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The Anderson impurity model with a density of states ρ(ε) ∝ |ε|r containing a power-law pseudogap centered
on the Fermi energy (ε = 0) features for 0 < r < 1 a Kondo-destruction quantum critical point (QCP) separating
Kondo-screened and local-moment phases. The observation of mixed valency in quantum critical β-YbAlB4

has prompted study of this model away from particle-hole symmetry. The critical spin response associated with
all Kondo destruction QCPs has been shown to be accompanied, for r = 0.6 and noninteger occupation of the
impurity site, by a divergence of the local charge susceptibility on both sides of the QCP. In this work, we
use the numerical renormalization-group method to characterize the Kondo-destruction charge response using
five critical exponents, which are found to assume nontrivial values only for 0.55 � r < 1. For 0 < r � 0.55,
by contrast, the local charge susceptibility shows no divergence at the QCP, but rather exhibits nonanalytic
corrections to a regular leading behavior. Both the charge critical exponents and the previously obtained spin
critical exponents satisfy a set of scaling relations derived from an ansatz for the free energy near the QCP.
These critical exponents can all be expressed in terms of just two underlying exponents: the correlation-length
exponent ν(r) and the gap exponent �(r). The ansatz predicts a divergent local charge susceptibility for ν < 2,
which coincides closely with the observed range 0.55 � r < 1. Many of these results are argued to generalize to
interacting QCPs that have been found in other quantum impurity models.

DOI: 10.1103/PhysRevB.91.035118 PACS number(s): 71.10.Hf, 71.27.+a, 74.40.Kb, 75.20.Hr

I. INTRODUCTION

Continuous quantum phase transitions (QPTs) in itiner-
ant electron systems are conventionally described within a
Ginzburg-Landau-Wilson picture of critical fluctuations of
an order parameter characterizing a spontaneously broken
symmetry [1–3]. However, experiments on heavy-fermion
metals [4] have established the existence of a class of
antiferromagnetic quantum critical points (QCPs) that can be
understood only by postulating additional critical modes be-
yond order-parameter fluctuations [5]. It has been proposed [6]
that the additional modes arise from the critical destruction of
the Kondo effect, associated with a jump in the Fermi-surface
volume [7–9] from large in the paramagnetic phase (where
unpaired f electrons are absorbed into Kondo resonances)
to small in the antiferromagnetic phase (where the Kondo
resonances are destroyed and the f electrons are localized).

The picture of critical Kondo destruction was originally
developed in the Kondo limit of integer f occupancy. More
recently, the discovery of unconventional quantum critical-
ity [10,11] in mixed-valent [12] β-YbAlB4 has prompted
interest in critical Kondo destruction at mixed valence. A toy
model for this phenomenon is the particle-hole-asymmetric
Anderson impurity model with a density of states ρ(ε) ∝ |ε|r
that vanishes in power-law fashion on approach to the Fermi
energy ε = 0. The model features a Kondo-destruction QCP
separating a strong-coupling (Kondo-screened) phase from
a local-moment (Kondo-destroyed) phase [13–16]. A study
conducted using a combination of continuous-time quantum
Monte Carlo and the numerical renormalization group (NRG)
showed for the particular case r = 0.6 that Kondo destruction
was accompanied by divergence of a local charge susceptibility
on approach to the QCP from either phase [17]. In this case,
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both spin and charge responses demonstrate the frequency-
over-temperature and magnetic field-over-temperature scaling
characteristic of an interacting QCP.

This paper extends the numerical results provided in
Ref. [17] by determining a complete set of static charge critical
exponents for different values of the band exponent r in the
range 3/8 � r < 1 over which the asymmetric pseudogap
Anderson model has an interacting QCP that is distinct from
that of its symmetric counterpart [15,16]. We provide a unified
description of both the spin and charge critical behaviors in
terms of an ansatz for the form of the free energy near the
QCP, expressing all critical exponents in terms of just two
underlying exponents [18–20], which can be termed (in the
nomenclature of classical phase transitions) the “correlation-
length” exponent ν(r) and the “gap” exponent �(r). The ansatz
leads to scaling equations that are obeyed to high accuracy
by numerically determined values of the charge exponents.
In particular, the numerics support a scaling prediction that
local charge response is divergent for ν < 2, but regular with
nonanalytic corrections for ν > 2.

