
PHYSICAL REVIEW B 91, 035106 (2015)

Collective modes in two- and three-dimensional electron systems with Rashba spin-orbit coupling
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In addition to charge plasmons, a 2D electron system with Rashba-type spin-orbit coupling (SOC) also supports
three collective modes in the spin sector: the chiral-spin modes. We study the dispersions of the charge and spin
modes and their coupling to each other within a generalized random phase approximation for arbitrarily strong
SOC, and both in 2D and 3D systems. In both 2D and 3D, we find that the charge plasmons are coupled to only
one of the three chiral-spin modes. This coupling is shown to affect the dispersions of the modes at finite but
not at zero wave numbers. In 3D, the chiral-spin modes are strongly damped by particle-hole excitations and
disappear for weak electron-electron interaction. The Landau damping of the chiral-spin modes in 3D is directly
related to the fact that, in contrast to 2D, there is no gap for particle-hole excitations between spin-split subbands.
The gapless continuum is also responsible for the Landau damping of the charge plasmon in 3D—a qualitatively
new feature of the SOC system. We also discuss the optical conductivity of clean 2D and 3D systems and show
that SOC introduces spectral weight at finite frequency in a such way that the sum rule is satisfied. The in-plane
transverse chiral-spin mode shows up as a dispersing peak in the optical conductivity at finite number, which
can be measured in the presence of diffraction grating. We also discuss possible experimental manifestations of
chiral-spin modes in semiconductor quantum wells such InGaAs/AlGaAs and 3D giant Rashba materials of the
BiTeI family.
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I. INTRODUCTION

Spin-orbit interaction lifts the spin degeneracy by coupling
electron momenta and spins. This provides a possibility to
manipulate electron spins by purely electrical means, which
is the ultimate goal of the growing field of spintronics [1–4].
Of particular interest are the Rashba- and Dresselhaus-type
spin-orbit couplings (SOCs), which occur in systems without
center of inversion (either local or global). The Rashba SOC
has mostly been studied in two-dimensional (2D) electron
and hole gases in semiconductor heterostructures, and also
in surface states of metals. This effect (whose strength may
be characterized in terms of the splitting of the otherwise
degenerate spin-up and spin-down levels) is usually weak in
semiconductors [5] but is much stronger in the surface states
of noble metals [6] and of semi-metallic bismuth [7], and is
further enhanced in surface metal alloys [8–10].

The new excitement in this field is stimulated by the
discovery of a number of three-dimensional (3D) materials
with giant SOC; perhaps the most investigated class of such
materials are polar semiconductors BiTeX (X = Br, Cl, I),
both the bulk [11] and surface states [12] of which were shown
to have a giant spin splitting of the Rashba type. While it is
the surface-induced asymmetry that is responsible for Rashba
SOC in 2D systems, the origin of the effect in 3D BiTeX is a
local electric field (along the c axis), which acts on the Bi-plane
sandwiched between the polar Te and X layers. [13] Both
ab initio calculations [13] and spin-polarized angular-resolved
photoemission [14] have provided support to this picture. An-
other interesting feature of the BiTeX family is that, in contrast
to semiconductor heterostructures, which usually have both
Rashba and Dresselhaus spin-orbit interactions, BiTeX are
purely Rashba materials with no competing Dresselhaus effect.

Investigating the electronic properties of a Rashba metal
requires a sound understanding of its excitations—-both of the
single-particle and collective types; the focus of this paper is on

the latter. Various aspects of the collective modes in 2D systems
with SOC have been studied in the past. It is important to bear
in mind that a typical 2D system is a quantum well (QW)
formed in a semiconductor heterostructure. Quantization of
electron motion in the direction perpendicular to the QW
plane splits the conduction (or valence) band into subbands.
As a result, the excitation spectrum has both the intra- and
intersubband parts. In the absence of SOC, the intrasubband
part consists of a particle-hole continuum and a charge
plasmon mode with a

√
q dispersion at small q [Fig. 1(a),

bottom] [15]. (As is the case for any system with a repulsive
interparticle interaction [16], the intrasubband spin collective
mode lies entirely within the continuum and is thus heavily
damped.) If only the lowest transverse subband is occupied,
intersubband transitions occur between this and the first few
unoccupied subbands. The top part of Fig. 1(a) depicts the
intersubband spectrum for the case of transitions between
the lowest and first unoccupied subband. Intersubband tran-
sitions give rise to a separate region of the particle-hole
continuum and to two kinds of collective modes: an inter-
subband plasmon above the continuum and three degenerate
spin modes (“spin plasmons”) below the continuum, see
Fig. 1(a), top [17–19]. The energy scales of the intersubband
transitions are on the scale of tens of meV, which makes
them accessible to inelastic light scattering spectroscopy (see
Ref. [20] for an extensive review of the experiment in this
area).

The effect of SOC on intersubband transitions has been
studied both theoretically [21] and experimentally [22,23]. The
main result of these studies is that SOC lifts the degeneracy
of the three spin plasmons at finite q [see Fig. 1(b), top]. A
detailed comparison between the theory and experiment was
carried out in Ref. [22].

The effect of Rashba SOC on the intrasubband charge plas-
mons has also been studied in some detail [24–29]. Coupled
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FIG. 1. (Color online) Schematic picture of the single-particle continua (shaded region) and collective excitations (lines) in the absence
(a) and presence (b) of Rashba SOC in a 2D quantum well with the lowest subband occupied. The lower-frequency part is the intrasubband
region, the higher-frequency part is the intersubband region. The solid (dashed) lines correspond to spin (charge) modes. (Inset) Zoom of the
intersubband region. While SOC affects both inter- and intrasubband regions, it brings about qualitatively new effects, i.e., new spin and charge
modes and the Rashba continuum, in the intrasubband region.

spin-charge plasmons in a helical Fermi liquid (a system with
a Dirac spectrum due to SOC only) has also been investigated
within the random phase approximation in Ref. [30]. It is by
now well established that transitions between Rashba subbands
give rise to an additional—“Rashba”—continuum, which lies
above the charge continuum [see Fig. 1(b), bottom]. Also, in
addition to the usual 2D plasmon with a

√
q dispersion, which

corresponds to the oscillations of the total charge density, a
2D Rashba metal supports also an optical plasmon mode.
(A third plasmon mode lies within the Rashba continuum
and is thus unobservable.) The intrasubband

√
q plasmon

gets damped by particle-hole excitations within the Rashba
continuum.

The spin collective modes in a 2D system with Rashba
SOC arising due to transitions between the two spin-split bands
have been studied only fairly recently [31–33] and, so far, only
theoretically. The main prediction of the theory is the existence
of three spin modes (“chiral-spin waves”) that arise solely due
to SOC [as opposed to spin plasmons which exists even in
the absence of SOC), see Fig. 1(b), bottom]. These modes
are intrinsic collective excitations of a 2D FL with Rashba
SOC [34] and, to some extent, analogs of the Silin-Leggett spin
modes in a partially polarized Fermi liquid (FL) [35–37]. The
important difference between the chiral-spin and Silin-Leggett
modes is that the former exist in the absence of the external
magnetic field and arise from the effective Rashba field acting
on electron spins.

The primary goal of this paper is to study the nature of
collective modes in both 2D and 3D metals with Rashba SOC;
when dealing with the 2D case, we will be focusing entirely
on the modes arising from transitions within the lowest spin-
split subbands and ignoring transitions to the “confinement-
split” subbands. Separate treatment of the excitations between
the spin-split and confinement-split subbands is possible if
the energy splitting due to confinement is much larger than
that due to SOC—this is in fact true for the semiconductor
heterostructures, where the confinement energy is significantly
larger than the SOC splitting [22,23]. In what follows, the term
“intersubband” will be reserved for the spin-split subbands of
a SOC system.

The chiral-spin modes have been studied within a FL
theory [31,32] and within random phase approximation (RPA)
in the spin channel of a neutral system (cold atoms) [33].
There is an infinite number of such modes but only three of
them are isotropic in the momentum space and thus couple to
macroscopic electric and magnetic fields. These three isotropic
modes correspond to longitudinal and transverse oscillations
of magnetization in the absence of the magnetic field.

