
PHYSICAL REVIEW B 91, 035114 (2015)

Plasmon mode as a detection of the chiral anomaly in Weyl semimetals
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Weyl semimetals are one kind of three-dimensional gapless semimetal with nontrivial topology in the
momentum space. The chiral anomaly in Weyl semimetals manifests as a charge imbalance between the Weyl
nodes of opposite chiralities induced by parallel electric and magnetic fields. We investigate the chiral anomaly
effect on the plasmon mode in both intrinsic and doped Weyl semimetals within the random phase approximation.
We prove that the chiral anomaly gives rise to a different plasmon mode in intrinsic Weyl semimetals. We also
find the chiral anomaly leads to some exotic properties in the plasmon dispersion in doped Weyl semimetals.
Consequently, the unconventional plasmon mode acts as a signature of the chiral anomaly in Weyl semimetals,
by which the spectrum of plasmon provides a proper way to detect the Lifshitz transition.
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I. INTRODUCTION

Weyl semimetals [1] (SMs) are a new class of gapless
topological phase, which can be seen as three-dimensional
(3D) analogs of graphene. Weyl fermions emerge from the
band degenerate points—the Weyl nodes—in the momentum
space, which are characterized by their chirality. Due to the
fermion doubling theorem [2], Weyl nodes with opposite
chirality always appear in pairs. Each Weyl node behaves
as a magnetic monopole in the momentum space, which
acts as the source/drain for the Berry curvature field [3].
It has been predicted that this nontrivial momentum-space
topology of Weyl nodes gives rise to a number of novel
electromagnetic responses [4–16]. On the material side, Weyl
SMs have been proposed for strongly correlated iridates [17],
semiconductor heterostructures [18,19], and other materials
[20–23]. In addition, 3D Dirac materials have recently been
realized in both Cd3As2 [24,25] and Na3Bi [26,27], which
could greatly facilitate the search for Weyl SMs.

A remarkable phenomenon associated with Weyl nodes is
the so-called chiral anomaly [28,29], in which the application
of a pair of parallel electric field E and magnetic field B
induces a charge imbalance between the two Weyl nodes
with opposite chirality. This chiral anomaly can be utilized
to detect 3D Weyl SMs in experiments. For example, a
large longitudinal magnetoconductivity was proposed as a
consequence of the chiral anomaly [2], which, however, is
difficult to identify unambiguously in magnetotransport data
[30]. Recently, nonlocal transport [31], optical conductivity
[32,33], and optical absorption [34] measurements have also
been proposed to probe the chiral anomaly in 3D Weyl SMs.

In this paper, we propose an alternative detection method
of the chiral anomaly by employing the plasmon mode in 3D
Weyl SMs. We show that the chiral anomaly would lead to
a different plasmon mode in intrinsic Weyl SMs. The chiral
anomaly causes a redshift of the frequency of plasmon mode
in doped Weyl SMs. Once the small Fermi surface crosses
the Weyl node that corresponds to the Lifshitz transition (LT)
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point, the frequency turns out to be a violetshift. Therefore,
the plasmon mode can be regarded as a signature of the chiral
anomaly in 3D Weyl SMs. We also show how to extract the
information of the LT point from the plasmon dispersion.

The rest of this paper is organized as follows. In Sec. II, we
discuss the chiral anomaly effect in Weyl SMs and outline the
formalism for plasmon. In Sec. III, we prove the existence of a
different plasmon mode due to the chiral anomaly in undoped
Weyl SMs and calculate the plasmon dispersion. In Sec. IV,
we consider the chiral anomaly effect on the plasmon mode
in doped Weyl SMs and discuss the chiral-anomaly-driven
Lifshitz transition. In Sec. V, we summarize the main results
of this paper. Finally, in Appendixes A and B we give details
of the calculation of the free polarization function.

