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Dynamical Jahn-Teller instability in metallic fullerides
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Dynamical Jahn-Teller effect has escaped so far direct observation in metallic systems. It is particularly
believed to be quenched also in correlated conductors with orbitally degenerate sites such as cubic fullerides.
Here, the Gutzwiller approach is extended to treat electron correlation over metals with Jahn-Teller active sites
and applied to the investigation of the ground state of K3C60. It is shown that dynamical Jahn-Teller instability
fully develops in this material when the interelectron repulsion U on C60 sites exceeds some critical value. The
latter is found to be lower than the current estimates of U , meaning that dynamical Jahn-Teller effect takes place
in all cubic fullerides. This leads to strong splitting of LUMO orbitals on C60 sites and calls for reconsideration
of the role of orbital degeneracy in the Mott-Hubbard transition in fullerides.
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I. INTRODUCTION

Dynamical Jahn-Teller effect (JTE) is an ubiquitous phe-
nomenon in molecules and isolated impurity centers with
orbital degeneracy [1,2]. Its presence in Jahn-Teller crystals
is encountered less often, where cooperative ordering of
static Jahn-Teller distortion is the most probable scenario [3].
Dynamical JTE has been advocated as a reason for the lack of
orbital ordering in some insulating materials such as LiNiO2

[4], Ba3CuSb2O9 [5], and FeSc2S4 [6]. It was also assumed to
take place in insulating fullerides A4C60 with A = K, Rb, Cs
[7], and Li3(NH3)6C60 [8,9]. Recently, ab initio calculations
have shown that dynamical JTE is the reason for the lack
of orbital ordering in Cs3C60 fullerides, which explains their
conventional antiferromagnetic ordering [10]. As for metallic
systems, no direct evidence for development of dynamical
JT instability in their ground state has been obtained so far.
Materials where such instability is likely to be realized are
metallic cubic fullerides A3C60 [11], for the reason that these
correlated conductors are close to Mott-Hubbard insulators
[12–14] for which the existence of dynamical JTE was already
proved [8–10].

In A3C60, the conduction band originating from the triply
degenerate t1u lowest unoccupied molecular orbitals (LUMO)
on fullerene sites strongly couples to the intramolecular JT
active fivefold-degenerate hg modes [15,16]. Despite the JT
coupling, the symmetry lowering has not been observed in
x-ray diffraction data [12–14,17,18] implying that the JT effect
is either quenched by the formation of the band or dynamical.
An adequate description of the ground state in metallic A3C60

requires a concomitant treatment of the JT effect and the
electron correlation. One of the simplest methods to treat
the electron correlation is by variational approach with the
Gutzwiller’s wave function [19,20]. Despite the simplicity,
Gutzwiller’s approach allows us to take into account the main
contribution to the correlation energy. Concerning the ground
state of metallic phase, the description by this method is
comparable in accuracy to dynamical mean-field theory [21].
Moreover, it has been extended to treat various situations, for
instance, the multiband systems [22]. However, an adequate
approach suitable for degenerate conductors with JT effect on
sites is still lacking.

In this work, we propose a method to treat electron
correlation in metallic JT systems based on a self-consistent
multiband Gutzwiller ansatz and apply it to metallic fullerides.
We find that a dynamical JT instability takes place in A3C60

already at intermediate strength of electron correlation, leading
to large amplitudes of JT distortions on the fullerene sites
and to the removal of the degeneracy of three LUMO levels.
This means, in particular, that the electron correlation in
A3C60 develops not in a threefold-degenerate LUMO band as
thought before [11] but in three split subbands. The immediate
implication is that the degeneracy of the LUMO band as a
reason for the high critical value U/w for the Mott-Hubbard
transition [23,24] (w is the bandwidth of the degenerate LUMO
band) should be reconsidered for fullerides.

II. ELECTRONIC AND VIBRONIC MODEL FOR
THE LUMO BAND IN METALLIC FULLERIDES

The model Hamiltonian of A3C60 consists of transfer Ĥt,
Jahn-Teller ĤJT, and onsite bielectronic Ĥbi parts [25,26]

Ĥ = Ĥt + ĤJT + Ĥbi, (1)

Ĥt =
∑

m,�m

∑
λλ′σ

t�m
λλ′ ĉ

†
m+�mλσ ĉmλ′σ , (2)

ĤJT =
∑

m

�ω

[∑
γ

1

2

(
p2

mγ + q2
mγ

)

+ g
∑
λλ′σ

∑
γ

G
γ

λλ′ ĉ
†
mλσ ĉmλ′σ qmγ

]
, (3)

Ĥbi = 1

2

∑
m

∑
λσ

⎡
⎣U‖n̂mλσ n̂mλ−σ + U⊥

∑
λ′(�=λ)σ ′

n̂mλσ n̂mλ′σ ′

− JH

∑
λ′(�=λ)

(
n̂mλσ n̂mλ′σ − ĉ

†
mλσ ĉmλ′σ ĉ

†
mλ−σ ĉmλ′−σ

− ĉ
†
mλσ ĉmλ′σ ĉ

†
mλ′−σ ĉmλ−σ

)⎤⎦ , (4)
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FIG. 1. (Color online) Orientation of C60 with respect to tetrago-
nal axes of fcc lattice.

where m is a site, �m is a position relative to m, λ,λ′ = x,y,z

are the components of the t1u LUMO (Fig. 1), σ is the
spin projection, γ = θ,ε,ξ,η,ζ is the component of the hg

vibrational mode (γ = 1,4,5,2,3 in Ref. [27], respectively),
ĉ
†
mλσ (ĉmλσ ) is the creation (annihilation) operator of an

electron in orbital λσ at site m, n̂mλσ = ĉ
†
mλσ ĉmλσ , and qmγ

and pmγ are the dimensionless normal coordinate and its
conjugate momentum [28], respectively. G

γ

λλ′ is the Clebsch-
Gordan coefficient [27], ω and g are the frequency and the
dimensionless vibronic coupling constant for the effective hg

mode, t�m
λλ′ is the transfer parameter, U‖ and U⊥ = U‖ − 2JH

are the intraorbital and interorbital Coulomb repulsions on the
fullerene site, respectively, and JH is the Hund’s rule coupling.

The tight-binding Hamiltonian (2) has been parametrized
on the basis of density functional theory (DFT) band-structure
calculation of K3C60 and includes nearest-neighbor and
next-nearest-neighbor electron transfer (see Appendix A for
details). Although nearest-neighbor tight-binding models were
intensively used in the past to describe the LUMO bands
of fullerides [29,30], the inclusion of next-nearest-neighbor
electron transfer is necessary for realistic description of the
band dispersion [10,31]. The JT effect in fullerene anions
involves eight vibrational hg modes, i.e., 40 vibrational coor-
dinates [11]. The corresponding vibronic coupling parameters
for C3−

60 have been recently extracted from DFT calculation
[10], while the reliability of this approach was proven by a
satisfactory reproduction of photoemission spectrum for C−

60
[16]. Nevertheless, in the present calculations, the use of a
full multimode description of JTE on fullerene sites seems to
be impractical. For this reason, the eight-mode JT interaction
on fullerenes has been replaced with an effective single-mode
one (3). Thus, the two parameters �ω = 87.7 meV and g =
1.07 were obtained via the reproduction of the JT stabilization
energy and the energies of the lowest vibronic excitation of
C3−

60 ion [10]. In the model JT Hamiltonian (3), the quadratic
vibronic couplings are not included because, as we discussed
in Ref. [10], they are weak in C60 anions and do not give
significant effect on the JT dynamics of Cn−

60 in cubic fullerides.
Finally, the Hund’s rule coupling parameter JH = 44 meV
was also taken from the DFT calculations [10]. This is not

FIG. 2. The coordinate systems used to describe JT effect on a
fullerene site. x,y,z correspond to the orthorhombic LUMO orbitals
(Fig. 1) and 1,2,3 to the adiabatic orbitals. x ′,y ′,z′ and x ′′,y ′′,z′′

are intermediate coordinate systems [32] appearing during the Euler
rotation of the orbitals from x,y,z to 1,2,3 [Eq. (6)].

the case of interelectron repulsion parameters of fullerene site,
which are strongly renormalized by screening in fullerides
[11]. In this work, the Coulomb repulsion U is treated as a free
parameter. U is defined here as the average repulsion of two
electrons in C3−

60 for a cubic (undistorted) LUMO band

U = 1
5 (U‖ + 4U⊥) = U⊥ + 2

5JH. (5)

A. Adiabatic orbitals

The hg normal coordinates on each site m, qmγ are
expressed by polar coordinates (qm,αm,γm,θm,φm) [27]. In-
troducing a unitary matrix

Slλ(�m) = [BP (γm)CP (θm)DP (φm)]lλ , (6)

we transform the electronic basis (λ = x,y,z) into adiabatic
basis (l = 1,2,3) on each C60 site (Fig. 2)

ĉ
†
mlσ =

∑
λ=x,y,z

Slλ(�m)ĉ†mλσ . (7)

Here, �m = (γm,θm,φm), and BP , CP , DP are the Euler
rotational matrices defined in Ref. [27]. By the transformation
of the electronic basis [Eq. (7)], the linear vibronic term ÛLJT

of the JT Hamiltonian (3) becomes diagonal:

ˆ̃ULJT = Ŝ†ÛLJTŜ

=
∑

m

∑
σ

�ωgqm

[
cos

(
αm + π

3

)
n̂m1σ

+ cos

(
αm − π

3

)
n̂m2σ − cos αmn̂m3σ

]
, (8)

where Ŝ = ∏
m Ŝm, and Ŝm is the unitary operator whose

matrix element is given by Eq. (6). Equation (8) shows that
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the amplitude of the JT distortion is determined by radial
coordinates qm and αm, and the direction of the JT distortion
in the space of the five-dimensional hg normal coordinates
is defined by Euler angular coordinates �m (Fig. 2). In the
described coordinate system, the elastic energy term in Eq. (3)
is written as

Uel =
∑

m

�ω

2
q2

m, (9)

i.e., is invariant under the unitary transformation (6). On the
other hand, the kinetic energy term changes, which is discussed
in Sec. IV B.