In principle, a FL theory should give a full description
of the collective modes in both the charge and spin sectors.
However, the spin sector of a Rashba metal with arbitrarily
strong SOC cannot be described by the FL theory, at least
not by its conventional version that operates with almost free
quasiparticles [34]. The reason is that to describe excitations
in the spin sector one needs to take into account states located
in between the Rashba subbands, and these states are strongly
damped if SOC is not weak. One way to avoid this problem is to
focus on the case of weak SOC, which can be then treated as a
perturbation imposed on an SU(2)-invariant FL. The advantage
of this approach is that the electron-electron interaction can be
treated nonperturbatively. This was how the chiral-spin waves
at q = 0 and finite q were analyzed in Refs. [31] and [32],
correspondingly. If SOC is not weak, the FL approach breaks
down, and one needs to retort to some kind of the perturbation
theory in the electron-electron interaction while keeping SOC
arbitrary. Within this approach, the zero-sound and spin modes
of a neutral Rashba system with short-range interactions were
studied in Ref. [33] using the RPA theory. The new element
arising from strong SOC is that the charge and spin sectors are
no longer decoupled (as they were assumed to be in Refs. [31]
and [32]).

In this work, we study the charge and chiral-spin modes, as
well as coupling between them, in both 2D and 3D electron
systems. We treat the electron-electron interaction within a
generalized RPA, which takes into account both the long- and
short-range components of the screened Coulomb interaction,
while keeping SOC arbitrary.

In 2D, our results are as follows. (1) In the charge sector,
we find that there are two plasmons—the first one is the
usual 2D,

√
q plasmon (damped by particle-hole excitations
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within the Rashba continuum) and the second one is an optical
plasmon lying exponentially close to the upper edge of the
Rashba continuum. The two-plasmon feature is generally
consistent with earlier work [24–27,38] although our result
for the dispersion of the second plasmon mode disagrees
with that found in Refs. [26,27]. (2) We calculate the optical
conductivity and explicitly show that the spectral weight
is redistributed between the Drude peak and the Rashba
continuum in a such way that the sum rule is satisfied. (3)
In the spin sector we find, in agreement with the previous
literature [31–33], that there are three modes split off from
the lower edge of the Rashba continuum. However, we also
find that SOC couples the charge the chiral-spin modes in a
very specific manner: the plasmons are coupled to only one
of the chiral-spin modes while the other chiral-spin modes are
coupled to each other. These couplings affect the dispersions
of the respective modes but not their masses, i.e., the mode
frequencies at q = 0. (4) Within the FL approach, valid
for weak SOC, the masses of the chiral-spin modes were
expressed via the FL parameters in Refs. [31,32]. We show
that, depending on the strength of SOC, there are, in fact, two
regimes. The first one corresponds to that found within the
FL theory which assumes that SOC is the weakest interaction
in the system. The second one corresponds to the case when
SOC is stronger than the electron-electron interaction. At the
weakest electron-electron coupling, the chiral-spin modes in
this case are exponentially close to the continuum boundary.
(5) Thus far, all collective modes were studied for the case
when both the spin-split subbands were occupied. We show
that the chiral-spin modes survive even if only one the lowest
subband is occupied.

In 3D, however, collective modes behave in a way that
is qualitatively different from the 2D case. (By “3D” here
we mean a situation when the free-electron term in the
Hamiltonian is extended to 3D while the Rashba term remains
2D; such a case is relevant to BiTeI.) (1) In the charge sector,
there is one out-of-plane optical plasmon, which is not affected
at all by in-plane SOC; the other charge mode is an in-plane
optical plasmon which, for material parameters relevant to
giant Rashba semiconductors of the BiTeX family, is damped
by the particle-hole excitations between Rashba subbands—a
new feature of SOC systems. (2) In contrast to 2D, where
the Rashba continuum starts at finite energy, the continuum
in 3D is present at all energies. Therefore the chiral-spin
modes are Landau-damped by particle-hole excitations even
at q = 0. However, for a sufficiently strong electron-electron
interaction, the imaginary part of spin susceptibility shows a
broad dispersing peak corresponding to a damped chiral-spin
mode. (3) We also calculate the optical conductivity in 3D and
show explicitly that the redistribution of the spectral weight is
consistent with the sum rule (just like in 2D).

The rest of the paper is organized as follows. In Sec II,
we introduce the model and lay out the general strategy for
finding the collective modes. The formalism in this section is
general and holds both for the 2D and 3D cases. In Sec. III,
we revisit the collective modes in 2D, demonstrate consistency
with previous work, and point out some details missed earlier
in the literature. In Sec. IV, we consider the 3D case. In
Sec.V, we relate our theoretical predictions to the experi-
ment. Section VI summarizes our results. Appendices A–E

contain details of derivations not presented in the main
text.

II. MODEL AND GENERAL STRATEGY

We start with the following Rashba Hamiltonian [4] for
noninteracting electrons (we set � = 1, unless specified other-
wise):

Ĥ0 =
∑

k

�
†
kHk�k, (1a)

Ĥk =
(

k2
1 + k2

2

2m1
+ k2

3

2m3

)
σ̂0 + α(σ̂×k)3, (1b)

�† = (c†k↑,c
†
k↓), (1c)

where the x1 and x2 axes of a Cartesian system are the in
plane, the x3 axis is along the normal to the plane, m1/3 is the
effective in-plane/out-of-plane mass, α is the Rashba parame-
ter that encodes the strength of the spin-orbit interaction, and
σ̂ = (σ̂0,σ̂1,σ̂2,σ̂3) is a vector of Pauli matrices with σ̂0 being
the 2×2 unit matrix. (Later on, in Sec. V, we will also
take Dresselhaus SOC into account.) Upon diagonalizing the
Hamiltonian, one obtains two branches of the energy spectrum
corresponding to the opposite chiralities:

ε±
k = k2

‖
2m1

+ k2
3

2m3
± αk‖, (2)

where k2
‖ = k2

1 + k2
2. It is worth noting that Rashba SOC in 3D

can have various forms depending on the lattice symmetries
of the material [39]. In our continuum model, we restrict
our consideration to Rashba SOC that couples only in-plane
components of the electron spin and momentum. The 3D
ellipsoidal dispersion corresponds to the case of BiTeI, where
the Fermi energy is smaller than the interplane hopping and
thus the Fermi surface is closed. In this case, the 2D regime
is obtained by putting k3 = 0 (rather than taking the limit
m3 → ∞ in the final results for the 3D case).

The Matsubara Greens’ function for the noninteracting
system is then given by

Ĝ(K) =
∑

s

�̂s(k)gs(K), (3a)

�̂s(k) = 1

2
[σ̂0 + s(σ̂1 sin θk − σ̂2 cos θk)], (3b)

gs(K) = 1

iωm − εs
k + μ

, (3c)

where K ≡ (iωm,k), s = ± is the chirality index, μ is the
chemical potential (measured from the Dirac point), and θk is
the angle between the projection of k onto the x1x2 plane and
the x1 axis. (In 2D, the k vectors are always in the x1x2 plane.)

The collective modes of an interacting system show up as
poles of the full susceptibilities defined as

χij (r,r′) = −
∫ 1/T

0
dτ 〈TτOi(r,τ )Oj (r′,0)〉, (4)

where Oi = �†σi� with i = 0, . . . ,3 are the charge and
spin densities. Equations (4) will be evaluated within the
perturbation theory in the electron-electron interaction but for
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FIG. 2. (Top) RPA sum for χij . The wavy line is the bare coulomb
interaction V (q), which carries the external momentum q. The shaded
corners denote the vertex corrections to each bubble which is obtained
by summing a ladder series. (Bottom) The ladder series for the vertex
corrections. Each boxed wavy line is a screened Coulomb interaction.

an arbitrary spin-orbit strength α. It is useful to define bare
susceptibilities as χ0

ij (Q) = −�0
ij (Q), where

�0
ij (Q) =

∫
K

Tr[σ̂iĜ(K)σ̂j Ĝ(K + Q)], (5)

with Q = (q,i�n) and
∫
K

≡ T
∑

ωm

∫
dDk

(2π)D , D = 2,3. To
obtain the full susceptibilities, we perform a generalized RPA
sum as illustrated in Fig. 2. The generalized RPA sums up a
chainlike series of polarization bubbles which, in turn, contain
ladder series of vertex corrections. The interaction vertex (due
to the Coulomb interaction) is given by


αγ ;βδ(q) = V (q)δαβδγ̂ δ,

V (q) ≡ V =
{

2πe2

q
in 2D

4πe2

q2 in 3D
. (6)

Making use of the tensor structure of the bare interaction
vertex, it is straightforward to carry out the sum in Fig. 2 with
the result

χij (Q) = −
(

�U
ij + �U

i0
V

1 − V �U
00

�U
0j

)
, (7)

where �U
ij is the bubble that contains the vertex corrections.

