
to time-resolved intensity distributions and to magnetic linear
and circular dichroism, not only from real systems like simple
metals but also from complex ordered compounds.

In addition, our formalism allows in a very stringent way
for a quantitative description of two-photon photoemission
spectroscopy. Namely, in the case of a weak pump pulse
the retarded Green’s function is simply given in terms of
the Fourier transform of the retarded free Korringa-Kohn-
Rostoker Green’s function, which is available using standard
KKR techniques. Last but not least, the explicit calculation of
2PPE spectra may serve as a starting point for spectroscopical
investigations in the case of strong pump pulses, for which
the Dyson equation for the retarded Green’s function has to
be solved self-consistently. This is because the lesser Keldysh
Green’s function, after one iteration, is available as a function
of space and time coordinates, where the radial coordinates
are restricted to only a single cell potential, g<(r,t,r ′,t ′). This
provides the starting point for a self-consistent solution of
the corresponding radial part of the Dyson equation, and all
time-dependent multiple-scattering effects in the initial state
are properly included in the calculation. Let us emphasize that
treating time-dependent multiple-scattering effects for a real
system, even on the level of noninteracting particles, represents
a highly nontrivial problem which we believe is solvable by
our approach.

In conclusion, we believe that our approach to time-resolved
photoemission is emerging as an important tool for studying
the electronic structures of simple metals and of complex
materials in a quantitative way.
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