II. MODEL AND FORMALISM

We begin with a low-energy effective Hamiltonian for Weyl
fermions in the vicinity of the Weyl node of chirality χ = ±,

H = χ�vF k · σ − μχ, (1)

where vF is the Fermi velocity, σ = (σx,σy,σz) refers to the
three Pauli matrices, and μχ stands for the chirality-dependent
chemical potential given by a superposition of the equilibrium
carrier density and the pumped carrier density originating from
the chiral anomaly. The latter grows linearly with time, but the
large momentum internode scattering would counteract this
imbalance of carriers between two Weyl nodes. Eventually the
system reaches a nonequilibrium steady state characterized
by an internode relaxation time τv that had been evaluated
microscopically [31]. Consequently, the density of electrons
pumped into or out of the neighborhood of Weyl node χ can
be expressed as [2]

�ρχ ≡ χ
e2

4π2�2
E · Bτv. (2)

We also define several chirality-dependent quantities: the
Fermi wave vector k3

Fχ
= 6π2nχ , the chemical potential μχ =

�vF kFχ , and the charge density nχ = n + �ρχ . When the two
Weyl nodes are equally populated, the corresponding Fermi
wave vector and the chemical potential become k3

F = 6π2n,
μ = �vF kF . For convenience, we restrict our discussion to
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E · B > 0. For the undoped case with vanishing equilibrium
chemical potential, μχ depends only on the pumped charge
associated with the chiral anomaly,

μχ = χ

(
3e2

�v3
F

2
E · Bτv

)1/3

. (3)

Meanwhile, for the doped case with a finite chemical potential
μ, we obtain the corresponding chirality-dependent chemical
potential as

μχ = (1 + χγ 3)1/3μ, (4)

where we have introduced a dimensionless ratio between the
pumped charge and the equilibrium charge,

γ =
(

3e2
�v3

F E · Bτv

2μ3

)1/3

. (5)

It follows from Eq. (5) that by tuning the external fields the
system undergoes a chirality-dependent LT at γ = ±1, i.e.,
the change of the topology of the chirality-dependent Fermi
surface. In the following we shall work in the weak magnetic
field limit [35], thus neglecting the Landau level structure
of Weyl nodes [31–34]. In addition, we will focus on the n-
doped case with a finite positive equilibrium chemical potential
μ > 0 throughout this paper (the discussion of the p-doped
case is similar).

It has been demonstrated that no plasmon exists in Dirac
SMs [36] or undoped Weyl SMs [37] within the random phase
approximation (RPA). However, when the chiral anomaly
occurs, the anomalous charge transfer between the two Weyl
nodes forces the Fermi surfaces to move away from their
equilibrium position in opposite directions as shown in Fig. 1.
Thus the chemical potentials of the two Weyl nodes are μ+ and
μ−, satisfying the relation μ+ = −μ− ≡ μ > 0. In principle,
the metallic nature of intrinsic Weyl SMs with chiral anomaly
would support plasmon modes. In the following, we present
an exact and general proof of the existence of the plasmon due
to the chiral anomaly in undoped Weyl SMs.

The general form of the wave vector q- and frequency
ω-dependent dielectric function within the RPA is given by

ε(q,ω) = 1 − V (q)�(q,ω), (6)

where V (q) = 4πe2/κq2 is the Fourier transform of the 3D
Coulomb interaction, with κ being the effective dielectric

h̄ω h̄ω

k s
μ

ks

a

k̃ s

k̃s

-μ

b

+ −

( ) ( )

FIG. 1. (Color online) The distribution of electrons in the two
Weyl nodes χ = ± induced by the chiral anomaly (E · B �= 0) in
undoped Weyl SMs.

constant. Let us consider one of the Weyl nodes. The noninter-
acting polarization function �(q,ω) reads (see Appendix A)

�(q,ω) = g

L3

∑
kss ′

f (εks) − f (εk′s ′ )

�ω + εks − εk′s ′ + iη
Fss ′ (k,k′), (7)

where g is the number of pairs of Weyl nodes, η is a positive
infinitesimal, and s,s ′ = ± are the band indices. The overlap
of eigenstates Fss ′ (k,k′) is given by

Fss ′ (k,k′) = 1 + ss ′ cos θkk′

2
, (8)

where θkk′ is the angle between the 3D wave vectors k′ and k,
with k′ = k + q. Here, f (x) = [1 + exp{β(x − μ)}]−1 is the
Fermi distribution function with β = 1/kBT .