This object includes all diagrams that cannot be split into two
by cutting just one interaction line. Notice that the summation
scheme in Fig. 2 is so far exact. However, one needs to resort
to some kind of an approximation to actually compute the
vertex-corrected bubble. The interaction inside a bubble is
supposed to be a screened Coulomb potential. Here, we adopt
an approximation in which this interaction is replaced by a
momentum-independent constant (U ). We will show that this
approximation reproduces the known results obtained within
the FL theory once U is properly identified with the FL
parameter. With the assumptions formulated above, it is now
possible to evaluate the ladder sum in the following way:

�U
ij (Q) = Tr

∫
K

σ̂iĜ(K)γ̂j Ĝ(K + Q), (8a)

γ̂j = σ̂j − U

∫
K

Ĝ(K)γ̂j Ĝ(K + Q), (8b)

where γ̂j is a 2×2 vertex, which due to isotropy of the inter-
action, can only be a function of the transferred momentum
q (which is the same as the external momentum). We now

expand γ̂j over a complete set of Pauli matrices

γ̂j = Ma
j σ̂a, (9)

where a ∈ 0,1,2,3 and the coefficients Ma
j form a 4×4 matrix.

Substituting this back into Eq. (8b), we find

�̂U = �̂0M̂,

M̂ =
(

Î + U

2
�̂0

)−1

, (10)

where Î is 4×4 unit matrix. In the absence of SOC, �0
0j = 0

for j = 1,2,3. The collective modes in the charge sector are
given by the roots of 1 − V (q)�U

00 = 0, while the collective
modes in the spin sector are given by the poles of �U

ij which

are solutions of Det(M̂−1) = 0. To associate the modes with
the corresponding susceptibilities, one can first find the poles
at q = 0, when all the modes are decoupled and then trace the
dispersions at finite q. If the modes do not intersect, as it will
be shown to be the case here, such an identification is unique.

The problem is thus reduced to calculating �0
ij (Q). Using

the definition of the Greens’ function in Eq. (3a), the sixteen
components �0

ij (Q) can be expressed in the following compact
form:

�0
ij (Q) = 1

2

∫
K

Tij ,

Tij =
∑
r,s∈±

grgsF rs
ij . (11)

Explicit expressions for Tij and for the matrix elements, F rs
ij ,

are presented in Appendix A. It is useful to realize that both in
2D and 3D, the system possesses a rotational symmetry in the
x1x2 plane. This allows us to choose the projection of q onto the
x1x2 plane as the x1 axis. One more simplification occurs if
we note that while performing an integral over k, reflection
about the x axis (θk → −θk) implies that θk+q → −θk+q.
In the subband Green’s function gr [Eq. (3c)], the angular
dependence always enters as cos θk and/or cos θk+q. These two
points together imply that all the terms with sin θk, sin θk+q,
and sin(θk ± θk+q) that appear in Tij ’s (see Appendix A)
vanish. This reduces our consideration to only the following
six components: �0

00, �0
02, �0

13, �0
11, �0

22, and �0
33. A simple

exercise shows that this also ensures a block-diagonal structure
of the matrices �̂0 and �̂U .

The six nonzero components of the 4×4 susceptibility
tensor [Eq. (7)] can then be subdivided into two decoupled
sectors: the 1–3 sector

χij (Q) = −�U
ij with {ij} ∈ {11,13,33} (12)

and the 0–2 sector

χ00(Q) = − �U
00

1 − V �U
00

,

χ02(Q) = − �U
02

1 − V �U
00

, (13)

χ22(Q) = −�U
22 − �U

20V �U
02

1 − V �U
00

.

The remaining χij vanish. This is precisely the (partial)
decoupling of the charge and chiral-spin modes mentioned
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FIG. 3. (Color online) Intersubband transitions for the cases
when (a) both the Rashba subbands are occupied and (b) only the
lowest subband is occupied. Labels ± denote chiralities of the Rashba
subbands.

in Sec. I: the 22 susceptibility is coupled to the 00 (charge)
susceptibility, whereas the 11 susceptibility is coupled to the 33
susceptibility. The formulation presented above is applicable
in both 2D and 3D; the specific results depend on the structure
of �̂0. We now apply this general scheme to specific situations,
beginning with the 2D case.

III. COLLECTIVE MODES IN A TWO-DIMENSIONAL
RASHBA SYSTEM

The 2D case is obtained by setting k3 = 0 in Eqs. (1b)
and (2). In Secs. III A–III C, we discuss the analytic results
for the collective modes at small q, in particular, we derive
analytical expressions for the masses of the collective modes
in the spin and charge sector, discuss the coupling between
the spin and charge modes, and analyze the redistribution of
the spectral weight in the conductivity. The numerical results
for dispersions of the modes, valid for any q, are presented in
Sec. III C 2.

A. Spin-charge polarization tensor in two dimensions

We begin by discussing the polarization tensor for noninter-
acting electrons, �0

ij , for the case when both Rashba subbands
are occupied, i.e., μ > 0, as shown in Fig. 3(a). The case of
only one occupied subband, corresponding to Fig. 3(b) will be
discussed in Sec. III C 3. Since �0

00(0,�) = 0 by total charge
conservation, to capture the physics in the charge sector we
need to preserve the leading order q dependence in �0

00, which,
as will be shown below, appears as q2. This requires expanding
all the components of �̂0 to O(q2). The diagonal components
are expandable in even powers of q while the off-diagonal
components are expandable in odd powers of q. Upon analytic
continuation i�n → � + iδ, we obtain expansions of the six
nonzero components of �̂0 to O(q2):

�0
00 = m1

2π

[(
p0q

m1�

)2

− q2

8m1�
L(�)

]
,

�0
11 = m1

2π

[
−1 − �

8m1α2
L(�) + A11(�)

(
q

2m1α

)2]
,

�0
22 = m1

2π

[
− 1 − �

8m1α2
L(�) + A22(�)

(
q

2m1α

)2]
,

�0
33 = m1

2π

[
− 2 − �

4m1α2
L(�) + A33(�)

(
q

2m1α

)2]
,

�0
13 = −i

m1

2π
A13(�)

(
q

2m1α

)
+ O(q3),

�0
02 = −m1

2π
A02(�)

(
q

2m1α

)
+ O(q3). (14)

Here,

p0 ≡
√

2m1μ + m2
1α

2 (15)

and

p± ≡ p0 ∓ m1α (16)

are the Fermi momenta of the Rashba subbands. The expres-
sions in Eq. (14) are valid in the limit of q � m1α,�/vF .

The functions Aij in Eq. (14) are given by

A11(�) =
(

p0α

�

)2

+ m1α
2

4�
L(�) + 3�

2α
a1 − 3

8
m1�a2,

A22(�) = 3

(
p0α

�

)2

− m1α
2

4�
L(�) + �

8α
a1 − 1

8
m1�a2,

A33(�) = m1α
2

2�
L(�) + �

2α
f1 − 1

2
m1�a2, (17)

A13(�) = − �

4m1α2
L(�) + �

4α
a1,

A02(�) = −1

8
L(�) + 2m1α

2

�

with

a1 ≡ 2�(p− + m1α)

m1(4α2p2− − �2)
− (α → −α),

a2 ≡ 2�

m1(4α2p2− − �2)
− (p− + m1α)2

m2
1

8p−α�

(4α2p2− − �2)2

−(α → −α). (18)

The function

L(�) = ln

[
(� − �− + iδ)(� + �+ + iδ)

(� − �+ + iδ)(� + �− + iδ)

]
(19)

with �± = 2αp± arises from transitions between the Rashba
subbands, as shown in Fig. 3. The interval of frequencies �+ �
� � �−, where ImL(�) �= 0, corresponds to the Rashba
continuum of width �− − �+ = 4m1α

2. The logarithmic
structure of L(�) is responsible for most of the interesting
properties of the collective modes.

A note on a small q expansion. While the above expansions
are completely straightforward, the entire derivation is too
cumbersome to be presented here. Nevertheless, we would like
to highlight some key aspects in the behavior of �0

ij ’s that differ
from the case without SOC. It follows from Eq. (A2a) that in
the limit of small q, the angular factors arising from the ma-
trix elements reduce to 1 + cos(θk − θk+q) ≈ 2 − O(q2) and

1 − cos(θk − θk+q) ≈ q2

2k2 sin2 θk. Furthermore, the combina-
tion g+g+ + g−g−, which corresponds to intrasubband transi-
tions, gives the same contribution as in the absence of SOC and
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thus scales as ∝ q2/�2, while the combination g+g− + g−g+
involves integration in the region between the two Fermi
surfaces giving rise to the logarithmic factor L(�) [Eq. (19)].
The latter is the intersubband contribution that makes a system
with SOC qualitatively different from a 2D Fermi gas. The
need to integrate over the momentum interval in between
the Rashba subbands, where quasiparticles are in general not
well-defined, is also a roadblock for the development of a
FL theory for systems with arbitrary SOC [34]. To evaluate
�0

00 [Eq. (A2a)] to O(q2), we notice that the contribution of
the convolution of the Green’s functions to the intrasubband
part scales as q2, while the matrix element is independent of
q in the limit of q → 0. For the intersubband contribution,
the matrix element scales as ∝ q2 while the Green’s functions
give a q independent logarithmic factor [L(�) in Eq. (19)]. For
the �0

33 component, however, a similar consideration shows
that the intrasubband contribution is absent to order q2 (the
first nonzero term occurs at order q4), while one needs to
keep O(q2) corrections to L(�) in the intersubband part.
This is the origin of the function A33. All the �0

ij ’s thus
have both intrasubband and intersubband contributions dressed
appropriately by the angular factors arising from the matrix
elements.