The outline of the rest of the paper is as follows: Section II
defines the pseudogap Anderson Hamiltonian and reviews
essential background for the present work. Our numerical
results are presented and interpreted in Sec. III. Implications
of these results for a broader class of quantum impurity models
are discussed in Sec. IV.

II. BACKGROUND

A. Model Hamiltonian

This work addresses an Anderson model described by the
Hamiltonian

H =
∑
k,σ

εk c
†
k,σ ck,σ + εd n̂d + Un̂d↑ n̂d↓

+ V√
Nc

(d†
σ ck,σ + H.c.) + hŜd,z, (1)
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where ck,σ (dσ ) destroys a conduction-band (impurity) electron
with energy εk (εd ) and spin z component σ = ± 1

2 (or ↑ , ↓),
n̂dσ = d†

σ dσ and n̂d = n̂d↑ + n̂d↓ are number operators, U

is the Coulomb interaction between two electrons within
the impurity level (taken to be positive, i.e., repulsive, in
our calculations, but see the discussion in Sec. IV), V is
the hybridization matrix element between the impurity level
and the on-site linear combination of conduction electrons
(and is assumed without loss of generality to be real and
non-negative), Nc is the number of unit cells in the metallic
host and hence the number of distinct values of k, and h is a
local magnetic field that couples only to Ŝd,z = 1

2 (n̂d↑ − n̂d↓),
the z component of the impurity spin [21].

The pseudogap variant of the Anderson model has a density
of states (per unit cell, per spin z orientation)

ρ(ε) = N−1
c

∑
k

δ(ε − εk) = ρ0 |ε/D|r 
(D − |ε|), (2)

where D is the band half width, and 
(x) is the Heaviside
function. Values r > 0 describe a pseudogapped host, while
r = 0 corresponds to a conventional metal. If ρ(ε) has unit
normalization, then ρ0 = (1 + r)/(2D). The values of ρ0 and
V affect the impurity properties only in a single combination,
the hybridization width � = πρ0V

2 � 0.

B. Phase diagram

The phase diagram of the pseudogap Anderson model has
been well established by previous work [14,15]. A cut of the
phase diagram on the �-εd plane for a fixed value of U > 0 is
shown schematically for 0 < r < 1

2 in Fig. 1(a) and for r � 1
2

in Fig. 1(b).
In the metallic case r = 0, for all finite values of U and

εd and for any � > 0, the impurity degree of freedom is
completely quenched in the limit of absolute temperature T →
0, and a single strong-coupling (SC) phase occupies the entire
half space (U, εd, �) apart from its boundary plane � = 0.
Throughout this phase, the impurity contributions to the static
spin susceptibility and the entropy satisfy limT →0 T χimp = 0
and Simp(T = 0) = 0, respectively [21]. The ground-state
“charge” Q, defined to be the expectation value of the
total electron occupancy of the band and the impurity level
measured with respect to half filling, evolves smoothly from 1
to −1 as εd is raised from −∞ to ∞.

For r > 0, by contrast, there is local-moment (LM) phase
spanning −U < εd < 0, � < �c(U,εd ) ≡ �c(U, −U − εd )

FIG. 1. Schematic phase diagram of the pseudogap Anderson
model on the �-εd plane for fixed U and for band exponents
(a) 0 < r < 1

2 , and (b) r � 1
2 . In (a), the SSC phase spans just the

solid horizontal line at εd = −U/2.

within which the ground state contains an unquenched spin
degree of freedom characterized by limT →0 T χimp = 1/4 and
Simp(T = 0) = ln 2. For � > �c(U,εd ), the system lies in one
of three SC phases. The symmetric strong-coupling (SSC)
phase, reached only for εd = −U/2 [see solid horizontal
line in Fig. 1(a)], has limT →0 T χimp = r/8 and Simp(T =
0) = 2r ln 2, suggestive of partial quenching of the impurity
spin. The asymmetric strong-coupling phases ASC− and
ASC+, reached for εd > −U/2 and εd < −U/2, respectively,
share the properties limT →0 T χimp = 0 and Simp(T = 0) = 0,
indicating complete quenching of the impurity degree of
freedom. For r > 0, the ground-state charge takes only integer
values (in contrast to the case r = 0): Q = 0 in the LM and
SSC phases, Q = ±1 in the ASC± phase.