Under the transformation of the electronic basis (7), the
transfer Hamiltonian (2) becomes

ˆ̃Ht = Ŝ†ĤtŜ =
∑
m,m′

∑
ll′σ

tmm′
ll′ ĉ

†
mlσ ĉm′l′σ , (10)

where tmm′
ll′ is

tmm′
ll′ (�m,�m′ ) =

∑
λλ′=x,y,z

Sλl(�m)tm−m′
λλ′ Sλ′l′(�m′ ). (11)

We note also that Ĥbi is invariant under the unitary transfor-
mation (6) due to the isomorphism of tn1u LUMO shell of Cn−

60
to the atomic pn shell.

For any Euler angles �m, the JT potential term [Eqs. (8) and
(9)] and the bielectronic term have the same form. Therefore,
the adiabatic potential energy surface of an isolated Cn−

60 has
continuous minima (trough) [27,28] even in the presence of
the term splitting. In the case of C3−

60 , the potential surface has
three-dimensional (3D) trough at

q =
√

3g

√
1 −

(
JH/�ω

3g2

)2

(12)

and α = π/2. Substituting g, ω, and JH above into Eq. (12), the
amplitude of the JT distortion is q = 0.989 × √

3g, indicating
that the effect of the Hund’s rule coupling on the JT potential
surface of C3−

60 is small.

III. GUTZWILLER APPROACH TO STATIC
JAHN-TELLER SYSTEMS

A. Self-consistent Gutzwiller approach for the LUMO bands

The merohedral disorder in the K3C60 lattice and the
orientation of the JT distortions on the fullerene sites do not
have an important effect on the band energy [26,30]. The
change in Hartree-Fock energy per C60 site due to the disorders
is only 14 meV [26], which is smaller than the JT energy of
C3−

60 by one order of magnitude. The variation will be further
reduced by the electron correlation as is discussed in Sec. IV B.
Therefore, for the sake of simplicity, we further consider a
K3C60 in an ordered fcc lattice (Fig. 3). As a possible scenario
of static JT effect, we consider equal JT distortions on fullerene
sites of the following form:

(qm,αm,γm,θm,φm) = (q,π/2,0,0,0), (13)

or in conventional coordinates

(qmθ ,qmε,qmξ ,qmη,qmζ ) = (0,
√

3q,0,0,0), (14)

FIG. 3. (Color online) Ordered fcc K3C60. The orange ball is C60,
and the red and blue spheres are K atoms in octahedral and tetrahedral
interstices.

which do not remove translational symmetry of the lattice.
Here, q is a variable. The direction of the JT distortion (13)
corresponds to the one which gives the maximal static JT
stabilization in the case of isolated C3−

60 ion [27,28]. Under the
distortion (13), the adiabatic orbitals l = 1,2,3 correspond to
x,y,z, respectively (Fig. 2), and the linear JT term (8) reduces
to

ˆ̃ULJT =
∑

m

∑
σ

−
√

3

2
�ωgq(n̂mxσ − n̂myσ ). (15)

This expression shows that the z orbital level remains
unchanged while the x and the y levels are stabilized and
destabilized, respectively [27,28].

The Gutzwiller wave function |�G〉 is expressed as

|�G〉 = P̂G|�S〉, (16)

where |�S〉 is a Slater determinant, and P̂G is a Gutzwiller
projector. The Slater determinant is written as follows:

|�S〉 =
occ∏
pkσ

â
†
pkσ |0〉, (17)

â
†
pkσ =

∑
mλ

eik·m
√

N
uλ,pkĉ

†
mλσ , (18)

where p is a band index, N is the number of sites in the
system, and uλ,pk is a variational orbital coefficient. We note
that the band described by |�S〉 is not constrained to obey
the cubic symmetry. In order to include properly the effect
of JT distortions and of electron correlation, the variational
parameters (A) in P̂G have to be orbital specific:

P̂G =
∏
m

exp

⎛
⎝−1

2

∑
λσ �=λ′σ ′

Aλλ′ n̂mλσ n̂mλ′σ ′

⎞
⎠ , (19)

where Aλλ′ are real and symmetric with respect to interchange
of indices. Therefore, the projector (19) is described by six
independent Gutzwiller parameters (Aλλ′) instead of a single
parameter used in conventional Gutzwiller wave function
[19,20]. In a general case, λ,λ′ denote natural orbitals on
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the site m. For the chosen JT distortions (13), preserving the
orthorhombic site symmetry, these natural orbitals coincide
with the orthorhombic x,y,z t1u LUMO orbitals. Due to equal
distortions (13) on all fullerene sites, Aλλ′ are independent
from the index m.

The calculations of expectation values with |�G〉 have been
done within the Gutzwiller’s approximation [20,33]. Within
this approximation, the energy per site

Eg = 1

N

〈�G|Ĥ |�G〉
〈�G|�G〉 (20)

consists of the band energy

Et =
∑
λλ′σ

qλλ′τλλ′ , (21)

the elastic energy (9), the linear vibronic energy

ULJT =
∑

σ

−
√

3

2
�ωgq(nx − ny), (22)

and the bielectronic energy Ebi. Here, qλλ′ is the Gutzwiller’s
reduction factor, τλλ′ is

τλλ′ = 1

N

∑
k

tk
λλ′ρ

k
λλ′ , (23)

where tk
λλ′ is the Fourier transform of t�m

λλ′ ,

tk
λλ′ =

∑
�m

e−ik·�mt�m
λλ′ , (24)

ρk
λλ′ is the density matrix at a k point

ρk
λλ′ =

occ∑
p

u∗
λ,pkuλ′,pk, (25)

and nλ (λ = x,y,z) is the occupation number

nλ = 〈�G|n̂mλσ |�G〉
〈�G|�G〉 . (26)

The explicit forms of the occupation number nλ, the
Gutzwiller’s reduction factor qλλ′ , and the bielectronic energy
Ebi are given in Appendix B. The Gutzwiller projector does
not influence the onsite density matrix, hence, Eq. (26)
corresponds to

nλ = 〈�S|n̂mλσ |�S〉 = 1

N

∑
k

ρk
λλ. (27)

Hereafter, we use the form (27) for nλ.
The ground state for different amplitudes of JT distortion q

is obtained by minimizing the energy per site (20) with respect
to {uλ,pk} and {Aλλ′ }, which is performed in two steps. The first
one is the variational calculation of Ẽg with respect to {uλ,pk}
for fixed {Aλλ′ }. The resulting self-consistent equations in the
case of static JT effect are obtained in the form∑

λ′
hk

λλ′uλ′,pk = εpkuλ,pk, (28)

where the one-particle Hamiltonian is

hk
λλ′ = qλλ′ tk

λλ′ + δλλ′

[∑
κκ ′

∂qκκ ′

∂nλ

τκκ ′ + 1

2

∂Ebi

∂nλ

−
√

3

2
�ωgq(δλx − δλy)

]
, (29)

and εpk is the Gutzwiller’s orbital energy. Using the solu-
tions of Eq. (28), {uλ,pk}, the occupation numbers {nλ} are
recalculated via Eq. (27). The chemical potential is found by
consecutive population of Gutzwiller’s orbitals following the
Aufbau principle. The second step is the minimization of Ẽg

with respect to {Aλλ′ } for fixed {uλ,pk} and {nλ},
∂Ẽg

∂Aλλ′
=

∑
σκκ ′

∂qκκ ′

∂Aλλ′
τκκ ′ + ∂Ebi

∂Aλλ′
= 0, (30)

using the numerical algorithm proposed in Ref. [34]. The
two minimizations (28) and (30) are repeated iteratively until
variations in the occupation numbers and the ground-state
energy become smaller than thresholds.