B. Charge sector: plasmons, optical conductivity,
and the sum rule

As mentioned in Sec. I, the plasmon mode of a two-
dimensional electron gas (2DEG) with Rashba SOC has been
studied in great detail in earlier work [24–27,38]. Here, we
demonstrate how the plasmon modes are obtained within our
formalism and compare our results with those of prior work.
We also study coupling between plasmons and the modes in the
spin sector. We show that the existence of two plasmon modes
in a 2D Rashba metal follows naturally from the RPA-ladder
approach developed in Sec. II. As a consistency check, we also
show in Appendix B that the same results can also be obtained
by calculating the conductivity by using either the quantum
Boltzmann equation or the Kubo formula.

1. Plasmons from the RPA approach

Plasmon modes are manifested by poles in the charge
susceptibility, χ00. The poles coincide with the roots of the
equation 1 − V (q)�U

00 = 0, where �U
00 = �0

00(1 + U
2 �0

00)−1.
Neglecting the short-range component of the interaction (U ),
upon which �U

00 = �0
00, and using the form of �0

00 from
Eq. (14), we see that the long-wavelength limit of plasmon
modes occurs as a solution of a transcendental equation (we
choose � > 0 for convenience)

�2

q
= e2

(
p2

0

m1
− �

8
ReL(�)

)
. (20)

It is obvious that Eq. (20) has a real solution(s) only outside
of the Rashba continuum, i.e., either for 0 � � < �+ or
for � > �−. The left- and right-hand sides (LHS and RHS,
correspondingly) of Eq. (20) are plotted in Fig. 4. One of the
roots (marked by the dot) is prominent. To obtain its dispersion
analytically, one can neglect the second term in the RHS of

FIG. 4. (Color online) Graphic solution of Eq. (20). The root
marked by a dot corresponds to the 2D plasmon with a

√
q dispersion.

Inset: A zoom on peak at �− in logarithmic scale showing the second
root which corresponds to the optical plasmon mode arising solely
due to SOC.

Eq. (20), which yields

�1(q) =
√

e2p2
0

m1
q1/2 + O(q). (21)

This is the usual 2D plasmon with a
√

q dispersion; the
coefficient of the

√
q term is renormalized by SOC. The second

root is more subtle. Since we have already found the mode
with dispersion vanishing at q → 0 and since the state at
q = 0 is nondegenerate, we expect the other mode to have
finite frequency at q → 0. At finite � and q → 0, the LHS
of Eq. (20) diverges; therefore, the RHS must diverge too.
This is only possible if � approaches the upper boundary of
the Rashba continuum (�−) from above, such that ReL(�)
is negative and diverges as ln(� − �−). Neglecting the first
term in the RHS of Eq. (20) and replacing � by �− in all the
factors under the logarithm except for the one that vanishes at
� = �−, we obtain

�2(q) = �− + �− + �+
p0/m1α

e
− 8�−

e2q . (22)

This second root is shown in the inset of Fig. 4.
Thus a 2D Rashba system formally has two plasmon modes:

one mode is the usual,
√

q plasmon, expected for any 2D
system, and the other mode is split off (exponentially weakly
at small q) from the upper edge of the Rashba continuum. At
larger q, the boundaries of the continuum themselves disperse
with q (see, e.g., Ref. [28]) and the second plasmon tracks
the upper boundary of the continuum. At finite but small q

(q � m1α), the dispersion of the second plasmon can be
written as

�2 ≈ �−(q) + �−(q) + �+(q)

p0/m1α
e
− 8�−(q)

e2q , (23)
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where the q-dependent boundaries of the Rashba continuum
are [28]

�±(q) = ± (q ± 2m1α + pF )2 − p2
F

2m1
. (24)

One might wonder if the exponentially weak dispersion of
�2 exceeds the accuracy of the small q expansion. We would
like to stress this is not the case. To see this, we note that
an expansion of �0

00 to fourth order in q can be expressed as
(see Appendix C)

�0
00 ∝ c1q

2 + c2q
4 + (c3q

2 + c4q
4)L[�(q)], (25)

where ci’s are some coefficients with appropriate dimensions.
Dropping the q4 terms implies the smallness of the q4L[�(q)]
term relative to the q2 term near the second plasmon branch.
For our result to be valid, we thus need the distance between
�2(q) and �− to be larger than e−const/q2

. Our solution suggests
that this distance is of order ∼ e−�−q � e−�2

−/q2
, which is well

within the region of validity.
At this point, we would like to compare our results with

the ones obtained previously by different groups [24–28,38],
not all of which agree with each other on the number and
type of plasmons. Our results partially agree with those of
Refs. [24,28,38]. Reference [38] identified the two plasmon
branches and also the exponential closeness of the optical
branch to the Rashba continuum; however, the dispersion of
the continuum boundaries was ignored in this work. Refer-
ence [28] did not identify the optical plasmon—probably due
to its exponential closeness to the continuum. Reference [24]
correctly identified the two plasmons but also reported a
third plasmon at the lower edge of the Rashba continuum,
which we do not find. Reference [26] also reported the two
plasmons, but both the shape of the Rashba continuum and
the

√
q-plasmon dispersion disagree with our results, as well

as with that by others. Reference [27] identified two plasmons
and noticed correctly that the third plasmon is damped inside
the Rashba continuum; however, our result for the optical
phonon dispersion disagrees with theirs. We believe that the
disagreement is due to the fact that the sign in the equation for
the plasmon dispersion in Ref. [27] is opposite to that in ours,
as well as to that in other works.

Recall that we had neglected the short-range component of
the interaction in arriving at our results for the plasmon modes.
It is safe to do so because, to leading order in q, the presence
of the short-range interaction does not affect the plasmons. To
see this, let us go back to the equation 1 − V (q)�U

00 = 0 and
expand �U

00 in U as �U
00 ≈ �0

00 + U
2 (�0

00)2. From Eq. (14), we
see that (�0

00)2 ∼ q4/�4. Hence, the equation for the plasmon
mode acquires a correction of order Uq3/�4. While this
provides a subleading, q3/2U correction to the

√
q plasmon,

it leaves the exponential behavior of the second plasmon
unchanged.

It is necessary to point out that the exponential proximity
of the optical plasmon to the continuum makes it hard to
be detected. Any broadening of the continuum due to finite
temperature or disorder will smear this mode out.

2. Optical conductivity and the sum rule

In this section, we demonstrate how the optical sum rule
is satisfied in the presence of Rashba SOC. The optical
conductivity can be found from the Kubo formula as σij (�) =
iKij (�)/�, where Kij is the current-current correlation
function at T = 0 (as before, � > 0)

K11(�) = e2
∫

d2k

(2π )2

∫ 0

−�

dω

2π
Tr

(
v̂1Ĝ

R
ω v̂1Ĝ

A
ω+�

)
, (26)

where

v̂1 = k1

m1
σ0 − ασ̂2 (27)

and the superscript R(A) denotes the retarded (advanced)
Green’s function. Due to in-plane symmetry, we have K11 =
K22 ≡ K. As shown in Ref. [38] (see also Appendix B 2),

K(�) = −e2α2 m1

2π

(
1 + �

8m1α2
L(�)

)
. (28)

On adding the diamagnetic term n2De2/m1 to the last result,
the conductivity can be written as

σ (�) = ie2

( n2D

m1
− m1α

2

2π

�
− L(�)

16π

)
. (29)

The real part of σ (�) is shown in Fig. 5. We added a
small imaginary part ( i

2τ
) to the denominators of the Green’s

functions in Eq. (26) to simulate disorder (under a rather crude
assumption that the interband and intraband scattering rates
are the same). A detailed description of the effects of disorder
is outside the scope of this work [40].