It should be noted that the SSC phase can be reached only
for 0 < r < 1

2 , on which range �c(U, −U/2) is finite [see
Fig. 1(a)]. For r � 1

2 , the SSC ground state is unstable, and
�c(U,εd ) diverges as εd → −U/2 from above or below, so
for εd = −U/2 the system always lies in the LM phase [see
Fig. 1(b)].

C. Critical spin response

On the boundary between the LM and SC phases, the
thermodynamic properties take values distinct from those in
either phase. For example, limT →0 T χimp(T ) = X(r), where
r/8 < X(r) < 1/4 (see Fig. 14 of Ref. [15]). However, the
nontrivial critical properties of the pseudogap Anderson model
(and of the pseudogap Kondo model to which the Anderson
model reduces when charge fluctuations on the impurity site
can be neglected) are revealed more clearly in the response to a
local magnetic field that acts solely at the impurity spin [16,18],
as represented by h entering Eq. (1). This response is measured
by the zero-temperature local magnetization

Mloc = −∂Fimp/∂h|T =0 = −〈Ŝd,z〉|T =0 (3)

and the zero-field local spin susceptibility

χs = −∂2Fimp/∂h2|h=0 = −∂〈Ŝd,z〉/∂h|h=0, (4)

where Fimp is the impurity contribution to the system’s free
energy. The value of Mloc in an infinitesimal symmetry-
breaking field h = 0+ is nonzero in the LM phase (� < �c)
but zero in the SC phases (� > �c), and therefore serves
as an order parameter for the LM-SC QPT, while the zero-
temperature limit of χs diverges on approach to the QPT from
the SC side and is infinite throughout the LM phase.

For r > 1, Mloc is discontinuous across the phase bound-
aries, meaning that the QPTs are first order. For 0 < r < 1,
by contrast, the QPTs are continuous and the local magnetic
critical behavior can be characterized by a set of critical
exponents β, γ , δ, and x defined through the relations [18,20]

Mloc(g � 0,h = 0+) ∝ (−g)β, (5a)

|Mloc(g = 0)| ∝ |h|1/δ, (5b)

χs(T = 0,g > 0) ∝ g−γ , (5c)

χs(g = 0) ∝ T −x, (5d)

where one can define the nonmagnetic distance to criticality to
be g = � − �0 at fixed U = U0 and εd = εd0 or, alternatively,
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g = U0 − U at fixed � = �0 and εd = εd0, where in either
case �0 = �c(U0,εd0). One can also define a correlation-length
exponent ν via the relation

T ∗ ∝ |g|ν, (6)

where T ∗ is a temperature characterizing the crossover from
the quantum-critical regime (χs ∝ T −x for T � T ∗) to either
the LM phase (χs ∝ T −1 for g < 0, T 
 T ∗) or one of the SC
phases (χs � const for g > 0, T 
 T ∗). Each of the critical
exponents β, γ , δ, x, and ν has a nontrivial dependence [18]
on the band exponent r .

For 0 < r � r∗ � 3/8, it is found [18] that the critical
exponents take identical values all the way along the phase
boundary between the LM and SC phases. Specifically,
particle-hole asymmetry is irrelevant along the boundary and
the QPT is governed by a symmetric QCP. For r � 1

2 , there is
no QPT at particle-hole symmetry; a single asymmetric QCP
governs the LM-ASC− boundary, while a second QCP (related
to the first by a particle-hole transformation, and sharing
the same set of critical exponents) governs the LM-ASC+
boundary. Over the range r∗ < r < 1

2 , there is coexistence of
symmetric and asymmetric QCPs, which have different critical
exponents for a given band exponent r .