B. Static Jahn-Teller instability in K3C60

The ground-state energy Eg (20) as a function of the JT
distortion q is plotted in Fig. 4(a). Quite unexpectedly, the
energy curve Eg(q) has two minima, one at the undistorted
configuration q = 0 and the other at q ≈ √

3g (=1.85) which
corresponds approximately to the amplitude of JT distortion
in an isolated C3−

60 ion. For U smaller than the critical value
Uc = 670 meV, the static JT distortion is quenched (q = 0).
The minimum corresponding to JT-distorted sites lowers
with the increase of U , at U = Uc the values of the two
minima equalize, and for U > Uc the JT distortion achieves
its equilibrium value matching approximately the distortion in
an isolated C3−

60 .
The static JT effect has been investigated in A4C60 within

the local density approximation (LDA) of DFT, for which
completely quenched JT distortions have been found [35].
Since the static JT effect in C4−

60 is stronger than in C3−
60 anion

[28], it was concluded that the JT distortions in A3C60 are
also quenched. However, it was recently revealed that the
LDA calculations underestimate the JT stabilization energy
of C−

60 by ca. 30% [16]. On the other hand, the broken-
symmetry Hartree-Fock (HF) calculations predict smaller Uc

for static JT instability than the present calculations and orbital
disproportionation of the intrasite charge density in fullerides
[25,26]. The reason of this discrepancy is that the broken-
symmetry HF calculations exaggerate the tendency towards
the stabilization of low-symmetry electronic phases. Thus, the
splitting of the LUMO band is overestimated and is mainly
contributed by the interelectron repulsion [26], suggesting
that an approach based on a single Slater determinant is not
flexible enough to include properly the effects of electron
correlation in orbitally degenerate bands (see Sec. V A for
detailed discussion).

The structure of Eg(q) is mainly determined by the q-
dependent contributions, the band energy Et [Eq. (21)], and the
JT potential ULJT [Eq. (22)] which are found in competition
[Fig. 4(b)]. The contribution of the band energy term is the
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FIG. 4. (Color online) (a) Total energy Eg(q) of K3C60 as func-
tion of amplitude of static JT distortion (13) for several values of U

[Eq. (5)]. The dashed line indicates the minimum of Eg. (b) Energy
components contributing to the total energy. ULJT is the linear JT
energy (8) and Uel is the elastic energy (9) in ĤJT; Et is the band
energy (21), and Ebi is the bielectronic energy. U 1

ad is the ground-state
adiabatic potential of an isolated C3−

60 . Eg and Ebi are set to zero at
q = 0. The unit of q is the amplitude of zero vibration of hg mode
[1,2]. (c) Occupation numbers of LUMO orbitals nλ as function of q.
x, y, and z are orbital components.

largest when the orbitals are hybridized and equally populated,
which takes place in the weak correlation limit (U → 0). On
the other hand, the contribution from the JT term is the largest
when the disproportionation of the electronic charge among

the LUMO subbands, accompanying the JT distortions, is full
(nx,ny,nz) = (1,0, 1

2 ). At the same time, the splitting of the
orbital levels prevents the hybridization and vice versa. As
Fig. 4(a) suggests, the ground-state energy Eg(q) consists of
two potential energy surfaces which cross at q = qc. For small
distortions q < qc, the band energy exceeds the JT energy and
the latter is quenched compared to the case of an isolated C3−

60
(U 1

ad), while for q > qc the JT energy takes over. Because of
the hybridization, the occupation numbers nλ are fractional
[Fig. 4(c)] and the linear JT energy ULJT is not proportional
to q unlike the isolated C3−

60 molecule. The band energy is
reduced by the intrasite Coulomb repulsion by quenching
charge fluctuations on C60’s. Since the band energy in Rb3C60

and Cs3C60 is smaller than in K3C60, while U is larger [31], the
static JT instability is favored even more in these fullerides.

IV. GUTZWILLER APPROACH TO DYNAMICAL
JAHN-TELLER SYSTEMS

A. Dynamical Jahn-Teller contribution

Another important ingredient is the energy gain arising
from the dynamical delocalization of JT distortions at each
C3−

60 anion. The energy gain in isolated C3−
60 amounts to ca.

90 meV which is more than a half of the static JT stabilization
(ca. 150 meV) in this anion [10]. To assess this energy gain in
fullerides, one should take into account that the JT effect on
C3−

60 sites in fullerides is different from the case of isolated
fullerene anions. The main difference is that the LUMO
orbitals on the fullerene sites do not have the same populations
as in an isolated C3−

60 [Fig. 4(c)], which leads, in particular, to
lower values of the amplitude of dynamical JT deformation in
fullerides. Only in the case of full orbital disproportionation
(Sec. III B), the deformation achieves the equilibrium value
in a free ion (q = 1.85) and the corresponding energy gain
owing to dynamical JT effect is maximal. One should stress
that in the case of dynamic JT effect the adiabatic orbitals
l = 1,2,3 on fullerene sites are not fixed electronic orbitals
λ = x,y,z, considered in the previous section but are their
linear combinations with �m-dependent coefficients [Eq. (7)]
[27]. To simulate the dependence of dynamical JT effect on the
extent of orbital disproportionation, we introduce the effective
vibronic coupling constant

geff = g(n1 − n2), (31)

which varies from 0 to g when the orbital disproportionation
n1 − n2 varies from the minimal value (0) to the maximal value
(1). Note that n3 has an unchanged value 1

2 .
Diagonalizing the JT Hamiltonian (3) for different values of

geff , and extracting the ground-state energy at corresponding
static JT distortion 3�ωg2

eff/2, together with the energy of zero
vibrations at distorted point 5�ω/2, we obtain the dynamical
contribution EDJT to the ground vibronic level. Figure 5
shows the dependence of this contribution on geff for the
case of effective single-mode JT Hamiltonian of C3−

60 [10].
Note that the existence of the energy gain due to dynamical
delocalization of JT deformations does not guarantee by itself
the development of dynamical JT effect on fullerene sites. For
the latter to take place, an additional condition are the small
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FIG. 5. (Color online) The gain of JT stabilization energy (meV)
due to dynamical JTE in function of geff .

variations of the band energy under arbitrary JT distortion on
C3−

60 sites, which is investigated in the following.

B. Form of the ground vibronic state

Previous ab initio investigations have shown that the
low-lying vibronic states in an isolated C3−

60 can be described
satisfactorily within the adiabatic approximation [10]. This
approximation can be extended over the A3C60 crystal.
Following the molecular approach [1], first we perform the
unitary transformation (7) to diagonalize the linear vibronic
term in Eq. (3) [27,28]:

ˆ̃H = Ŝ†Ĥ Ŝ = Ĥrad + Ĥrot + Ĥ
(1)
el + Ĥbi, (32)

Ĥrad =
∑

m

−�ω

2

[
q−4

m
∂

∂qm

(
q4

m
∂

∂qm

)

+ 1

q2
m sin 3αm

∂

∂αm

(
sin 3αm

∂

∂αm

)]
+ �ω

2
q2

m,

Ĥrot =
∑

m

�ω

8q2
m

[ (
L̂nuc

m1 + L̂el
m1

)2

sin2(αm − 2π/3)
+

(
L̂nuc

m2 + L̂el
m2

)2

sin2(αm + 2π/3)

+
(
L̂nuc

m3 + L̂el
m3

)2

sin2 αm

]
. (33)

Here, Ĥ
(1)
el is the sum of the linear vibronic term (8) and the

transfer part (10), L̂nuc
m1 , L̂nuc

m2 , L̂nuc
m3 are nuclear angular momenta

in the initial orbital basis (λx,λy,λz in Ref. [27], respectively),
and L̂el

mj (j = 1,2,3) are electronic angular momenta:

L̂el
m1 =

∑
σ

i(ĉ†m2σ ĉm3σ − ĉ
†
m3σ ĉm2σ ), (34)

L̂el
m2 =

∑
σ

i(ĉ†m3σ ĉm1σ − ĉ
†
m1σ ĉm3σ ), (35)

L̂el
m3 =

∑
σ

i(ĉ†m1σ ĉm2σ − ĉ
†
m2σ ĉm1σ ). (36)

For arbitrary JT deformations on sites, the system does
not possess translational symmetry anymore. In the case of
intermediate to strong vibronic coupling, the amplitude of
dynamical JT deformation q0 is not small. Since the LUMO

orbitals of each fullerene are, on average, occupied by three
electrons, the vibronic term has a minimum at α = π/2 [27].
Substituting

qm = q0 + q ′
m, αm = π

2
+ α′

m, (37)

into Eq. (32), we obtain

ˆ̃H = Ĥrad + Ĥrot + Ĥ
(1)
el + Ĥbi, (38)

Ĥrad =
∑

m

−�ω

2

[
q−4

0

∂

∂q ′
m

(
q4

m
∂

∂q ′
m

)
+ 1

q2
0

∂2

∂α′2
m

]
qm=q0

+N
�ω

2
q2

0 +
∑

m

�ω

2
q ′2

m, (39)

Ĥrot =
∑

m

�ω

8q2
0

[
4
(
L̂nuc

m1 + L̂el
m1

)2 + 4
(
L̂nuc

m2 + L̂el
m2

)2

+(
L̂nuc

m3 + L̂el
m3

)2]
, (40)

Ĥ
(1)
el =

∑
m

∑
σ

−
√

3

2
�ωgq0 (n̂m1σ − n̂m2σ )