In a clean system, the coefficient of the �−1 term in the
imaginary part of the conductivity is the Drude weight

D = e2π
n2D − m2

1α
2

2π

m1
, (30)

which can also be defined as

D = e2π lim
�,q→0

�2

q2
�00, (31)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Ω/μ

R
e 

σ(
Ω

)/
e2

Drude Peak

Rashba Continuum

Ω
−

Ω
+

FIG. 5. (Color online) The real part of the conductivity of a
noninteracting 2D system with Rashba SOC. A small imaginary part,
1/τ = 0.01μ, was added to the denominators of the Green’s functions
in the Kubo formula to simulate of the effect of disorder.
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where the limit q → 0 is taken first. Thus there is a correction
O(α2) to the Drude weight due to SOC [38,41–43]. In addition,
Reσ (�) �= 0 in the interval of frequencies corresponding the
Rashba continuum, �+ � � � �−. This is to be contrasted
to the case without SOC when Reσ (�) = 0 for � > 0. Both
the reduction of the Drude weight and a nonzero Reσ at
finite � occur because SOC, being a relativistic effect, breaks
the Galilean (but not translational) invariance [41–43]. While
both these features have been discussed in the literature, their
consequences for the optical sum rule has not been analyzed.

We now show explicitly that the sum rule is satisfied. The
integrated spectral weight should be equal to∫ ∞

0
d�Reσ (�) = π

2
e2 n2D

m1
. (32)

The spectral weight of the Drude peak at � = 0 is D/2. In the
absence of SOC, the area under the Drude peak contains all the
spectral weight and thus the sum rule is satisfied automatically.
In the presence of SOC, D is reduced from its free-electron
value of e2πn2D/m1. However, this loss of weight in the
Drude peak is exactly recovered in the boxlike feature at
finite frequency (see Fig. 5), the area under which is exactly
e2m1α

2/4. Adding up these two contributions, we recover
the total spectral weight of π

2 e2n2D/m1. Electron-electron
interaction gives rise two additional effects: (a) a correction
to the Drude weight [43] and (b) a nonzero value of Reσ (�)
outside the Rashba continuum [42]. Checking the sum rule in
the presence of interactions is a more challenging task and we
shall not dwell on this point any further.

In lattice systems, the above sum rule needs to be applied
with care. Of course, if a sum is performed over all bands, we
must recover the spectral sum e2πn2D/2me (the f -sum rule),
where me is the bare electron mass. However, if we model
the conduction band by a parabolic spectrum with an effective
mass m1, then the sum rule is valid as long as there are no
interband transitions. A spectral weight rearrangement due to
SOC occurs at the energy scale 2αp0. If this redistribution were
to be experimentally verified, then it requires the band gap Eg

of the semiconductor to be large compared to 2αp0 (which
guarantees that the energy scales are well separated). In this
case, one can formulate a “band” sum rule (with the band
mass m1 as opposed to me in the full f -sum rule), which
stipulates conservation of the spectral weight within a given
band. This procedure can then serve as a consistency check
between the optical and Hall measurements: the latter provides
the value of n2D , while the former contains the spectral
information. It is important to realize that for stronger SOC,
n2D should be deduced not from just the Drude weight but
rather from the spectral weight integrated up to � ∼ 2αp0.

C. Spin sector: chiral-spin modes and their coupling
to the charge modes

Thus far, we have analyzed the charge sector. We now
investigate the chiral-spin sector and the coupling between
the two sectors. Some of the important features can be tracked
analytically in the limit of small q; those are discussed in
Sec. III C 1. The quantitative aspects of coupling between the
two types of modes require a full numerical analysis, which
will be presented in Sec. III C 2.

1. Chiral-spin modes at q = 0

The chiral-spin modes were investigated in Refs. [31]
and [32] in the limit of weak SOC but for an arbitrarily
strong interaction within the FL theory. Here, we relax the
constraint of weak SOC and use the RPA+ladder scheme to find
the collective modes. We explicitly show that this reproduces
correctly the results in the small α limit upon expressing the FL
parameters in terms of the short-range coupling constant, U .

We have already shown that, in general, the susceptibilities
can be grouped into the 0–2 and 1–3 sectors (we remind that 0
stands for the charge component while 1,2, and 3 stand for the
Cartesian components of magnetization). As is evident from
the structure of the polarization tensor discussed in Sec III A,
all the four channels decouple in the limit of q → 0. All �0

ij s
with i �= j scale as q and hence vanish at q = 0. Thus the
masses of the modes (which are a q = 0 feature) are not
affected by the 0–2 and 1–3 couplings.

In the q → 0 limit, Eqs. (10), (12), and (14) suggest that the
only nonzero components are χjj with j = 1,2,3 which, in this
limit, are given by −�U

jj . The collective modes correspond to
poles of �U

jj and are thus are given by the roots of the equations

1 + U
2 �0

jj = 0. This leads to the following transcendental
equations for the masses of the modes:

2

u
= 1 + �

8m1α2
L(�), for 11 and 22 modes;

1

u
= 1 + �

8m1α2
L(�), for 33 mode, (33)

where u = m1U/2π is the dimensionless interaction and L(�)
is defined in Eq. (19). The 11 and 22 modes are degenerate at
q = 0: this is guaranteed by the in-plane rotational symmetry
of Rashba SOC. The LHS and RHS of Eq. (33) are plotted in
Fig. 6. Due to a logarithmic singularity in the real part of L(�),
a solution exists for any value of u. At weak coupling (u � 1),
the solution is exponentially close to the lower boundary of the
Rashba continuum (marked by the dashed line). Searching for
a solution of the form � = �+ − δ with |δ| � �+, we find

FIG. 6. (Color online) Graphic solution of Eq. (33). The solid and
dashed lines are the real and imaginary parts of the RHS of Eq. (33),
respectively. The dash-dotted lines are the LHSs for u = 0.66. The
analytical forms of the weak coupling solutions are discussed in the
text.
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for the masses of the 11 and 22 modes

�11(0) = �22(0) = �+

(
1 − 2m1α

p0
e
−( 2

u
−1) 8m1α2

�+

)
. (34)

The mass of the 33 mode is obtained by replacing u → 2u;
therefore �33(0) is the smallest mass. Equation (34) is valid if
the argument of the exponential is much larger than unity
in magnitude. For weak SOC (α � vF , where vF is the
Fermi velocity at α = 0), the last condition implies that
u � α/vF � 1. Therefore the found solution corresponds to
the regime when the electron-electron interaction is weaker
than SOC (when measured in appropriate units). To find the
solution in the opposite regime of weak SOC (α/vF � u),
we expand L(�) in 2m1α

2. A straightforward calculation
yields

�11(0) = �22(0) = 2αpF

√
1 − u

2
. (35)

[Again, �33(0) is obtained from Eq. (35) above by replacing
u → 2u.] Equation (35) is valid if 2m1α

2 � |� − 2αpF |,
where one should substitute the masses of the modes for �.
Doing so and expanding in u, we indeed see that the condition
for validity of Eq. (35) is α/vF � u. The crossover between
regimes described by Eqs. (34) and (35) occurs at u ∼ α/vF .
In Fig. 7, we show the exact solution of Eq. (33) for the 11
and 22 modes as a function of u along with the asymptotic
solutions given by Eqs. (34) and (35). We see here that for
weaker SOC (α/vF = 0.1), the solution is well approximated
by Eq. (35). However, for the stronger SOC (α/vF = 0.5),
the crossover between Eqs. (34) and (35) is clearly apparent.

Within the FL formalism, which assumes that SOC is weak,
the mode masses can be expressed via the FL parameters
evaluated in the absence of SOC [31,32]. If one further adopts
the s-wave approximation, in which all but the zeroth angular
harmonic of the Landau function are absent, the FL results for
masses of the modes reduce to [32]:

�11(0) = �22(0) = 2αpF

√
1 + Fa

0

/
2, (36)

where Fa
0 is the zeroth harmonic of the spin-asymmetric

part of the Landau function. For the 33 mode, one replaces
Fa

0 → 2Fa
0 . Since Fa

0 = −u to first order in the short-range
interaction [34], the FL result [Eq. (36)] corresponds to the
weak-SOC limit of the RPA result, Eq. (35). We see, however,
that the form of the RPA result, Eq. (34), has no correspondence
in the FL theory. This implies that the assumption of weak
SOC of Refs. [31] and [32] is quite stringent: SOC must be
smaller not only compared to the Fermi energy but also to the
electron-electron coupling.