Over the entire range 0 < r < 1, the critical exponents (for
both symmetric and asymmetric QCPs) obey a set of scaling
relations [18],

β = ν(1 − x)/2, γ = νx, 1/δ = (1 − x)/(1 + x), (7)

that are consistent with a scaling ansatz for the critical part of
the free energy,

F crit
imp = Tf

(
g

T 1/ν
,

|h|
T �/ν

)
, (8)

written in terms of just two underlying critical exponents, ν

defined in Eq. (6) and the gap exponent �. This scaling form,
which is expected to hold only for an interacting QCP below
its upper critical dimension, implies that

β = ν − �, (9a)

γ = 2� − ν, (9b)

1/δ = ν/� − 1, (9c)

x = 2�/ν − 1. (9d)

Elimination of � from Eqs. (9) yields Eqs. (7).

D. Critical charge response

Reference [17] investigated local charge fluctuations in
the vicinity of the Kondo-destruction QPTs in the pseudogap
Anderson model. The local charge response is the variation
of the impurity charge n̂d , which enters the Hamiltonian
with coupling εd , so it is natural to define a local charge
susceptibility

χc = −∂〈n̂d〉/∂εd |εd=εd0 , (10)

near a point (U0, εd0, �0) on the phase boundary. It was
reported in Ref. [17] that χc remains finite on passage through
the particle-hole-symmetric QCPs that occur for 0 < r < 1

2 .
However, it was shown for the specific case r = 0.6 that χc

diverges on approach to the LM-ASC± boundary from either
phase. The behavior for this particular band exponent was
found to be described by a pair of critical exponents γ̃ , and x̃

defined via the relations

χc(T = h = 0) ∝ |g|−γ̃ , (11a)

χc(g = h = 0) ∝ T −x̃ , (11b)

where g = U0 − U at fixed εd = εd0 and � = �0 =
�c(U0,εd0). Equation (11a) differs from Eq. (5c) in that
χc(T = 0) remains finite for all g < 0 as well as for all g > 0.

III. RESULTS AND INTERPRETATION

We have systematically extended the results of Ref. [17]
through study of the particle-hole-asymmetric pseudogap
Anderson model with different values of the band exponent r

within the range r∗ < r < 1. We have departed from Ref. [17]
in that for the most part we have fixed U and varied εd and �,
so that we have extracted γ̃ and x̃ defined through Eqs. (11)
using g = � − �0 at fixed U = U0 and εd = εd0. For any given
r , variation of U and variation of � are found to yield the
same numerical values of these critical exponents and of other
exponents defined below.

In addition to calculating χc, we have also investigated the
variation of the impurity occupancy near the QCP. Since 〈n̂d〉
is not pinned to any fixed value throughout either the LM phase
or the ASC± phases, it does not act like an order parameter. It
proves convenient to define a zero-temperature local charge

Qloc = 〈n̂d (U, εd, �) − n̂d (U0, εd0, �0)〉|T =0, (12)

constructed to vanish at the point (U0, εd0, �0) where the phase
boundary is crossed.

We have calculated Qloc and χc = limεd→εd0 Qloc/(εd0 −
εd ) using the numerical renormalization-group (NRG) method,
as adapted to treat pseudogapped densities of states [15].
We have employed a discretization parameter � = 9, shown
in previous NRG studies of the pseudogap Kondo [18] and
Anderson [17] models to yield critical exponents very close
to their values in the continuum limit � → 1, and retained up
to 600 many-body eigenstates after each NRG iteration. All
results [21] shown below are for a representative point on the
LM-ASC− phase boundary at U0 = 0.1D, εd0 = −0.03D, and
�0 = �c(U0, εd0). However, other runs indicate that exponents
depend on r but not on the specific values of U0, εd0, and �0

(provided that εd0 �= −U0/2).
Figure 2 illustrates the variation of Qloc for the case r = 0.6.