+
∑
m,m′

∑
ll′σ

tmm′
ll′ ĉ

†
mlσ ĉm′l′σ , (41)

where q ′
m and α′

m are the deviations from the equilibrium
point. The above derivation is based on the assumption
that the radial JT coordinates (37) remain unchanged under
the electron transfer. The justification for that, i.e., for
the neglect of JT polaronic effect, will be given in Sec.
VI C. Following the adiabatic approximation [1], in Eq. (38)
the terms smaller than 1/q2

0 are neglected and, consequently,
the radial degrees of freedom (q ′,α′) are decoupled from the
other degrees of freedoms corresponding to the rotation of
JT deformation in the 3D trough [27,28] (see Sec. II A for
the trough). The rotational Hamiltonian (40) has nonadiabatic
terms V̂ = �ωL̂nuc

mj L̂el
mj /q

2
0 . Neglecting these terms [1], we

obtain

Ĥad = Ĥrad + Ĥ nuc
rot + Ĥ el

rot + Ĥ
(1)
el + Ĥbi, (42)

Ĥ nuc
rot =

∑
m

�
2

8q2
0

[
4
(
L̂nuc

m

)2 − 3
(
L̂nuc

m3

)2]
, (43)

Ĥ el
rot =

∑
m

�
2

8q2
0

[
4
(
L̂el

m

)2 − 3
(
L̂el

m3

)2]
, (44)

where L̂2
m = L̂2

m1 + L̂2
m2 + L̂2

m3. The adiabatic approximation
is valid when the energy gap between the ground and the first
excited energies �E is large compared with the matrix element
of the nonadiabatic term |V̂ |. The ratio of |V̂ | ≈ �ω/(3g2) and
�E ≈ 3�ωg2/2 for C3−

60 is |V̂ |/�E ≈ 1/5, which justifies the
application of adiabatic approximation in the present case. In
this estimation, a value |L̂| ≈ 1 was taken.

Diagonalizing Ĥ
(1)
el [Eq. (41)], the Hamiltonian is written

in the basis of adiabatic band orbitals:

Ĥ
(1)
el =

∑
iσ

εi(�)â†
iσ (�)âiσ (�), (45)
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where � = {�m} is the set of all Euler angles on all C60 sites
in the system (Fig. 2), i indicates adiabatic band orbital, εi

denotes its energy, and â
†
iσ is given by

â
†
iσ (�) =

∑
m

∑
l

Umli(�)ĉ†mlσ . (46)

For the ordered system (13), the coefficient Umli reduces to
eik·muλ,pk/

√
N appearing in Eq. (18).

Then, the solution of the Hamiltonian (42) in the adiabatic
approximation for the ground and low-lying vibronic states
has the form

|�(R,�)〉 = ∣∣�ad
S (�)

〉
χ rad(R)χ rot(�), (47)

where |�ad
S 〉 is the Slater determinant of occupied adiabatic

band orbitals (46):

∣∣�ad
S (�)

〉 =
occ∏
iσ

â
†
iσ (�)|0〉, (48)

and χ rad(R) and χ rot(�) are nuclear wave functions de-
pending on radial R = {q ′

m,α′
m} and rotational � nuclear

coordinates, respectively. The factorization of nuclear wave
function became possible due to the separation of radial and
rotational degrees of freedom in the adiabatic Hamiltonian
(42). Furthermore, the radial coordinates of different sites
are independent from each other [see Eq. (39)], hence, the
radial part χ rad is the product of the ground vibrational wave
functions of all sites:

χ rad(R) =
∏
m

χ rad
m (q ′

m,α′
m). (49)

Further calculations are greatly simplified under the as-
sumption that the dependence of Umli [Eq. (46)] on Euler
angles is relatively weak. This seems to be the case when
correlation effects become important, leading to significant
reduction of band energy Et [Fig. 4(b)] and strong separation
of Gutzwiller bands [x,y,z in Fig. 4(c) for homogeneous JT
distortions (13)]. Indeed, the hybridization of the adiabatic
orbitals in this case mainly arises via resonant interactions
(Fig. 6) because the width of individual bands is small
compared with their Jahn-Teller splitting (150 meV), thus

0

150

300

1

3

2

1

3

2

2t11

2t33

2t22

A B

E meV

FIG. 6. Hybridization of adiabatic orbitals in a two-site model.

resulting in a weak mixing of the off-resonant adiabatic
orbitals. The hybridization arising from resonant interactions
should be weakly dependent on transfer parameters. For
example, in the case of two-site model (Fig. 6), the “band”
splitting of pairs of interacting resonant adiabatic orbitals �ε

is strongly dependent on the Euler angles on two sites,

�ε ≈ ∣∣2tAB
ll (�A,�B)

∣∣ , (50)

while the adiabatic “band” orbitals

|ψiσ (�)〉 ≈ 1√
2

(ĉ†Alσ ± ĉ
†
Blσ )|0〉 (51)

have angle-independent mixing coefficients.
Neglecting the � dependence of coefficients Umli in

Eq. (46), the eigenvalue problem for the pseudorotational
nuclear wave function reduces to the equation(

Ĥ nuc
rot + Eel

rot + Eel
0 (�)

)
χ rot(�) = Erotχ rot(�), (52)

where Eel
0 (�) is the adiabatic band energy

Eel
0 (�) =

occ∑
iσ

εi(�), (53)

and Eel
rot is the expectation value of Ĥ el

rot [Eq. (44)]:

Eel
rot = 〈

�ad
S

∣∣Ĥ el
rot

∣∣�ad
S

〉
. (54)

The direct calculation of this matrix element gives

Eel
rot =

∑
m

�
2

8q2
0

(10nm1 + 10nm2 + 16nm3

− 4nm1nm2 − 16nm2nm3 − 16nm3nm1)

+
∑

m

occ∑
i

�
2

8q2
0

(4|Um1i |2|Um2i |2

+ 16|Um2i |2|Um3i |2 + 16|Um3i |2|Um1i |2), (55)

where nml are populations of the adiabatic orbitals (l) on the
site m. The last term is smaller than the other terms by 1/N

because |Umli | ≈ 1/
√

N and
∑

i |Umli |2|Uml′i |2 ≈ 1/N , while
the occupation number nml = ∑

i |Umli |2 ≈ 1. Neglecting the
last term, we obtain

Eel
rot =

∑
m

�
2

8q2
0

(10nm1 + 10nm2 + 16nm3

− 4nm1nm2 − 16nm2nm3 − 16nm3nm1) . (56)

The obtained energy is additive over the sites, with one-site
contributions being equivalent with the corresponding energy
of an isolated C3−

60 , E
el(1)
rot = 5�

2/(4q2
0 ) [Eq. (37) in Ref. [27]],

in the case of full disproportionation of electron density among
three orbitals (n1,n2,n3) = (1,0, 1

2 ) (Sec. III B). Note the lack
of � dependence of the energy in Eq. (56), which is the
result of neglected � dependence of the coefficients Umli in
Eq. (46).
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FIG. 7. (Color online) Dependence of uncorrelated band energy
E0

t on the Euler angles of JT distortions θ (a) and γ (b), respectively,
for q = √

3g = 1.85.

On the other hand, the adiabatic band energy Eel
0

[Eq. (53)] is � dependent even if the coefficients Umli are not,
and this dependence a priori is not weak. This � dependence is
estimated here by direct calculations of the uncorrelated band
energy E0

t for different directions of ordered JT distortions
q = √

3g. The obtained variations of E0
t do not exceed 12 meV

(Fig. 7). The variation of E0
t will be even smaller for disordered

system because the Euler angle dependence is smeared out
by the disorder. Including electron correlation effects via the
Gutzwiller’s ansatz described above (Sec. III B) will result in
the case of U = Uc [corresponding to q = 1.85, see Fig. 4(b)]
to a reduction of uncorrelated E0

t (≈−240 meV) by one order
of magnitude [Fig. 4(b)]. At the same extent will reduce the
variations of the band energy in function of the direction
of JT distortions, which means that they are negligible
compared to the dynamical contribution to JT stabilization
energy (Fig. 5).

In A3C60 crystals, the JT pseudorotations after the Euler
angles � can be also hindered by intermolecular vibrations.
However, the energy of these vibrations (≈5–10 meV [11]) is
much lower than the energy gain due to delocalization of JT
deformations in the trough.

Hence, the vibronic dynamics is expected to be un-
quenched, like in insulating fullerides Cs3C60 [10]. Given
the near independence of the band energy Eel

0 on the
pseudorotation coordinates of C3−

60 sites (�), and the full �

independence of the contribution (56), the pseudorotational
Hamiltonian (52) becomes merely a sum of onsite contribu-
tions. Each such contribution is an operator depending on
�m Euler coordinates of the corresponding site [Eq. (43)],
which means that the pseudorotational wave function

factorizes

χ rot =
∏
m

χ rot
m (�m), (57)

with χ rot
m being eigenfunctions of one-site operators in Eq. (43).