2. Dispersion and coupling of charge and spin sectors
for arbitrary q

In this section, we present numerical results for the
dispersions of the charge and chiral-spin modes, supplemented
by the analytical treatment of limiting cases. The collective
modes are manifested by the poles in the components of
the susceptibility tensor given by Eqs. (12) and (13). A
collective mode is not Landau-damped if it lies outside the
particle-hole continuum (regions where Im�0

ij �= 0). Since

0 0.2 0.4 0.6 0.8 1
0
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0.2

0.3

0.4

0.5

u

Ω
11

(0
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Ω
22

(0
)

α=0.1v
F

Eq. (34)
Eq. (35)
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

u

Ω
11

(0
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Ω
22

(0
)

α=0.5v
F

Eq. (34)
Eq. (35)
Exact

FIG. 7. (Color online) Masses of the 11 and 22 modes as a
function of the dimensional electron-electron coupling u. Solid: an
exact solution of Eq. (33). Dashed: Eq. (34) valid for u � α/vF .
Dash-dotted: Eq. (35) valid for u � α/vF . (Top) α = 0.1vF .
(Bottom) α = 0.5vF . The crossover between Eqs. (34) and (35)
occurs approximately at u ≈ 0.7.

the various components of the spin-charge polarization tensor
are coupled to each other, it is important to determine the
boundaries of the continua for all the six �0

ij . These are
shown in Fig. 8 (the lines are guides to the eye). The top
row corresponds the 0–2 sector, where the continua present in
all �0

ij ’s have both the charge and Rashba regions. The charge
continuum is the region that starts below the diagonal line,
while the Rashba continuum occupies a finite segment of the
vertical axis and disperses into the �-q plane. [The Rashba
continuum in �0

00 is not easily seen on the color scale as
Im�0

00 ∝ q2 but is nevertheless present—see Eq. (14).] This
suggests that the collective modes in this sector are affected by
both charge and Rashba continua. In the 1–3 sector, �0

11 has
both charge and Rashba continua, but �0

13 and �0
33 only have

a Rashba continuum.
The absence of the charge continuum in these two last cases

can be seen analytically, at least in the limit of α � vF . Since
the gap in the Rashba continuum is present only for 0 � q �
2m1α � p0, we can also look at the small-q case, assuming
that q � pF . In this limit, the first term in Eq. (A2p) is equal
to zero to O(q2) since cos(θk − cos θk+q) = 1 − O(q2) and
g+g+ ∼ O(q2). The leading term in �0

33(q,�) is thus given
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FIG. 8. (Color online) Imaginary parts of the six nonzero components of the spin-charge polarization tensor �0
ij [Eq. (5), arbitrary units].

� is in units of μ and q is in units of
√

2m1μ. The solid lines are guides to they eye that mark the boundaries of the single-particle continua.

by

�0
33(q,�) =

∫
K

(g+g− + g−g+)

=
∫

d2k

(2π )2

nF (ε+) − nF (ε−)

� + iδ + (2m1α − q cos θ )vF

+ (α → −α). (37)

The imaginary part of this integral gives only the Rashba
continuum. Thus there is no charge continuum in �33 to
O[(q/pF )2] and O[(m1α

p0
)2].

Since the 33 mode is coupled to the 11 mode through
�0

13, we also need to look at Im�0
13. We focus here only

on the diagonal,
∫

(g+g+ − g−g−) term in Eq. (A2h), as the
charge continuum can arise only from this term. Integrating
the product g+g+, we obtain nF (ε+)−nF (ε+)

�+iδ+vF q cos θ) (cos θk − cos θk+q).

Furthermore, (cos θk − cos θk+q) ≈ − q

pF
sin2 θ . Integrating

over k, we obtain for the imaginary part

Im
∫

K

g+g+(cos θk − cos θk+q) = m1

2π

√
v2

F q2 − �2

vF kF

(38)

for � < vF q and 0 otherwise. This is the region where the
charge continuum should be. However, the combination of
g−g− also yields the same expression, which cancels the
contribution of g+g+. This leads to complete cancellation of
the charge part in Im�0

13 to O[(q/pF )2] and O[(m1α
p0

)2]. While
we have shown this explicitly for weak SOC, we have also
checked numerically that this remains true for larger α as
well.

The absence of the charge continuum has an important
consequence for the damping of the 33 mode. To see this, we
recall that, according to Eqs. (10) and (12),

χ33 = −(
�0

33M33 + �0
31M13

)
. (39)

Since we have shown that in the charge-continuum region both
Im�0

33 and Im�0
13 are equal to zero, a trivial exercise in matrix

inversion suggests that Imχ33 is also zero in that region (even
though Im�0

11 is finite). Thus the 33 mode does not “see” the
charge continuum and hence is not damped.

The dispersions of the collective modes are obtained by
numerically evaluating χij defined in Eqs. (12) and (13)
(see Appendix A for details) [44]. The results of these
calculations are shown in Fig. 9. The imaginary part of the
charge susceptibility (χ00) is shown in the top panel. The

√
q

plasmon approaches the charge continuum for larger � and
q. The optical charge plasmon is not seen here because of a
weak damping added to improve numerical convergence. The
boundaries of the Rashba continuum, which is also not visible
on the color plot, are marked by the yellow dotted lines. The
charge plasmon is damped within the Rashba continuum.

The chiral-spin modes are manifested by the poles in the
three components of the spin susceptibility (χ11, χ22, and χ33).
Their dispersions are shown in the bottom panel of Fig. 9.
The dashed line is the boundary of the Rashba continuum. The
insets show the calculated Imχii (i = 1,2,3) separately. The 11
and 22 modes start out degenerate at q = 0 but split off at finite
q and eventually run into the Rashba continuum. The fact that
the two modes split at finite q can already be seen analytically
from the Eq. (14); this analysis is presented in Appendix D.
The 33 mode disperses downward and approaches the Rashba
continuum but at larger value of q (in the FL theory [32], the
merging point coincides with the end point of the continuum).
The 33 mode is not damped by the charge continuum, but will
be damped due to broadening of the Rashba continuum by
disorder and thermal fluctuations, as well as by quasiparticle
scattering.

Figure 10 shows the effect of coupling of the plasmon to
the 22 mode and the coupling of the 33 mode to the 11 mode.
The dashed lines are the dispersions obtained by ignoring the
coupling between the respective modes; the solid lines are
the actual dispersions of the modes. We note two important
features. (1) The masses of the modes are not affected by the
intermode coupling but the dispersions are. (2) The 33 mode
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FIG. 9. (Color online) (Top) Imaginary part of the charge suscep-
tibility Imχ00 in the � − q plane. The

√
q plasmon is shown by the

solid red line. For larger � and q, the plasmon merges with the charge
continuum (whose boundary is marked by the solid yellow line). The
second (optical) charge plasmon is smeared out by weak damping,
added to improve numerical convergence, and is not visible in the
plot. (Bottom) The dispersions of the spin modes shown are shown
by solid red lines. The 11 and 22 modes are degenerate at q = 0
but split off at finite q and run into the Rashba continuum. The 33
mode disperses downward and merges with the Rashba continuum.
This mode does not feel the charge continuum, as discussed in the
text. The boundary of the Rashba continuum is marked by the dashed
yellow line. The insets show individual Imχii (i = 1,2,3), from which
the dispersions are extracted. Here, α = 0.25

√
2μ/m1, u = 0.2, and

1/τ = 0.02μ.

is pushed away from the continuum but the plasmon is pulled
towards the continuum.

3. Spin-chiral modes for μ < 0

In this section, we show that chiral-spin modes exists even
when only the lower Rashba subband is occupied, i.e., μ < 0.
To see this, let us look at �0

33(0,�) = ∫
K

(g+g− + g−g+) for
μ < 0. Carrying out the ω and angle integrations, we find

�0
33(0,�) =

∫
kdk

2π

[
nF (ε+) − nF (ε−)

i� + 2αk
+ α → −α

]
. (40)

For μ < 0, nF (ε+) = 0 and nF (ε−) = 1 in the interval
p1 < p < p2 where p1,2 = m1α ∓

√
−2m1|μ| + m1α2 are

the inner and outer radii of the annular Fermi surface, see

FIG. 10. (Color online) (Top) Effect of spin-orbit coupling on the
dispersion of plasmon. The red line is the true dispersion in a system
with Rashba SOC (where �02 �= 0). The dashed line is the dispersion
ignoring the coupling to chiral sector (�02 = 0). (Bottom) Change
in dispersion of the 33 mode as a result of coupling to the 11 mode
via �13 (red line). The dashed line is the dispersion ignoring this
coupling. Here mα√

2mμ
= 0.25 and u = 0.2.