Irrespective of from which side the LM-ASC− boundary
is approached, Qloc displays power-law variation over six
decades of |� − �0| at εd = εd0 and over five decades of
|εd − εd0| at � = �0. It should be noted that these power
laws reveal themselves in both phases (unlike the power-law
variation of Mloc, which occurs only on the LM side of the
QCP). The parallel trends of the data on this log-log plot
suggest that variation of Qloc with respect to � and with respect
to εd is governed by a common critical exponent β̃, i.e.,

|Qloc(εd = εd0)| ∝ |g|β̃ , (13a)

|Qloc(g = 0)| ∝ |εd − εd0|β̃ . (13b)
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FIG. 2. (Color online) |Qloc| vs distance from the phase boundary
along the � and εd axes for r = 0.6. Filled (hollow) symbols represent
points in the LM (ASC−) phase. The linear variations on this log-log
plot indicate power-law behavior in accordance with Eqs. (13).

This supposition is confirmed in Fig. 3(a), which plots values
of β̃ obtained from Eqs. (13a) and (13b) for different band
exponents over the range 0.4 � r � 0.9. For r < 0.4, it proves
very difficult to distinguish the symmetric and asymmetric
QCPs (which merge at r = r∗ � 0.375), while for r � 0.9
power laws tend to become ill-defined as the system nears
its upper critical dimension [16] at r = 1. The other striking
feature of Fig. 3(a) is the sharp break around r = 0.55 between
the pinned value β̃ = 1 for r � 0.55 and the monotonic
decrease of β̃ over the range 0.55 � r < 1. This decrease of β̃

points to a variation of the impurity valence around the QCP
that becomes more rapid with increasing r and presumably
becomes discontinuous for r > 1.

The r dependencies of the critical exponents x̃ and γ̃

characterizing the local charge susceptibility are plotted in
Figs. 3(b) and 3(c), respectively. Each of these exponents is
positive for r � 0.55, while it appears to vanish for r � 0.55.

Table I summarizes the numerical values of the three charge
critical exponents defined in Eqs. (11) and (13) and of ν, the
correlation-length exponent. Also listed is an estimate of the
nonsystematic error in the last decimal place of each exponent.
Exponent x̃ from Eq. (11b) generally has the smallest error
because it can be obtained from fits of χloc over many decades
of T . There is considerable uncertainty in the values of ν,
which were obtained by interpolating from data at discrete
temperatures T the value T ∗ at which T χimp(T ) passes outside
a narrow window surrounding its critical value X(r). When
allowance is made for these uncertainties, Table I suggests
an interesting relation among the charge critical exponents,
namely,

β̃ = 1 − γ̃ . (14)

Finally, we note that the threshold value of the band exponent
r � 0.55 seems to coincide with the point where the
correlation-length exponent passes through ν = 2.

FIG. 3. (Color online) Charge critical exponents plotted vs pseu-
dogap exponent r: (a) β̃ obtained independently from the variation
of Qloc with respect to εd and with respect to �, (b) x̃, and (c) γ̃ . In
all cases, the estimated nonsystematic error is smaller than the data
symbol. Shading indicates the range within which each exponent is
predicted to lie when the values of the correlation-length exponent ν

from Table I are inserted into Eqs. (17).

Many of the empirical observations noted in the preceding
paragraphs can be understood through an extension of the
scaling ansatz used previously [18] to explain the critical spin
response. We postulate that the singular component of the
impurity free energy takes the form given in Eq. (8) with
a generalized definition of the nonmagnetic distance from
criticality, namely,

g = (p − p0) · n̂0. (15)