To proceed with the theoretical details, we assume zero
temperature T = 0 K. The Fermi distribution function f (x)
turns into a simple step function θ (μ − x). Because of the
general relation of the polarization function �(q, − ω) =
[�(q,ω)]∗, we can restrict our discussion to the positive
frequency case ω > 0. In the rest of the calculation, we will
set � = vF = 1, which immediately implies the relation of
μ = kF .

III. UNDOPED WEYL SEMIMETALS

In general, for a system with particle-hole symmetry,
its polarization function depends only on the magnitude of
chemical potential (see Appendix B), namely, �(q,ω,μ) =
�(q,ω, − μ) = �(q,ω,|μ|). Therefore, we come to a conclu-
sion that the polarization function of undoped Weyl SMs with
the chirality-dependent chemical potentials μ± is identical to
that of doped Weyl SMs with a chemical potential μ = |μ±|.

Next we set out to find the plasmon dispersion, which can be
obtained within the RPA by finding the zeros of the dielectric
function,

ε(q,ω − i�) = 0, (9)

where � is the decay rate of the plasmon. For weak damping,
Eq. (9) reduces to the following approximate equation,

Re ε(q,ω) = 0. (10)

For the long wavelength approximation q � ω � μ, due to
Im ε(q → 0,ω) = 0, Eq. (9) reduces to

Re ε(q → 0,ω) = 0. (11)

To order q0, the real part of the dielectric function has the form

Re ε(q → 0,ω) = κ∗(ω) − 4ακgμ2

3πω2
, (12)

where the function κ∗(ω) is defined as

κ∗(ω) = 1 + ακg

3π
log

∣∣∣∣ 4�2

4μ2 − ω2

∣∣∣∣ , (13)

with ακ = e2/κ the effective fine structure constant. Substitut-
ing Eq. (12) into Eq. (11) yields

ω0 =
√

ακ

κ∗(ω0)

√
4gμ2

3π
. (14)
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Neglecting the logarithmic corrections in Eq. (13), we can

obtain the lowest plasmon frequency ω0 ≈
√

4gακμ2

3π
. Two

remarks are in order here. First, the linear dependence of
ω0 on μ also holds for the Dirac SMs [36] and Weyl SMs
in the absence of the chiral anomaly [37]. Second, recalling
the chirality-dependent chemical potential in Eq. (4), one
immediately finds that ω0 ∝ |B|1/3. Note that this result is
different from previous work in the limit of a strong magnetic
field [12,38]. In Ref. [12] the plasmon frequency is found to be
proportional to |B|1/2 in the intrinsic case, whereas Ref. [38]
only considered the doped case.

Taking into account the leading order contribution of q, we
get

Re ε(q → 0,ω)

= κ∗(ω) − 4ακgμ2

3πω2

[
1 − q2

(2μ)2
[1 + F(2μ,ω)]

]
, (15)

with F(x,y) = x4(y2− 3
5 x2)

y2(x2−y2)2 . To gain some insight into the
long wavelength plasmon dispersion, we write down an
approximate expression from Eqs. (11) and (15) as

ω ≈ ω0

[
1 − q2

8μ2
[1 + F(2μ,ω0)]

]
. (16)

For comparison, we compute the exact solution, the long
wavelength solution, and the approximate solution, respec-
tively, which are plotted in Fig. 2. In the long wavelength
regime, all three solutions are in good agreement with each
other [39]. The neglect of the logarithmic term in Eq. (13) that
underlies measurable consequences [40] would enhance the
plasmon frequency. It should be noted that the lower branch
of the approximate solution is fully in the intraband single
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FIG. 2. (Color online) Plasmon modes in undoped 3D Weyl SMs
with chiral anomaly, i.e., E · B �= 0 are calculated within the RPA.
The red dotted-dashed line shows the long wavelength plasmon mode,
the blue dashed line corresponds to the approximate solution obtained
from Eq. (10), and the green solid line represents the exact solution
of Eq. (9). The shaded area indicates the intraband and interband SPE
regions [39].
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FIG. 3. (Color online) (a) Equilibrium distribution of electrons
in the two Weyl nodes without chiral anomaly (E · B = 0). (b) Fermi
levels of the Weyl nodes shift away from the equilibrium position μ

due to the chiral anomaly (E · B �= 0). μ± are the resulting chirality-
dependent chemical potentials.

particle excitation (SPE) region, which is merely an artifact
due to the weak damping approximation of Eq. (9).