Fig. 3(b). Integrating over k, we arrive at

�0
33(0,�) = −m1

2π

[
2p0

m1α
+ �

4m1α2
L′(�)

]
, (41)

where L′(�) is the same as L(�) in Eq. (19) but with p+ → p1

and p− → p2. Intersubband transitions that give rise to the
function L′(�) are shown by the hatched region in Fig. 3(b).
Since L(�) and L′(�) are qualitatively the same, the structure
of the poles and of the continua is the same as for μ > 0.

D. Manifestations of the collective modes
in the observable quantities

In this section, we discuss the relation between the
collective modes and observable quantities. Due to decoupling
of the 0–2 and 1–3 sectors, the 11- and 33 chiral-spin modes
in the dipole approximation can only be excited magnetically
and can be seen in the spin susceptibility measurements or
using the mode confinement proposal of Ref. [32]. (At the
next, quadrupole, order, the 11 and 33 modes couple to the
electric field as well.) The coupling between the charge (00)
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FIG. 11. (Color online) The real part of the conductivity of an
interacting 2D electron system with Rashba SOC. A sharp peak is
due to the 22 chiral-spin mode at q = 0. Here, α = 0.25

√
2μ/m1 and

u = 0.2.

and the in-plane, transverse chiral-spin mode (22) occurs
already at dipole order [31], and we will focus on this channel.
In this section, we study only the theoretical aspects of the
relation between the collective modes and various observables,
hence the parameters chosen for the plots do not necessarily
correspond to any real system. Our predictions for specific
materials are given in Sec. V.

1. Probing the modes at q = 0

It was shown in Ref. [31] that the part of the optical
conductivity arising from the intersubband transitions is
proportional to the in-plane spin susceptibility at q = 0. This
suggests a possibility to observe the chiral-spin mode at
q = 0 directly in the optical conductivity, measured either via
absorption or reflectivity. For completeness, we show how the
result of Ref. [31] is reproduced within our approach.

Recall that the velocity operator in the presence of SOC
[Eq. (27)] contains an off-diagonal part proportional to α.
In the noninteracting case, the corresponding off-diagonal
contribution to the current-current correlation function, Koff ,

is directly proportional to the 22 component of the spin
susceptibility at q = 0:

Koff(�) = e2α2
∫

kdk

2π

∫
dθ

2π

∫
dω

2π
Tr[σ̂2Ĝωσ̂2Ĝω+�]

= e2α2�0
22(0,�). (42)

Within our RPA+ladder formalism, taking into account the
electron-electron interaction amounts to calculating vertex
corrections to the conductivity. This changes Koff to KU

off ,
where

KU
off(�) = e2

∫
K

Tr(v̂1ĜKβ̂ĜK+Q),

β̂ = v̂1 − U

∫
P

Ĝ(P )β̂Ĝ(P + Q), (43)

and v̂1 is defined in Eq. (27). We represent β̂ as β̂ = Naσ̂a with
a ∈ 0,1,2,3. Substituting this form into Eq. (43), multiplying
by σ̂0 and taking trace, we find: N1,3 = 0, N0 = k1/m1, and
N2 = α

1+ U
2 �0

22
. This results in

KU
off(�) = e2α2 �0

22(0,�)

1 + U
2 �0

22(0,�)
. (44)

Thus the 22 mode at q = 0 (the “chiral-spin resonance” in
the terminology of Ref. [31]) shows up as a pole in the
conductivity. The real part of the total conductivity

σ (�) = i
e2

�

[
n2D

m1
− m1α

2

2π
+ α2 �0

22(0,�)

1 + U
2 �0

22(0,�)

]
(45)

is shown in Fig. 11, were again we added a small 1/τ to
mimic the effect of disorder. The new feature, compared to
the noninteracting case (Fig. 5), is a sharp peak below the
Rashba continuum. In 2D systems, Reσ (�) is measured via
absorption.

The optical conductivity can be also measured via reflec-
tivity. The reflectance of a single 2D sheet is related to its
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FIG. 12. (Color online) (Left) Reflectance of a single 2D layer of noninteracting electron gas with Rashba SOC (solid) and without SOC
(dashed). The two features at � = �− and � = �+ are due to the logarithmic singularities at the boundaries of the Rashba continuum. (Right)
The same but with the electron-electron interaction taken into account. The 22 mode shows up as a strong peak in the reflectance. Since the
22 mode is close to the lower boundary of the Rashba continuum, the logarithmic feature at �+ is washed out by the peak at �22. Here,
α = 0.25

√
2μ/m1 and u = 0.2.
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FIG. 13. (Color online) (Left) The real part of the effective conductivity σeff(q,�) [Eq. (47)] for a 2D Rashba system with electron-electron
interactions. The Coulomb interaction gives rise a plasmon peak at lower energies, while the short-range part of the interaction gives rises to a
chiral-spin peak at higher energies. The wave number q is measured in units of

√
2m1μ, α = 0.25

√
2μ/m1, and the dimensionless coupling

constant of the short-range interaction u = 0.2. (Right) The same as on the left but on a logarithmic scale.

conductivity via

R =
∣∣∣∣ 2πσ (�)

c + 2πσ (�)

∣∣∣∣
2

, (46)

where c is the speed of light. The reflectance is plotted in
Fig. 12 for the noninteracting case (left panel) and in the
presence of the interactions (right panel).

2. Probing the modes at finite q

The dispersion of the 22 mode can be accessed via
measuring the nonuniform conductivity, i.e., σ (q,�) with
q �= 0. There is a well-developed technique of measuring
σ (q,�) via absorption of the incident power by a 2DEG with
a grating structure imposed on it [15]. The absorbed power is
proportional to (1/2)E2

0Reσeff, where E0 is the amplitude of
the incident electric field,

σeff(q,�) = σ11(q,�)

1 + 2πiq

�εeff
σ11(q,�)

, (47)

2π/q is the grating period, and εeff = [ε2 + ε1 coth(qd)]/2
is the effective dielectric constant of a structure
vacuum/insulator1/insulator2 with ε1,2 being the dielectric
constants of insulator1/2, correspondingly, and d being the
thickness of insulator1. Both E and q are in the x1 direction. A
well-established feature is a peak in σeff corresponding to the
2D plasmon [15]. SOC modifies the plasmon dispersion; more
importantly, however, it brings in a qualitatively new effect: a
dispersing chiral-spin mode. Therefore one should expect to
see two peaks: one from the plasmon and another one from
the chiral-spin mode.

Our goal now is to find σ11(q,�) given by

σ11(q,�) = i

�
KU

11(q,�). (48)

We notice that, in contrast to the q = 0 case, KU
11(q,�) at

finite q is not simply related to the 22 component of the spin
susceptibility. This is already evident for the noninteracting

case, when

K11(q,�) = e2
∫

K

Tr[v̂1(q)ĜKv̂1(−q)ĜK+Q] (49)

with

v̂1(q) ≡ k1 + q/2

m
σ̂0 − ασ̂2. (50)

Carrying out the trace, we find

K11(q,�)

e2
=

∫
K

(
k2

1 − q2

4

m2

1

2
T00 − 2α

k1

m

1

2
T02

)

+α2�0
22(q,�), (51)

where T00 and T02 are given by Eqs. (A2a) and (A2c),
correspondingly. The last term in Eq. (51) is proportional to
the spin susceptibility while the first two terms vanish at q = 0
because in this case

∫
ω
T00 = 0 and

∫
ω
T02 = 0. These terms

is an extra contribution which distinguishes between K11 and
�22 at finite q.

The current-current correlation function for interacting
electrons is evaluated in Appendix E. The final result is that
the the dispersion of the mode probed by the conductivity at
finite q is different from the dispersion probed by the spin
susceptibility: the difference is in a q-dependent term that
scales as u2q2 at small q. At arbitrary q, K11(q,�) needs to
be computed numerically. The full result for σeff in shown in
Fig. 13, where for simplicity we set εeff = 1. In addition to the
plasmon peak at lower energies, there is also a (much weaker
dispersing) peak at higher energies from the 22 chiral-spin
mode. As larger q, the 22 modes merges with the Rashba
continuum. For the parameters chosen for Fig. 13, this happens
at q ≈ 0.32

√
2m1μ, which is why the there is no 22-peak at

q = 0.32
√

2m1μ in this figure.