Here, n̂0 is the local unit normal to the phase boundary at
p0 = (U0, εd0, �0), h = 0 in a three-dimensional Euclidean
space of nonmagnetic couplings p = (U, εd, �); the direction
of n̂0 is chosen so that it points into the SC phase. This form
is assumed to hold for |p − p0| much smaller than the radii of
curvature of the phase boundary at p0, in which case |g| is just
the perpendicular distance from p to the phase boundary.
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TABLE I. Charge critical exponents β̃, γ̃ , and x̃, plus correlation-
length exponent ν, at the particle-hole-asymmetric QCPs of the
pseudogap Anderson model for band exponents r between 0.4 and
0.9. Exponent β̃ was obtained independently from fits to Eqs. (13a)
and (13b). Parentheses enclose the estimated nonsystematic error
in the last digit. Each charge critical exponent agrees to within its
estimated error with the value obtained by substituting ν into the
appropriate scaling relation in Eqs. (17).

r β̃ (13a) β̃ (13b) γ̃ x̃ ν

0.40 1.000(2) 1.000(1) 0.0000(1) 4.24(4)
0.50 1.000(3) 1.000(2) 0.0000(2) 2.36(4)
0.52 1.000(4) 0.0000(2) 2.22(3)
0.54 0.997(4) 0.000(1) 2.08(3)
0.56 0.965(6) 0.021(1) 1.98(4)
0.58 0.876(5) 0.0658(6) 1.88(4)
0.60 0.7910(6) 0.7913(5) 0.210(2) 0.1164(1) 1.77(4)
0.70 0.472(4) 0.474(4) 0.524(4) 0.3569(4) 1.45(3)
0.80 0.263(2) 0.265(2) 0.728(8) 0.582(2) 1.29(4)
0.90 0.109(4) 0.105(5) 0.872(2) 0.790(2) 1.13(6)

The extended ansatz reproduces the critical spin response
in Eqs. (5) with exponents satisfying Eqs. (7), irrespective of
whether the approach to the phase boundary is along the U , εd ,
or � axis (or along any direction in between). The ansatz also
recovers the critical charge response [22] in Eqs. (11) and (13),
as well as two further power-law behaviors,

Qloc(g = 0) ∝ |h|1/δ̃, (16a)

χc(T = g = 0) ∝ |h|−φ̃ , (16b)

with all critical exponents expressed as functions of ν and �:

β̃ = ν − 1 (17a)

γ̃ = 2 − ν, (17b)

x̃ = 2/ν − 1, (17c)

1/δ̃ = (ν − 1)/�, (17d)

φ̃ = (2 − ν)/�. (17e)

Equations (17a) and (17b) not only confirm Eqs. (14), but also
show that since the local “field” εd conjugate to the local charge
enters the free energy in the same manner as do U and �, the
charge critical exponents β̃, γ̃ , and x̃ are functions solely of ν,
unlike their spin counterparts β, γ , and x, which also depend
on �.

For all cases studied on the range 0.55 � r � 0.9, the
directly determined exponents β̃ , x̃, and γ̃ lie within the bounds
(represented by shaded regions in Fig. 3) obtained by inserting
numerical estimates of ν into Eqs. (17). Given the rather
large uncertainties in ν, a more rigorous test of the scaling
relations is provided by Table II, which compares the directly
determined value of ν for 0.6 � r � 0.9 with ones inferred
through the scaling relations from the NRG values of β̃, x̃, and
γ̃ . For each band exponent r � 0.8, all values of ν agree to
within their estimated nonsystematic errors, providing strong
numerical support for the validity of Eqs. (17). We attribute the
discrepancies between the various estimates of ν for r = 0.9 to
the difficulty mentioned above in identifying clear power-law
behaviors for band exponents approaching 1.

TABLE II. Correlation-length exponent ν at the particle-hole-
asymmetric QCPs of the pseudogap Anderson model for band
exponents r between 0.6 and 0.9, as obtained directly and via the
scaling equations (17) from the charge critical exponents listed in
Table I. Except for r = 0.9, the various estimates of ν for a given r

all agree to within the estimated nonsystematic error in the last digit
of each value (enclosed in parentheses).