IV. DOPED WEYL SEMIMETALS

Now we turn to investigate the effect of the chiral anomaly
on the plasmon mode in doped Weyl SMs. Simultaneously
turning on the parallel electric field E and magnetic field
B, the amount of electrons transferred from one Weyl node
to the other is equal to �ρχ , with the result that the Fermi
surface of one Weyl node shifts upward and the other shifts
downward (see Fig. 3). We assign the chirality-dependent
chemical potential μ± for the large and small Fermi surfaces
with μ+ > |μ−|.

In the long wavelength approximation q � ω � |μ−| �
μ+, to order q2, the real part of the polarization function takes
the form

Re ε(q → 0,ω)

= κ∗(ω) − 2ακg(μ2
+ + μ2

−)

3πω2

×
[

1 − q2

4(μ2+ + μ2−)

∑
λ=±

[1 + F(2μλ,ω0)]

]
. (17)

To obtain an approximate behavior of the long wavelength
plasmon dispersion, one can arrive at an expression from Eqs.
(11) and (17) as

ω ≈ ω0

[
1 − q2

8(μ2+ + μ2−)

∑
λ=±

[1 + F(2μλ,ω0)]

]
, (18)

where the notations κ∗(ω) and ω0 are given by

ω0 =
√

ακ

κ∗(ω0)

√
2g

3π
(μ2+ + μ2−), (19)

κ∗(ω) = 1 + ακg

6π

(∑
λ=±

log

∣∣∣∣ 4�2

4μ2
λ − ω2

∣∣∣∣
)

, (20)

which can be traced back to the counterpart of Eq. (14) in the
undoped case by taking μ+ = μ−.

The plasmons can also be revealed as sharp peaks in the
energy-loss function (ELF), defined as the imaginary part of
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FIG. 4. (Color online) (a) Energy-loss function for a series of
values of γ in doped Weyl SMs with the chiral anomaly. (b)
Dependence of frequencies of the undamped plasmon mode on the
ratio γ . The LT occurs at the turning point of the plasmon dispersion
[39].

the inverse dielectric function, i.e., Im[1/ε(q,ω)], that can
be probed in various spectroscopy experiments, such as the
electron energy-loss spectroscopy. As shown in Fig. 4(a), in
the presence of the chiral anomaly the plasmon exhibits some
exotic features in the ELF spectrum. As long as the ratio γ

gradually increases from 0 to 1, the plasmon frequency with
chiral anomaly ωch has a redshift with respect to the frequency
without chiral anomaly ωeq and finally reaches a minimum
ωmin. On the other hand, once the small Fermi surface crosses
the Weyl node, i.e., γ > 1, the plasmon frequency becomes
larger than ωmin and then has a continuous violetshift. The
behavior of plasmons of doped Weyl SMs under the influence
of the chiral anomaly can be captured by our long wavelength
expressions in Eq. (19) and summarized as follows:

ωmin < ωch < ωeq,0 < γ < 1,

ωmin < ωch,1 < γ. (21)

Therefore, the unique features of undamped plasmon mode can
clearly characterize the chiral anomaly in doped Weyl SMs.
It should be emphasized that, compared with other methods
[31–34], our method possesses the advantage that we can
directly determine the position of the chirality-dependent LT
point from the plasmon dispersion, as shown in Fig. 4(b),
which coincides with the minimal frequency of plasmon mode.
Actually, when |γ − 1| → 0, the small Fermi level is close
to the Weyl node point, such that small energy or momentum
could induce interband transition and lead to a large number of
electron-hole excitations. The plasmon mode will be damped
by these electron-hole excitations. Increasing q will broaden
the damping region [see Fig. 4(b)]. Hence, the fate of the plas-
mon mode indeed connects with the chirality-dependent LT.