Then, taking into account the factorization of the radial part
[Eq. (49)], the Gutzwiller wave function with dynamical JT
effect on fullerene sites has the form

|�G〉 = P̂G

∣∣�ad
S

〉 × ∏
m

χ rad
m χ rot

m , (58)

and the Gutzwiller projector (19) will involve now population
operators for adiabatic orbitals on the fullerene sites:

P̂G =
∏
m

exp

⎛
⎝−1

2

∑
lσ �=l′σ ′

Amll′ n̂mlσ n̂ml′σ ′

⎞
⎠ . (59)

C. Self-consistent Gutzwiller approach
for the ground vibronic state

The ground-state energy of the dynamical JT system is
obtained by minimizing the total energy per site. Although
the adiabatic band orbitals (46) correspond to a disordered
system, this will not pose any complication if we assume that
the band energy of these orbitals is independent on the form of
adiabatic orbitals, i.e., on the three Euler angles characterizing
the “direction” of JT distortions on sites. This seems to be
indeed the case given the weak dependence of band energy on
the local JT distortions established above (Fig. 7). Then, the
calculation of the electronic part of the energy can be done for
a particular case of Euler angles equal on all sites, yielding the
previous result for a translational system, while the nuclear part
of the wave function (58) will give the dynamical contribution.

Hence, within the adiabatic approximation (42), the ground
energy with the Gutzwiller’s wave function (58) is given by

Ead = Et + Ebi − 3�ωg2
eff

2
+ Ead

DJT, (60)

where the dynamical JT deformation q0 is replaced by

q0 =
√

3geff, (61)

and Ead
DJT is the dynamical JT contribution

Ead
DJT = −3�ω

2
− 3�ω

8g2
eff

+ Erot. (62)

The zero-point energy of the five-dimensional harmonic
oscillator is set to zero. The first and the second terms in
Eq. (62) appear from the radial Hamiltonian (39) [27] and Erot

is the eigenvalue of the pseudorotational Hamiltonian (52).
Furthermore, the dynamical contribution (62) is replaced by
the exact EDJT (Fig. 5), yielding

E = Et + Ebi − 3�ωg2
eff

2
+ EDJT(geff). (63)

The ground state for dynamical JT system is obtained by
self-consistent minimization of the energy (63) with respect
to {uλ,pk} and {Aλλ′ }. We obtain similar formulas as Eqs. (28)
and (30), with the only difference in the JT term of one-particle
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FIG. 8. (Color online) (a) Total energy and (b) occupation num-
bers of LUMO orbitals nλ with static (blue) and dynamical (red)
JT effects as a function of U . The blue points and the dashed
line correspond to the minimum with static JT distortion and the
global minimum of Eg, respectively. Total energy at q = 0 is set
to zero at each U . x, y, and z in (b) are orbital components under
distortion (13).

Hamiltonian:

hk
λλ′ = qλλ′ tk

λλ′ + δλλ′

[∑
κκ ′

∂qκκ ′

∂nλ

τκκ ′ + 1

2

∂Ebi

∂nλ

+
(

−3�ω

2
geff + g

2

∂EDJT(geff)

∂geff

)
(δλx − δλy)

]
.

(64)

D. Dynamical Jahn-Teller instability in K3C60

Minimizing the total energy (63), we obtain the ground
energy in the presence of the JT dynamics on sites
[Fig. 8(a)]. In the case of static JT effect, the JT distortion
appears for U > 670 meV [Fig. 4(a)]. We can see, however,
that the JT dynamics enhances the dynamical JT deformation,
and, consequently, the disproportionation of the occupation
numbers in the adiabatic orbitals is also enhanced [Fig. 8(b)].
As a result, the critical value of electron repulsion parameter
for JT instability (Uc) is significantly reduced in the dynamical
case. In particular, the critical value is smaller than the
estimated U = 750 meV for K3C60 [31], hence, the metallic

fullerides always exhibit dynamical JT instability in the ground
state. This explains the absence of staggered JT deformations
in the x-ray diffraction data of A3C60. Furthermore, since
U > Uc the equilibrium JT distortions on sites will be close to
maximal possible, i.e., to their values in a free C3−

60 ion.

V. EFFECT OF ELECTRON CORRELATION AND
JAHN-TELLER INSTABILITY ON ONE-PARTICLE STATES

A. Orbital disproportionation

The electron correlation and the JT effect induce differences
in the population of the three LUMO orbitals on fullerene
sites (orbital disproportionation). Within the broken-symmetry
Hartree-Fock approach [25], the JT and the bielectronic energy
per site is

EHF = −3�ωg2
eff

2
+ U

(
5

12
n2 − �n2

1 − �n2
2 − �n2

3

)
,

(65)

where n is the total population of the fullerene site, �nl is the
deviation of the occupation of the orbital subband from the
case of cubic symmetry ( 1

2 ), and one single average electron
repulsion parameter U [Eq. (5)] is used for simplicity. The
HF energy with full disproportionation (n1,n2,n3) = (1,0, 1

2 )
is lower than the energy of the degenerate system (n1,n2,n3) =
( 1

2 , 1
2 , 1

2 ) by

�EHF = −3�ωg2

2
− U

2
. (66)

The orbital disproportionation is seen also in the present
Gutzwiller’s treatment (Fig. 8). In terms of the electron
configurations, the equal population of three LUMO bands
in a cubic band structure results in their equal probability
(1/26). The HF-type symmetry breaking equally enhances
the weights of four configurations ψ2

1 , ψ2
1 ψ1

3 (both spin
projections), and ψ2

1 ψ2
3 , and quenches the others, leading to the

gain of bielectronic energy per site Ebi by U/2. The weights
of configurations ψ2

1 ψ1
3 among the four are further enhanced

and the rest of them are further reduced in the Gutzwiller
treatment, which additionally lowers Ebi by U/4 in the limit
of strong correlation. The latter becomes possible because of
multideterminantal character of the Gutzwiller ansatz.

Despite the larger gain of Ebi in the Gutzwiller approach
compared to the HF one, the latter predicts smaller Uc for the
static JT distortion. This is due to the artifactual feature of
the broken-symmetry HF approach mentioned above which
leads, in particular, to orbital disproportion in K3C60 without
JT effect on fullerene sites [26]. Indeed, even in the absence of
the vibronic coupling g = 0, the broken-symmetry HF state is
more stable than the cubic band solution by U/2 [Eq. (66)].
On the other hand, the Gutzwiller’s wave function is not
disproportionated in the absence of JT effect, which is testified
by equal population of three LUMO orbitals at q = 0 point for
arbitrary U [Fig. 4(c)]. This is the result of a higher flexibility
of the Gutzwiller’s wave function, which can include various
configurations without changing the bielectronic energy, such
as equally populated configurations of ψ1

1 ψ1
2 ψ1

3 type.
Orbital disproportionation can be directly observed in

spectroscopy, e.g., in photoemission spectra of fullerides.
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FIG. 9. (Color online) (a) The energy gap between Gutzwiller
subbands �εdisp [Eq. (68)]. (b) The bielectronic part �εbi of Eq. (68)
as function of U (meV) for HF (dashed line), Gutzwiller with
dynamical JT (solid line), and Gutzwiller solution with static JT
distortion (points). �εbi for the global minimum with the static JT
effect is shown by the red dashed line.

Following the preceding discussion, the quasiparticles will
belong to subbands with definite orbital index l = 1,2,3,
separated by energy gaps [Fig. 9(a)]. The centers of gravity
of these subbands are expected to coincide with the centers
of Gutzwiller subbands obtained as solutions of Eq. (28). The
latter are expressed by the sum of the JT splitting and the
Coulomb repulsion energy:

εbi,l =
∑

l′σ ′(�=lσ )

U
〈�|n̂mlσ n̂ml′σ ′ |�〉

〈�|n̂mlσ |�〉 , (67)

where � is the ground-state wave function. Consequently,
the energy gap between centers of weight of the subbands is
expressed as

�εdisp = 3�ωg2
eff

2
+ �εbi. (68)

The bielectronic part �εbi of Eq. (68) for broken-symmetry
HF solution is given by �εHF

bi = U/2 [25,26]. �εbi for
Gutzwiller wave function is calculated using Eq. (B5). �εHF

bi
and �εbi for Gutzwiller’s wave function are shown in Fig. 9(b).
�εHF

bi monotonically increases with U , while �εbi for the
Gutzwiller’s solution approaches to zero. The bielectronic con-
tribution �εbi becomes zero because the system approaches to
the isolated molecular limit: when electrons are completely
localized due to the metal-insulator transition, the splitting of
the subbands reduces to the JT splitting in isolated C3−

60 ions.
We can see from Fig. 9(b) that �εbi, while exaggerated in
broken-symmetry HF approach, is not an artifactual feature
but, on the contrary, gives a non-negligible contribution to
the splitting of quasiparticle subbands in the metallic phase.
Figure 10 shows that the charge fluctuations (probabilities of
configurations with n = 2,4) are suppressed at U � 700 meV,
signaling the arising of metal-insulator transition.