ν found from

r ν direct β̃ (13a) β̃ (13b) γ̃ x̃

0.6 1.77(4) 1.7910(6) 1.7913(5) 1.790(2) 1.7915(6)
0.7 1.45(3) 1.472(4) 1.474(2) 1.476(4) 1.474(1)
0.8 1.29(4) 1.263(2) 1.265(2) 1.272(8) 1.264(2)
0.9 1.13(6) 1.109(4) 1.105(5) 1.128(2) 1.117(2)

Table III lists, for band exponents 0.6 � r � 0.9, directly
computed values of the exponents 1/δ̃ and φ̃ defined in
Eqs. (16) as well the values of the same exponents predicted
from scaling Eqs. (17d) and (17e), respectively. For r = 0.9,
it proved difficult to obtain a robust power-law variation of
Qloc with h, so no directly computed value is recorded for
1/δ̃. The inputs to the scaling equations are (i) the value of the
correlation-length exponent ν found from x̃ using Eq. (17c)
(see rightmost column of Table II), and (ii) a value of the gap
exponent � found via Eq. (9d) from the magnetic exponent
x. The values of x (also listed in Table III) are either directly
computed in the Anderson model (for r = 0.7) or obtained
by refining previous results [18] for the pseudogap Kondo
model. That the directly computed values in all cases but
one (1/δ̃ for r = 0.9) agree with their scaling predictions to
within the estimated nonsystematic errors further supports the
validity of the extended scaling ansatz contained in Eqs. (8)
and (15).

The extended scaling ansatz has implications not only for
relations among critical exponents but also for the relative
magnitude of responses at different points p near p0. NRG
runs performed for fixed |p − p0| but for various angles
between p − p0 and the local normal n̂0 are consistent with the
hypothesis that local spin and charge properties depend only
on g as defined in Eq. (15).

For r � 0.55 (which is the range in which ν > 2), the
scaling relations in Eqs. (17) predict that β̃ > 1 and x̃, γ̃ < 0.

TABLE III. Exponents δ̃ and φ̃ as determined directly (“dir.”)
from Eqs. (16) for band exponents r between 0.6 and 0.9. Also listed
are values of the same exponents inferred from scaling equations
Eqs. (17d) and (17e), respectively, using the best estimate of ν from
Table II and a value of � found via Eq. (9d) from the tabulated value of
the magnetic exponent x. Except for r = 0.9, the directly determined
and inferred exponents agree to within the estimated nonsystematic
error in the last digit of each value (enclosed in parentheses).

r 1/δ̃ (dir.) 1/δ̃ (17d) φ̃ (dir.) φ̃ (17e) x

0.6 0.4941(5) 0.4934(2) 0.1306(6) 0.1300(2) 0.79057(6)
0.7 0.3517(3) 0.3512(6) 0.393(3) 0.390(1) 0.8315(1)
0.8 0.2240(7) 0.222(2) 0.620(6) 0.619(3) 0.88021(7)
0.9 0.130(6) 0.109(3) 0.80(2) 0.820(4) 0.928(2)

035118-5



TATHAGATA CHOWDHURY AND KEVIN INGERSENT PHYSICAL REVIEW B 91, 035118 (2015)

FIG. 4. (Color online) Temperature-dependent part χc − χ
reg
c of

the local charge susceptibility for band exponent r = 0.5. The line
fitted through the NRG data points corresponds to χc − χ

reg
c ∝ T 0.16.

In contrast, we find numerically that β̃, x̃, and γ̃ are pinned
at trivial values of 1, 0, and 0 respectively. In order to explain
the strong deviations from scaling over this range of band
exponents, it turns out to be essential to consider the hitherto
neglected regular (analytic) parts,

F reg
imp = − 1

2 χ reg
c g2 − 1

2 χ reg
s h2 + . . . , (18)

of the total impurity free energy Fimp = F crit
imp + F

reg
imp. The

regular terms impart a piece to Qloc varying linearly with
g (i.e., β̃ = 1) and a constant local charge susceptibility
(formally corresponding to x̃ = γ̃ = 0). For any ν > 2, these
contributions dominate the charge responses described by
Eqs. (17) that arise from the critical part of the free energy.
The condition ν > 2 does not preclude a divergent local
spin susceptibility, which depends not only on ν but also
the gap exponent �. Indeed, nontrivial critical behavior in
the spin sector persists for r → 0+, in which limit there is
a divergent correlation-length exponent ν � 1/r (Refs. [16]
and [23]).