V. CONCLUSIONS

In summary, we investigated the chiral anomaly effect on
the plasmon mode in 3D Weyl SMs within the RPA. We proved
that a different plasmon mode would emerge in undoped Weyl
SMs due to the chiral anomaly. We also demonstrated the
unusual properties of the plasmon mode in doped Weyl SMs
and further pointed out that the plasmon can be taken as a
fingerprint of the chiral anomaly. Finally, we showed how to
identify the chirality-dependent LT point from the plasmon

dispersion. Our work sheds light on the probing of the chiral
anomaly in 3D Weyl SMs via the plasmon mode. The tunability
of plasmons due to the chiral anomaly also makes Weyl SMs
promising candidates for plasmonics [41].
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APPENDIX A: THE CALCULATION OF THE
POLARIZATION FUNCTION WITH
POSITIVE CHEMICAL POTENTIAL

In this Appendix we present the major steps of calculating
the polarization function of a Weyl node with positive chemical
potential +μ in the 3D Weyl semimetal. Those of the
other Weyl nodes can be obtained in a similar manner. The
polarization function can be decomposed into two parts,

�(q,ω) = �−(q,ω) + �+(q,ω), (A1)

where �±(q,ω) are defined by

�−(q,ω) = g

L3

∑
k

(
[f (εk−) − f (εk′−)](1 + cos θkk′)/2

�ω + εk− − εk′− + iη

+f (εk−)(1 − cos θkk′)/2

�ω + εk− − εk′+ + iη

−f (εk′−)(1 − cos θkk′)/2

�ω + εk+ − εk′− + iη

)
, (A2)

�+(q,ω) = g

L3

∑
k

(
[f (εk+) − f (εk′+)](1 + cos θkk′)/2

�ω + εk+ − εk′+ + iη

+f (εk+)(1 − cos θkk′)/2

�ω + εk+ − εk′− + iη

−f (εk′+)(1 − cos θkk′)/2

�ω + εk− − εk′+ + iη

)
. (A3)

Due to the causality Re �−(q, − ω) = Re �−(q,ω), in the
following we focus only on the case for ω > 0. We first
evaluate the polarization function of the intrinsic case with
μ = 0 that implies �+(q,ω) vanishes. After some simple
algebra, we can obtain

�−(q,ω) = − g

16π2q

∫ �

0
dk

∫ k+q

|k−q|
dk′[(k′ − k)2 − q2]

×
(

1

ω − k − k′ + iη
− 1

ω + k + k′ + iη

)
,

(A4)
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where � is the cutoff. Using the Dirac identity 1
x±iη

= P 1
x

∓ iπδ(x) one can get

Im �−(q,ω) = g

16πq

∫ �

0
dk

∫ k+q

|k−q|
dk′[(k′ − k)2 − q2]δ(ω − k − k′), (A5)

Re �−(q,ω) = − g

16π2q
P

∫ �

0
dk

∫ k+q

|k−q|
dk′[(k′ − k)2 − q2]

(
1

ω − k − k′ − 1

ω + k + k′

)
, (A6)

where the notation P means the principal value of the integral. It is straightforward to calculate the imaginary part of the intrinsic
polarization function

Im �−(q,ω) = −gq2θ (ω − q)

24π
. (A7)

In fact, there are two different methods to calculate the real part of the polarization function. One is to directly carry out the
integral. The other is to apply the Kramers-Krönig relation.

We at first perform the integration Eq. (A6) to get the real part of the intrinsic polarization function. It is convenient to
decompose this real part into two terms,

Re �−(q,ω) = Re �−
1 (q,ω) + Re �−

2 (q,ω), (A8)

where

Re �−
1 (q,ω) = g

16π2q
P

∫ �

0
dk

∫ k+q

|k−q|
dk′

(
(−3k + k′) + (2k + ω)2 − q2

k′ + k + ω

)
, (A9)

Re �−
2 (q,ω) = g

16π2q
P

∫ �

0
dk

∫ k+q

|k−q|
dk′

(
(−3k + k′) + (2k − ω)2 − q2

k′ + k − ω

)
. (A10)