B. Density of states of uncorrelated LUMO band

It is also of interest to find out how the uncorrelated band
structure is affected by JT instability. Figure 11 shows the

11
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FIG. 10. (Color online) The probabilities of the electron configu-
rations appearing in �G, ν [20,33] as functions of U . Dotted, dashed,
and dotted-dashed lines correspond to cubic symmetry band structure,
solid lines correspond to dynamic JT effect, and symbols correspond
to static JT effect. Black, blue, and red indicate the electron
configuration ψ2

1 ψ1
2 , sum of ν’s over 2 (or 4) electron configurations,

and sum of ν’s over 3 electron configurations, respectively. The
vertical dashed line indicates Uc for the static JT instability. ν’s for 2
and 4 electrons are almost identical to each other (only the data for
n = 2 are shown). ν’s for n = 0,1,5,6 are not shown here because
they are close to zero.

density of states (DOS) of the uncorrelated LUMO band in the
presence of equilibrium JT distortion (q = 1.85). Compared
to cubic band structure, we see a strong enlargement of the
bandwidth by ca. 300 meV. The analysis of partial density
of states shows that the degenerate LUMO band splits into
three subbands [Fig. 11(b)] mainly contributed by one of the
adiabatic orbitals [these are x, y, and z for the distortion (13)].
This means that the electron correlation in fullerides does
not take place in a degenerate LUMO band. In particular, the
Mott-Hubbard transition in cubic fullerides basically occurs
in a split band structure, where half-filled is only the middle
band. This calls for reconsideration of the role played by orbital
degeneracy in the Mott-Hubbard transition in fullerides.

VI. DISCUSSION AND CONCLUSIONS

The vibronic interaction and the electron correlation in
A3C60 are concomitantly treated by an approach proposed
here based on self-consistent Gutzwiller’s ansatz with orbital-
specific variational parameters. The present Gutzwiller’s
calculations with realistic vibronic constants, Hund’s rule
coupling, and parameters of the LUMO band predict that both
the static and the dynamical JT deformations arise in A3C60.
Since the electron correlation quenches the band energy, the
localization of the electrons is enhanced and, consequently, the
JT distortions on C3−

60 sites are facilitated. It is shown that the
dynamical JT instability appears for smaller onsite Coulomb
repulsion U < 500 meV than the static one [Fig. 8(b)]. Due
to the existence of the dynamical JT distortion, the adiabatic
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FIG. 11. (Color online) (a) DOS’s per C60 and spin for the
uncorrelated LUMO band of K3C60 in the absence (dashed line) and
the presence (solid line) of equilibrium JT distortions on fullerene
sites. (b) DOS with the JT distortion and partial DOS’s corresponding
to three adiabatic orbitals. The vertical lines indicate Fermi levels.

LUMO band splits into three subbands (Fig. 11). An indirect
experimental evidence for the existence of dynamical JT effect
in fullerides is given by NMR spectroscopy of Cs3C60, showing
that features attributed to dynamical Jahn-Teller effect in its
insulating phase persist when this material is brought into
metallic phase by applying an external pressure [36].

A. Correlation in split bands

The results of this work do not support the established
view that the electron correlation in fullerides takes place in a
degenerate LUMO band. As was shown by Gunnarsson et al.,
[37], Lu [38], and Han et al. [39], the orbital degeneracy
of the band/metal sites increases the critical ratio U/w for
Mott-Hubbard metal-insulator transition where w is the width
of the band. Gunnarsson et al. has found that this ratio is
1.5–2.5 for A3C60, which is significantly larger than the critical
ratio U/w ≈ 1 for Mott-Hubbard transition in lattices with
orbitally nondegenerate sites [23,37]. With the bandwidth w ≈
0.5–0.6 eV [37] [Fig. 11(a)] and the estimated U ≈ 1.3–1.6
eV [40] it was natural to conclude that the orbital degeneracy
of the LUMO band, leading to large critical values of U/w,
is the reason for K3C60 and Rb3C60 to remain metals [37].
This picture has become a basis for the interpretation of
metal-insulator transition in fullerides [24,37], in particular, in
Cs3C60 [12–14]. Contrary to that, the JT-split correlated state
derived here exhibits the Mott-Hubbard transition at a lower
critical ratio U/w. Indeed, Fig. 10 shows that the probability

ν for n = 2,4 configurations goes to zero at U > 700 meV,
signaling the localization of electron on fullerene sites. Thus,
we obtain a critical ratio U/w = 1.4 which is smaller than
predicted for assumed perfectly degenerate LUMO band
[23,37]. This, however, does not imply automatically an
insulating state for K3C60 since the upper recent estimate for
U in this fulleride is 750 meV [31], and the actual value can
be significantly lower as discussed below (Sec. VI B). On the
other hand, it would be incorrect to view the JT effect in the
LUMO band as simply leading to its enlargement [Fig. 11(b)]
which increases the critical U within (enlarged) single-band
picture. As a matter of fact, the electron correlation and the
metal-insulator transition in fullerides develops mainly in the
middle adiabatic subband. The role of the middle band in the
Mott-Hubbard transition can be qualitatively reproduced by
the single-band model. The band energy of the single-band
model, which includes only one of the t1u orbitals [the
corresponding DOS is shown in Fig. 12(a)] is obtained as
Et = −74.7 meV. Using the formula of the critical U for
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FIG. 12. (a) The DOS’s for the nondegenerate (solid line) and
degenerate (dashed line) systems. Vertical lines show the position of
the corresponding Fermi levels. (b) The probabilities of the electron
configurations appearing in Gutzwiller wave function of half-filled
cubic system ν [20,33] as functions of U . The dashed lines and solid
lines correspond to ν’s for nondegenerate (one electron per site) and
threefold-degenerate systems (three electrons per site), respectively.
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nondegenerate band within Gutzwiller’s approximation [20],
we obtain U = 8|Et| = 598 meV, which is close to U ≈ 700
meV for A3C60 obtained in this work (Fig. 10). The latter
is larger than the estimate for the single-band model by about
100 meV due to the remaining hybridization of the split bands.
From this analysis, one may conclude that the Mott-Hubbard
transition mainly develops in the middle band.

An important issue is the accuracy of the calculated ground-
state energy. We used here a six-parameter Gutzwiller ansatz
(19) in combination with Gutzwiller approximation for the
calculation of total energy (20). For comparison, Gunnarsson
et al. [23] used a single-parameter (conventional) Gutzwiller
ansatz but calculated the total energy without approximation
within variational Monte Carlo (VMC) approach. Comparison
with exact results obtained for small clusters of C60 via exact
diagonalization has shown that VMC reproduces the exact total
energy with accuracy of 0.1% (see Table 7.1 in Ref. [37]), i.e.,
few meV of the total energy per one C60 in fullerides. The
deviation from exact total energy will be certainly larger in the
case of Gutzwiller approximation applied here, however, it will
not cover the gain of the total energy due to JT splitting/orbital
disproportionation amounting to many tens of meV [Fig. 8(a)].
Thus, the main conclusion concerning dynamical JT instability
in fullerides seems to be unaffected by this approximation. This
is further corroborated by the fact that the Gutzwiller wave
function used in this work is more flexible in a variational
sense than in the conventional Gutzwiller ansatz. Indeed,
even in the case of degenerate LUMO band, conforming
to cubic symmetry, the ansatz (19) involves two projection
parameters. These are A11 controlling the population of
configurations nmλσ nmλ−σ , and A12 controlling the population
of configurations nmλσ nmλ′σ ′ , λ �= λ′. That these are the only
independent parameters allowed by the cubic symmetry can be
understood if one generalizes the form (19) to arbitrary LUMO
basis on fullerene sites. Although, in general, nmλσ in Eq. (19)
are replaced by elements of one-particle density matrix, only
the diagonal remains nonzero because of the cubic symmetry.
The terms in the exponential of Eq. (19) then become of the
form Aααββnmασ nmβσ ′ , in which the “elasticity” tensors Aααββ

will be characterized by only two independent parameters
in the case of cubic symmetry [41]. The second variational
parameter in the Gutzwiller wave function changes drastically
the description of Mott-Hubbard transition in the cubic band.
Thus, in a conventional single-parameter Gutzwiller ansatz
within the Gutzwiller approximation, the critical U/w = 4 in
the case of threefold orbital degeneracy of sites [38]. This
critical ratio is reduced to 2 in the case of Gutzwiller ansatz
applied here [Fig. 12(b)] which is much closer to values
obtained by Monte Carlo treatment [23,37]. It would be of
interest to use in the future the Gutzwiller ansatz for static
and dynamic JT effect on sites proposed here as trial functions
in variational (VMC) and diffusion (projection) Monte Carlo
(DMC) methods [37] which give more accurate description of
ground-state energy.

B. Parameters of the LUMO model

Another important aspect concerns the values of relevant
parameters for the model description of LUMO band in
fullerides. Given the large number of such parameters, their

TABLE I. LUMO level ε (eV), transfer parameters, and band-
width w (meV) for K3C60.

ε t1 t2 t3 t4 t5 t6 t7 w

5.066 43.3 −31.9 −6.2 −16.6 −9.6 −2.0 2.7 505.9

accurate knowledge is of primary importance for realistic
description of electronic properties of fullerides. Recently,
it was proven that the DFT calculated vibronic constants
of C−

60 with a hybrid B3LYP functional compare well with
those extracted from photoemission spectroscopy [16]. Then,
the vibronic constants for the C3−

60 anion and the exchange
parameter calculated within the same DFT functional should
be reliable as well. Concerning the transfer Hamiltonian,
the parameters of nearest-neighbor and next-nearest-neighbor
tight-binding model (Table I) reproduce well the dispersion
of the LUMO bands calculated within LDA [generalized
gradient approximation (GGA)] (Fig. 13). It was shown by
GW calculation that the interband electronic interaction can
enhance the LUMO (t1u) bandwidth in fullerites by 30%
[42] while the intraband interaction reduces the LUMO
bandwidth in A3C60 [43]. However, in the latter case the GW

approximation is ill defined due to strong correlation effects
in the LUMO band [37,44].