It should be pointed out that a nonanalytic charge response,
albeit subleading, is still present in the range of band exponents
where ν > 2. This is illustrated in Fig. 4, a log-log plot of
χc(T ) − χ

reg
c [where χ

reg
c ≡ χc(T → 0)] versus temperature

for the representative case r = 0.5. An empirical fit χc −
χ

reg
c ∝ T 0.16 is in close agreement with the expectation based

on Eq. (17c) of a temperature exponent 1 − 2/ν = 0.15(3).

IV. DISCUSSION

This work has shed light on the critical local charge re-
sponse found previously near the Kondo-destruction quantum
critical point (QCP) in the pseudogap Anderson impurity
model away from particle-hole symmetry [17]. The “field”
conjugate to the local charge (i.e., the impurity occupancy) is
the impurity level energy εd . Changing εd does not destroy
or restore the SU(2) spin-rotation invariance that distinguishes
the model’s strong-coupling phase from its broken-symmetry

local-moment phase. For this reason, εd joins other model
couplings, such as the interaction strength U and the hy-
bridization width �, whose collective deviation g from the
phase boundary enters an ansatz [Eq. (8)] for the free energy
in the scaling combination g/T 1/ν , distinct from the |h|/T �/ν

scaling of the local magnetic field [24]. First and second
partial derivatives of the free-energy with respect to εd exhibit
power-law variations with exponents β̃, γ̃ , δ̃, φ̃, and x̃ that
depend on ν, but (apart from δ̃ and φ̃) are independent of �.
Presumably, the corresponding partial derivatives of the free
energy with respect to U and � would be described by the
same set of exponents.

In all cases studied numerically in this work, the local
charge response at the QCP has proved to be less singular
than the local spin response. However, it is straightforward to
come up with an example where the reverse ordering holds.
Interchange of spin and charge degrees of freedom maps the
U > 0 Anderson model in zero magnetic field to a U < 0
Anderson model at particle-hole symmetry. In the presence
of a pseudogapped density of states described by exponent
0 < r < 1, this negative-U Anderson model must have a QCP
between strong-coupling and local-charge phases [25] at which
the local charge response is governed by critical exponents
β, γ , δ, and x, while the local spin response is weaker and
described by critical exponents β̃, γ̃ , δ̃, φ̃, and x̃.

What does seem intuitively reasonable is that the response
to the order-parameter field is more singular than that to other
perturbations of the system. Indeed, one can argue that this
should be true at any interacting QCP described by the scaling
ansatz Eq. (8), examples of which have been identified in a
number of other quantum impurity models [19,26–30]. At such
a QCP, the response to the order-parameter field will be the
most singular response provided that the gap exponent satisfies
� > 1, a condition that can be shown using Eqs. (7) and (9d)
[all derived from Eq. (8)] to be equivalent to β + γ > 1. Since
any interacting QCP is expected to satisfy β > 0 (describing a
continuous power-law rise of the order parameter) and γ � 1
(γ = 1 being the mean-field value), β + γ > 1 should be
satisfied quite generally.

In summary, we have provided a unified picture of critical
spin and charge responses at quantum critical points in the
particle-hole-asymmetric pseudogap Anderson Hamiltonian, a
toy model for investigating critical Kondo destruction at mixed
valence. All critical exponents have been related to just two
underlying exponents: the correlation-length exponent ν and
the gap exponent �. The charge susceptibility diverges at the
transition provided ν < 2, while for ν > 2 the local charge
response is regular with nonanalytic corrections. We have
argued that nonanalytic responses to non-symmetry-breaking
fields are a generic feature of interacting QCPs in quantum
impurity models, although such responses should be less
singular than those to a field breaking the symmetry that
distinguishes the phases on either side of the QCP.
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