After some cumbersome but straightforward calculation, we can get

Re �−
1 (q,ω) = − 2gq2

96π2
log

(2� + ω)2 − q2

(q + ω)2
+ g

96π2
[+6ω(q + 2�)] + g

96π2

[
(2� + ω)3

q
log

2� + ω + q

2� + ω − q
− 2(2� + ω)2

−3q(2� + ω) log
2� + ω + q

2� + ω − q
+ 16

3
q2

]
, (A11)

Re �−
2 (q,ω) = − 2gq2

96π2
log

(2� − ω)2 − q2

(q − ω)2
+ g

96π2
[−6ω(q + 2�)] + g

96π2

[
(2� − ω)3

q
log

2� − ω + q

2� − ω − q
− 2(2� − ω)2

−3q(2� − ω) log
2� − ω + q

2� − ω − q
+ 16

3
q2

]
, (A12)

and

Re �−(q,ω) = − 2gq2

96π2

(
log

(2� + ω)2 − q2

(q + ω)2
+ log

(2� − ω)2 − q2

(q − ω)2

)

+ g

96π2

[
(2� + ω)3

q
log

2� + ω + q

2� + ω − q
− 2(2� + ω)2 − 3q(2� + ω) log

2� + ω + q

2� + ω − q
+ 16

3
q2

]

+ g

96π2

[
(2� − ω)3

q
log

2� − ω + q

2� − ω − q
− 2(2� − ω)2 − 3q(2� − ω) log

2� − ω + q

2� − ω − q
+ 16

3
q2

]
. (A13)

Two remarks about the real part of the intrinsic polarization function are in order here. First, Re �−
2 (q,ω) can also be obtained

by replacing ω with −ω in Re �−
1 (q,ω). Second, it can be seen that Re �−(q,ω) is an even function in ω and will be valid for

an arbitrary frequency.
Since the cutoff � is much larger than both q and ω, it is instructive to take a look at the expression of Re �−(q,ω) in large

� limit. Making use of the limits

lim
t
q
→∞

(
t3

q
log

t + q

t − q
− 2t2

)
= 2q2

3
, lim

t
q
→∞

t log
t + q

t − q
= 2q, (A14)
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we immediately verify that these underlined terms in Eq. (A13) vanish with t = 2� ± ω and then get a simple expression of
Re �−(q,ω),

Re �−(q,ω) = − gq2

48π2
log

(
(2� + ω)2 − q2

(q + ω)2

(2� − ω)2 − q2

(q − ω)2

)
. (A15)

We can further simplify the terms of q and ω in the numerator of the logarithmic function and have

Re �−(q,ω) = − gq2

24π2
log

∣∣∣∣ 4�2

q2 − ω2

∣∣∣∣ . (A16)

Now we turn to calculate the real part of the intrinsic polarization function �−(q,ω) using the Kramers-Krönig relations.
Since the imaginary part does not approach zero as ω → ∞, one needs to utilize the generalized Kramers-Krönig relation with
one subtraction [42],

Re �−(q,ω) = Re �−(q,0) + ω

π
P

∫ ∞

−∞
dξ

Im�−(q,ξ )

ξ (ξ − ω)
, (A17)

Im �−(q,ω) = Im �−(q,0) − ω

π
P

∫ ∞

−∞
dξ

Re �−(q,ξ )

ξ (ξ − ω)
. (A18)

The zero frequency term Re �−(q,0) in Eq. (A17) can be obtained from Eq. (A6),

Re �−(q,0) = − 4gq2

96π2
log

(2�)2 − q2

q2
+ 2g

96π2

[
(2�)3

q
log

2� + q

2� − q
− 2(2�)2 − 3q(2�) log

2� + q

2� − q
+ 16

3
q2

]
. (A19)

In the limit of large cutoff �, we find that the above underlined term vanishes. Neglecting the q2 term in the numerator of the
logarithmic function yields

Re �−(q,0) = − gq2

24π2
log

4�2

q2
. (A20)

The second term in Eq. (A17) is calculated by carrying out the integration

Re �−(q,ω) − Re �−(q,0) = ω

π
P

∫ ∞

−∞
dξ

Im �−(q,ξ )