The parameter assessed with less certainty in the model
Hamiltonian (1)–(4) is the intrafullerene electron repulsion U‖.
Recent calculations of this parameter by constrained random-
phase approximation (cRPA) [44] with GGA band energies
and wave functions give in the low-frequency limit U‖ � 1 eV
for the series of A3C60, the smallest being U‖ = 820 meV
for K3C60 [31]. It is interesting to note that the estimated
U‖ in Ref. [31] gives for all fullerides values �1 eV, while
former estimations made for fullerite (pure C60 crystal) give
larger values [37,40,45]. This is explained by the fact that in
A3C60 fullerides the LUMO Wannier orbitals occupy larger
volume due to hybridization with alkali atoms [31]. In these
calculations, a noninteracting polarization function was used
that excluded polarization processes within the LUMO band.
Including the latter, i.e., considering the full screening in the
noninteracting metallic regime [44], further reduces U‖ by ca.
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FIG. 13. (Color online) Band structure of fcc K3C60 in eV. The
red and blue points are obtained from DFT calculations and model
Hamiltonian, respectively. The symmetric points (kx,ky,kz) are as
follows: � = (0,0,0), X = (2π/a,0,0), W = (2π/a,π/a,0), K =
(3π/2a,3π/2a,0), L = (π/a,π/a,π/a), U = (2π/a,π/2a,π/2a).
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one order of magnitude in the low-frequency limit [31]. A
similar strong effect of metallic screening (arising from the
LUMO band) was predicted also for a simplified treatment
of metallic polarization [46,47]. One should note that RPA is
generally not expected to perform well in the limit of strong
correlation, as well as the GW approximation mentioned
above. To check the screening capability of the correlated
LUMO band, Koch et al. [48] did VMC and DMC calculations
of an induced charge arising in response to a test charge for
a threefold-degenerate LUMO model of A3C60. They found
that RPA performs surprisingly well until U/w � 2, and
even at the point of Mott-Hubbard transition (corresponding
to U/w ≈ 2.5 in their model), when the LUMO electrons
become localized, the screening charge is reduced by not more
than 40% with respect to RPA screening charge calculated
for the noncorrelated LUMO band (Fig. 2 in Ref. [48]). At
the same extent is expected to be reduced the screening of
the electron repulsion parameter by the intra-LUMO band
interaction, which means that this screening is significant in
the entire metallic phase of fullerides and should be taken into
account for realistic assessment of U‖. A rigorous model for the
LUMO band, in which other degrees of freedom are excluded,
requires frequency-dependent electron repulsion parameters
[44]. From it an effective static Hubbard model (involving a
frequency-independent U ) can be derived by fitting the self-
energy in a low-frequency domain, not exceeding the width
of uncorrelated LUMO band [44]. Note that the derivations of
the static U‖, U⊥ in Eq. (4) should be done self-consistently
with the derivation of the ground state following the iterative
equations (28)–(30).

Experimentally, U can be assessed from Auger spec-
troscopy [45,49]. The estimates are 1.4 ± 0.2 eV for pure
C60 and band insulator K6C60 [49],1 and 0.6 ± 0.3 eV for
metallic K3C60. The much smaller value of U in K3C60

reflects most probably the additional strong screening from
the half-filled LUMO band.2 An instructive example of the
sensitivity of U on intra-LUMO-band screening is offered by
noncubic fullerides NH3K3C60 [50] and (CH3NH2)K3C60 [51].
Contrary to the parent K3C60 fulleride, which is a metal, these
compounds are antiferromagnetic Mott-Hubbard insulators.
The main effect of spacers NH3 and CH3NH2, respectively,
is the removal of degeneracy of three LUMO orbitals on
fullerene sites, which apparently reduces the orbital U/w from
its value in cubic K3C60 predicted for the threefold-degenerate
LUMO band [23,37], causing the Mott-Hubbard transition.
Manini et al. [52] have checked this possibility via DMFT
calculations of a model twofold-degenerate band and found
that the calculated splitting of the t1u orbitals is indeed

1It was mentioned that Auger spectroscopy mostly probes near-
surface layers [49], while bulk values of U should be reduced by ca.
0.2–0.3 eV.

2The authors of Ref. [49] disregard the possibility of metallic
screening due to the LUMO band and interpret the Auger spectrum of
K3C60 on the basis of difference between intra-LUMO (U ) and core
(1s)-LUMO (Ucore) electron repulsion parameters. However, they did
not explain why U and Ucore should be different in K3C60 and have
the same value in pure C60 and K6C60.

sufficient to induce the Mott-Hubbard transition.3 However,
the persistence of strong JT distortions in metallic fullerides,
established in this work, calls for another interpretation. The
crystal anisotropy induced by the spacers will enhance the
splitting of the LUMO bands [Fig. 11(b)], thus reducing the
intra-LUMO band screening of electron repulsion. This results
in the increase of U‖ and U⊥ in Eq. (4), which is the reason
why the noncubic fullerides are Mott-Hubbard insulators.

To conclude this part, several theoretical arguments and
relevant experimental data argue in the favor of non-negligible
intra-LUMO band screening of the Hubbard-U parameter,
which is thus expected to be well below 1 eV. The latter is
also a necessary condition for metallicity of fullerides in the
presence of strong JT distortions (Fig. 10).

C. Polaronic effects

The simple form of dynamical vibronic wave function (58)
was derived under two simplifying assumptions. First, the
polaronic effect was neglected, which seems to be justified for
fullerides. Indeed, while the static JT energy of C2−

60 and C4−
60 is

larger than in C3−
60 by an amount E

(1)
JT = �ωg2/2 = 50.2 meV,

the difference in the gain is compensated by the loss of
stabilization energy from the dynamical contribution. In the
strong vibronic coupling limit, the dynamical JT contribution
of C3−

60 is 3�ω/2 and that of C2−
60 and C4−

60 is �ω because
the trough is three dimensional in the former case and two
dimensional in the latter. Then, 1

3 of the dynamical contribution
of C3−

60 is lost if JT relaxation accompanies the electron
transfer. Using the data from the numerical diagonalizations,
the loss of the dynamical JT contribution is estimated as
−EDJT/3 ≈ 30 meV. Therefore, the binding energy of JT
polaron (the energy gain arising from full JT relaxation) is
�E = −E

(1)
JT − EDJT/3 ≈ −20 meV. Compared with the total

JT stabilization energy of ≈240 meV, the JT polaronic effect
appears to be small. One should take into account that the
JT polaronic effect is accompanied by the Franck-Condon
reduction of the band energy, which means that the JT polaron
will only show up when the band energy is reduced by
correlation effects under 20 meV, i.e., close to Mott-Hubbard
transition. On the other hand, the stabilization energy of
one electron after total symmetric fullerene distortions does
not exceed 20 meV, i.e., is negligible either [16]. In these
estimations, the relaxation due to displacements of alkali
atoms has not been included, which is unimportant for A3C60

but can be significant in insulating A4C60 and A6C60 [53].
As for the second assumption of weak hybridization of the
bands belonging to different t1u orbitals (Fig. 6), it seems to
be only justified in the strongly correlated limit. When it is
not the case, the � dependence of the coefficients Umli in
Eq. (46) cannot be neglected and ultimately the rotations of JT

3This splitting was identified with the splitting of the LUMO bands
at the � point obtained via LDA calculations of NH3K3C60 [52] and
(CH3NH2)K3C60 [55]. In both cases, the obtained splitting is smaller
than the JT splitting of the orbitals in K3C60, which means that the
LDA calculation does not grasp at all or seriously underestimates the
JT effect in these fullerides, which was also the case in other similar
calculations [35].
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deformation on different fullerene sites [Eq. (57)] cannot be
separated. This means that in metallic Cs3C60, the rotation of
JT deformations occurs independently on different fullerene
sites, while in K3C60 these rotations are more probable to be
correlated. In the latter case, the wave function (58) does not
represent a close solution and should be rather considered as
a variational function which nevertheless will correspond to
lower total energy than the static JT solution (16).

D. Summary

The main achievements of this work can be summarized as
follows:

(1) We have developed an approach for the investigation
of correlated JT metals based on self-consistent Gutzwiller
approximation.

(2) The concomitant treatment of JT effect and electron
correlation in metallic fullerides A3C60 proves the existence
of dynamical JT instability in their ground state. The JT
distortions arise due to strong reduction of the band energy
by electron correlation effects and achieve an amplitude close
to the value in a free C3−

60 ion.
(3) The JT instability induces strong overall enlargement

of the uncorrelated LUMO band and its splitting in three
components corresponding to individual adiabatic orbitals on
fullerene sites. The results call for reconsideration of the
role played by orbital degeneracy in the physics of metallic
fullerides.