ξ (ξ − ω)
= − gq2

24π2
log

∣∣∣∣ q2

q2 − ω2

∣∣∣∣ . (A21)

Substituting Eq. (A20) into Eq. (A21) leads to the same result as Eq. (A16), which differs slightly from the counterpart in Ref.
[37]. It should be pointed out that Re �−(q,ω) satisfies Eq. (A18) by considering Im �−(q,0) = 0. Therefore, the polarization
function of the intrinsic case turns out to be

�−(q,ω) = − gq2

24π2

[
log

∣∣∣∣ 4�2

q2 − ω2

∣∣∣∣ + iπθ (ω − q)

]
. (A22)

Following the similar procedure, one can reach the polarization function �+(q,ω) of the extrinsic case with μ > 0,

Im�+(q,ω) = −gq2

8π2

[
θ (q − ω)

(
πG(q,ω)

q2
θ (2μ + ω − q) − πG(q, − ω)

q2
θ (2μ − ω − q)

)

+θ (ω − q)

(
−π

3
θ (2μ − ω − q) − πG(−q, − ω)

q2
θ (q + ω − 2μ)θ (2μ + q − ω)

)]
, (A23)

Re �+(q,ω) = −gq2

8π2

[
8μ2

3q2
− G(q,ω)H (q,ω)

q2
− G(−q,ω)H (−q,ω)

q2
− G(q, − ω)H (q, − ω)

q2
− G(−q, − ω)H (−q, − ω)

q2

]
,

(A24)

where the functions G(q,ω) and H (q,ω) are defined by

G(q,ω) = 1

12q
[(2μ + ω)3 − 3q2(2μ + ω) + 2q3], (A25)

H (q,ω) = log

∣∣∣∣2μ + ω − q

q − ω

∣∣∣∣ . (A26)

Combining �−(q,ω) with �+(q,ω), we finally obtain the total polarization function for a Weyl node with positive chemical
potential +μ in the 3D Weyl semimetal in Eq. (A1).
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APPENDIX B: THE EQUIVALENCE OF THE
POLARIZATION FUNCTIONS WITH OPPOSITE

CHEMICAL POTENTIALS

In this Appendix we will prove the equivalence of the
polarization functions with opposite chemical potentials for a
system with particle-hole symmetry. The polarization function
for the other node with negative chemical potential −μ can be
written as

�̃ (q,ω) = g

L3

∑
kss ′

f̃ (ε̃ks) − f̃ (ε̃k′s ′ )

�ω + ε̃ks − ε̃k′s ′ + iη
Fss ′ (k,k′), (B1)

where the function f̃ (x) is defined as f̃ (x) = [1 +
exp {β(x + μ)}]−1. The particle-hole symmetry of Weyl nodes
enables us to relabel the energy dispersions in the following
way: ε̃ks → −εks and write

�̃ (q,ω) = g

L3

∑
kss ′

f̃ (−εks) − f̃ (−εk′s ′ )

�ω − εks + εk′s ′ + iη
Fss ′ (k,k′). (B2)

Utilizing the property of the Fermi distribution function
f (x) + f̃ (−x) = 1 leads to

�̃ (q,ω) = g

L3

∑
kss ′

f (εk′s ′ ) − f (εks)

�ω + εk′s ′ − εks + iη
Fss ′ (k,k′).

(B3)

One can immediately observe the relation

[�̃ (q, − ω)]∗ = g

L3

∑
kss ′

f (εks) − f (εk′s ′ )

�ω + εks − εk′s ′ + iη
Fss ′ (k,k′).

(B4)

It is obvious that [�̃ (q, − ω)]∗ is nothing but the definition
of the polarization function with a positive chemical potential
μ. Recalling the general property of � (q, − ω) = [� (q,ω)]∗,
we arrive at the desirable result

�(q,ω) = �̃(q,ω). (B5)
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should be noted that the different values of these parameters
just quantitatively change the plasmon frequency. For typical
parameters [34] of |B| = 1 T, |E| = 103 V/m, and τv = 10 ps,
we estimate the plasmon frequency in the long-wave regime
roughly in the order of meV.
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