(4) JT distortions together with electron correlation induce
disproportionation of electron density between subbands
corresponding to different adiabatic orbitals on fullerene sites.
Aside from the JT splitting, there is also a bielectronic contri-
bution to the separation of these subbands which vanishes
in the limit of strong correlation. Importantly, the orbital
disproportionation does not exist as a pure electronic low-
symmetry instability in the absence of JT effect on fullerene
sites (g = 0), in which case the correlated LUMO band will
have a perfect cubic symmetry for any U .

Finally, we note that a similar analysis can be applied to
other correlated metals with JT active sites.
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APPENDIX A: TIGHT-BINDING PARAMETRIZATION
OF THE LUMO BAND STRUCTURE OF K3C60

We assume that all C60’s in fcc K3C60 lattice are equally
orientated in a similar fashion shown in Fig. 1 (Fig. 3). Using
the unit vectors of fcc lattice,

a1 = a

2
(ey + ez), a2 = a

2
(ez + ex),

a3 = a

2
(ex + ey), (A1)

the displacements �m of the nearest-neighbor sites from site
m are written as

�m = [a3,a1 − a2,−a3,−(a1 − a2),

a1,a2 − a3,−a1,−(a2 − a3),

a2,a3 − a1,−a2,−(a3 − a1)]. (A2)

The next-nearest neighbors are displaced by vectors

�m = a(ex,−ex,ey,−ey,ez,−ez). (A3)

Here, a is the lattice constant of a simple cubic lattice
and ex,ey,ez correspondingly are unit vectors directed along
tetragonal x,y,z axes (Fig. 3). The tight-binding Hamiltonian
has the form

Ĥt =
∑

m

∑
λσ

εn̂mλσ +
∑

m

∑
σ

(
Ĥ nn

mσ + Ĥ nnn
mσ

)
, (A4)

where the nearest-neighbor part is

Ĥ nn
mσ = t1

[
4∑

i=1

ĉ
†
m+�mi xσ ĉmxσ +

8∑
i=5

ĉ
†
m+�mi yσ ĉmyσ

+
12∑
i=9

ĉ
†
m+�mi zσ

ĉmzσ

]

+ t3

[
4∑

i=1

ĉ
†
m+�mi yσ ĉmyσ +

8∑
i=5

ĉ
†
m+�mi zσ

ĉmzσ

+
12∑
i=9

ĉ
†
m+�mi xσ ĉmxσ

]

+ t4

[
4∑

i=1

ĉ
†
m+�mi zσ

ĉmzσ +
8∑

i=5

ĉ
†
m+�mi xσ ĉmxσ

+
12∑
i=9

ĉ
†
m+�mi yσ ĉmyσ

]

− t2

[
4∑

i=1

(−1)i
(
ĉ
†
m+�mi xσ ĉmyσ ĉ

†
m+�mi yσ ĉmxσ

)

+
8∑

i=5

(−1)i
(
ĉ
†
m+�mi yσ ĉmzσ + ĉ

†
m+�mi zσ

ĉmyσ

)

+
12∑
i=9

(−1)i
(
ĉ
†
m+�mi zσ

ĉmxσ + ĉ
†
m+�mi xσ ĉmzσ

)]
,

(A5)

and the next-nearest-neighbor part is

Ĥ nnn
mσ = t5

(
ĉm+aexxσ ĉmxσ + ĉm−aexxσ ĉmxσ

+ ĉm+aeyyσ ĉmyσ + ĉm−aeyyσ ĉmyσ

+ ĉm+aezzσ ĉmzσ + ĉm−aezzσ ĉmzσ

)
+ t6

(
ĉm+aexyσ ĉmyσ + ĉm−aexyσ ĉmyσ
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+ ĉm+aeyzσ ĉmzσ + ĉm−aeyzσ ĉmzσ

+ ĉm+aezxσ ĉmxσ + ĉm−aezxσ ĉmxσ

)
+ t7

(
ĉm+aexzσ ĉmzσ + ĉm−aexzσ ĉmzσ

+ ĉm+aeyxσ ĉmxσ + ĉm−aeyxσ ĉmxσ

+ ĉm+aezyσ ĉmyσ + ĉm−aezyσ ĉmyσ

)
. (A6)

In Eq. (A5), �mi indicates ith nearest neighbor.
The DFT calculation of the band structure of K3C60 was

performed using QUANTUM ESPRESSO 3.0 package with the
pseudopotentials C.pbe-mt gipaw.UPF and K.pbe-mt fhi.UPF
[54]. The lattice constant of K3C60 was taken from Ref. [17]
and the structure of C60 of Ref. [16] was used.

The band structures from the DFT calculation (red) and the
fitted tight-binding Hamiltonian (blue) are shown in Fig. 13.
The transfer parameters derived from the DFT calculation are
tabulated in Table I. The present values are close to the recent
estimates with optimized structure [31].

APPENDIX B: GUTZWILLER REDUCTION
FACTORS FOR THE LUMO BANDS AND BIELECTRONIC

ENERGY IN A3C60

To derive the form of Eq. (20), we apply the Gutzwiller’s
approximation extending the one for the nondegenerate band
[20,33]. Within the Gutzwiller’s approximation, physical
quantities are described in terms of the probability ν� that
one-site electron configuration � appears in the Gutzwiller’s
wave function |�G〉 [20,33].

The occupation number nx in spin orbital xσ is described
by the probabilities ν� as follows:

nx = 1
2 [2νx + 2νxx̄ + 4νxy + 4νzx

+ 4νxyx̄ + 2νzxz̄ + 4νzxx̄ + 2νxyȳ + 8νxyz

+ 2νxyx̄ȳ + 2νzxz̄x̄ + 8νxyzx̄ + 4νxyzȳ + 4νxyzz̄

+ 4νxyzx̄ȳ + 2νxyzȳz̄ + 4νxyzz̄x̄ + 2νxyzx̄ȳz̄], (B1)

where 1
2 is due to the spin degrees of freedom, and λ and λ̄

(λ = x,y,z) indicate spin orbitals (λ ↑) and (λ ↓), respectively.
Since we consider the metallic phase, ν� does not depend
on the spin part of �. For example, νx = νx̄ . ny and nz

are obtained by cyclic permutation of the indices (x,y,z) in
Eq. (B1).

The Gutzwiller’s reduction factors qxx appearing in Eq. (21)
are given by

qxx = 1

nx(1 − nx)
(
√

ν0νx + √
νx̄νxx̄ + 2

√
νyνxy

+ 2
√

νzνzx + 2
√

νyx̄νxyx̄ + √
νzz̄νzxz̄ + 2

√
νzx̄νzxx̄

+√
νyȳνxyȳ + 4

√
νyzνxyz + √

νyx̄ȳνxyx̄ȳ

+√
νzz̄x̄νzxz̄x̄ + 4

√
νyzx̄νxyzx̄ + 2

√
νyzȳνxyzȳ

+ 2
√

νyzz̄νxyzz̄ + 2
√

νyzx̄ȳνxyzx̄ȳ + √
νyzȳz̄νxyzȳz̄

+ 2
√

νyzz̄x̄νxyzz̄x̄ + √
νyzx̄ȳz̄νxyzx̄ȳz̄)

2, (B2)

where � = 0 means the configuration with no electron. qyy and
qzz are obtained by cyclic permutation of the indices (x,y,z)
in Eq. (B2). For qλλ′(λ �= λ′), the following relation holds:

qλλ′ = √
qλλqλ′λ′ . (B3)

The bielectronic energy is

Ebi = U‖(νxx̄ + νyȳ + νzz̄)

+ (U⊥ − JH/2)(4νxy + 4νyz + 4νzx)

+ (3U⊥ + JH)(2νxyx̄ + 2νyzȳ + 2νzxz̄

+ 2νzxx̄ + 2νxyȳ + 2νyzz̄)

+ (3U⊥ − 3JH/2)8νxyz

+ (6U⊥ + 2JH)(νxyx̄ȳ + νyzȳz̄ + νzxz̄x̄)

+ (6U⊥ − JH/2)(4νxyzx̄ + 4νxyzȳ + 4νxyzz̄)

+ (10U⊥)(2νxyzx̄ȳ + 2νxyzȳz̄ + 2νxyzz̄x̄)

+ (15U⊥)νxyzx̄ȳz̄. (B4)

The Coulomb contribution (67) to the subband energy level
is given by

εbi,x = U

nx

[(νxx̄ + 2νxy + 2νzx)

+ 2(2νxyx̄ + 2νzxx̄ + νxyȳ + νzxz̄ + 4νxyz)

+ 3(νxyx̄ȳ + νzxz̄x̄ + 4νxyzx̄ + 2νxyzȳ + 2νxyzz̄)

+ 4(2νxyzx̄ȳ + 2νxyzz̄x̄ + νxyzȳz̄)

+ 5νxyzx̄ȳz̄]. (B5)

Here, we choose the ordered JT distortion (13). εbi,y and εbi,z

are obtained by cyclic permutation of the indices (x,y,z) in
Eq. (B5). �εbi in Eq. (68) is obtained as �εbi = εbi,z − εbi,x .
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