IV. COLLECTIVE MODES IN A THREE-DIMENSIONAL
RASHBA SYSTEM

In this section, we address the collective modes in a 3D
Rashba system. At the noninteracting level, our model is the
Hamiltonian in Eq. (1a) with finite k3. The 3D Fermi surface
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FIG. 14. (Color online) (Left) Fermi surface of a 2D electron system with Rashba spin-orbit coupling for μ > 0. (Right) A cut along k2 = 0
plane of the 3D Fermi surface corresponding to the spectrum (see 2), which is isotropic in the x-y plane. μ > 0. The 3D Fermi surface is
obtained by rotating the 2D contours about the k3 axis. Here, α = 0.25

√
2μ/m1 and m3/m1 = 2.

is of the toroidal shape. Its projection onto the x1x2 plane is
the same two circles as in a 2D system (cf. Fig. 14, top), while
the x1x3 projections are two overlapping ellipses (cf. Fig. 14,
bottom). It is convenient to define the following dimensionless
parameters:

s1 = m1α

p0
, s2 =

√
2m1μ

p0
. (52)

The general formalism for studying the collective modes is the
same in 2D (Sec. II); an important difference, however, is k3

integration, which will lead to qualitative differences between
the 2D and 3D cases.

A. Charge sector: plasmons

Since the 3D system is anisotropic (the x3 direction is
different from any direction in the x1x2 plane), we would
expect the in-plane and out-of-plane responses to be different.
Indeed, the system does support an anisotropic plasmon mode
whose frequency, given by the equation 1 − V (q)�0

00 = 0,
depends on the direction of q. Although the exact solution for
generic q is a quite involved, one can readily work out the
cases of the out-of-plane (q = qx̂1) and in-plane (q · x̂3 = 0)
plasmons.

1. Out-of-plane plasmon (q = qx̂3)

In this case, the calculation is quite simple because angular
integration is rendered trivial. According to Eq. (11), �0

00 is
given by an integral of T00 [Eq. (A2a)]. Because q is out
of plane, cos(θk − θk+q) = 1, and thus one needs to evaluate
only the convolution

∫
g+g+ + g−g−. Expanding T00 to order

q2
3 and integrating over K , we obtain

�0
00(q,�) = q2

�2

p3
0

π2√m1m3

(
1

3
s3

2 + 1

2
s2

1s2 + 1

2
s1 sin−1 s1

)
,

(53)

where q = q3 and s1,2 are defined in Eq. (52). [As a
check, one can show that if α = 0 and m1 = m3 = m, then
p0 → pF = √

2mμ and we reproduce the isotropic 3D
limit: �0

00 = (p3
F /3π2)q2/m�2 = nq2/m�2.] The prefactor

in Eq. (53) is related to the total number density. Indeed,

a rather straightforward calculation shows that the number
density for the spectrum (2) is given by

n3D = m3
p3

0

π2√m1m3

(
1

3
s3

2 + 1

2
s2

1s2 + 1

2
s1 sin−1 s1

)
, (54)

and thus Eq. (53) can be rewritten as

�0
00(q,�) = n3D

m3

q2

�2
. (55)

Consequently, the plasmon frequency at q = 0 is �2 =
4πn3De2/m3, which is the same as in the absence of SOC.

2. In-plane plasmon (q · x̂3 = 0)

This case is more involved because of angular integration. In

the limit of small q‖ ≡
√

q2
1 + q2

2 , one can expand the angular
factors in Eq. (A2a) as

1 + cos(θk − θk+q) ≈ 2 − q2
‖

2k2
‖

sin2 θ,

1 − cos(θk − θk+q) ≈ q2
‖

2k2
‖

sin2 θ. (56)

After some algebra, we obtain

�0
00(q,�) = q2

�2

m3

m1

p3
0

π2√m1m3

{
1

3
s3

2 + 1

4
s2

1s2 + 1

4
s1 sin−1 s1

+ m1�

16p2
0

[L1(�) + L2(�)]

}
, (57)

where q = q|| and

L1(�) =
∫ s2

0
dkln

⎡
⎣

(
�

2αp0
+ s1 + iδ

)2 − 1 + k2(
�

2αp0
− s1 + iδ

)2 − 1 + k2

⎤
⎦ ,

L2(�) =
∫ 1

s2

dkln

⎡
⎣

(
�

2αp0
+ √

1 − k2 + iδ
)2 − s2

1(
�

2αp0
− √

1 − k2 + iδ
)2 − s2

1

⎤
⎦ . (58)

The integrals in the expressions above can be performed
analytically but the final results are not very insightful, and

035106-14



COLLECTIVE MODES IN TWO- AND THREE- . . . PHYSICAL REVIEW B 91, 035106 (2015)

we refrain from presenting them. As a consistency check, one
can verify that in the limit � � 2αp0, when SOC becomes
irrelevant, Eq. (57) reproduces correctly the α = 0 result, i.e.,

�0
00(q,� � 2αp0) = q2

�2

n3D

m1
. (59)

[Indeed, in this limit L1(�) → p2
0

16m1�
( 1

2 s2
1s2) and L2 →

p2
0

16m1�
(− 1

4 s2
1s2 + 1

4 s1 sin−1 s1), which, with the help of Eq. (54)
for the number density, yields Eq. (59).]

Substituting �0
00 from Eq. (57) into 1 − V (q)�0

00 = 0, we
rewrite the plasmon equation as

�2 = 4πe2

m1
ñ(m3,α,�),

with ñ(m3,α,�) = m3p
3
0

π2√m1m3

{
1

3
s3

2 + 1

4
s2

1s2 + 1

4
s1 sin−1 s1

+ m1�

16p2
0

[L1(�) + L2(�)]

}
, (60)

where the function ñ(m3,α,�) reduces to n3D in the limit � �
2αp0. An important feature of the current case, as compared
to the case without SOC, is that ñ has an imaginary part (due
to imaginary parts of L1 and L2) and thus the plasmon can be
Landau-damped by particle-hole excitations within the Rashba
continuum. On its turn, the Rashba continuum in the 3D case
is different from that in 2D: along the frequency axis, the 3D
continuum starts right at � = 0 and goes up to frequency �−
(see Fig. 15). Therefore, if the plasma frequency happens to
lie below �−, the plasmon is damped even at q = 0.

The boundaries of the Rashba continuum in 3D can be found
analytically. To this end, we note that the imaginary part comes
from the off-diagonal convolution of the Greens functions,∫

g+g− + g−g+, rather than from the angular factors. The
same convolution occurs in �0

00 and �0
33 [cf. Eqs. (A2a)

and (A2p)]. It is more convenient then to determine the
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FIG. 15. (Color online) The Rashba continuum—the region
where Im�0

33 (and other Im�0
ij ’s) is nonzero–in 2D (dashed) and

3D (solid). In 2D, the continuum is bounded above and below by
�− and �+, correspondingly. In 3D, the upper limit is at �−, while
the lower limit extends all the way to � = 0 with a cusp at �+. The
plots have been normalized to their respective maximum values for
the sake of comparison. Here, α = 0.25

√
2μ/m1 and m3 = 2m1.

continuum boundaries from Im�0
33, which is finite at q = 0,

than from Im�0
00, which vanishes at q = 0 and hence needs

to be expanded to order q2. The expression for �0
33 at q = 0

reduces to

�0
33(0,�) =

∫
K

(g+g− + g−g+)

=
∫

d3k

(2π )3

[
nF (ε+) − nF (ε−)

i� + 2αk‖
+ α → −α

]
.

(61)

For � > 0, the imaginary part of Eq. (61) is given by

Im�0
33(0,�) = − 1

2π

∫ √
2m3μ

0
dk3

∫ p̃−

p̃+
k‖dk‖δ(� − 2αk‖),

(62)

where

p̃±(k3) =
√

2m1

(
μ − k2

3

2m3

)
+ m2

1α
2 ∓ m1α. (63)

In 2D, where the k3 integral is absent and p̃±(k3 = 0) = p±,
Im�0

33(0,�) �= 0 is nonzero only for 2αp+ < � < 2αp−. In
3D, the spectral weight is further integrated over k3:

Im�0
33(0,�) = − 1

2π

�

(2α)2

∫ √
2m3μ

0
dk3 �

(
�

2α
− p̃+

)

�

(
p̃− − �

2α

)
. (64)

Since p̃+(k3 = √
2m3μ) = 0 and p̃−(k3 = 0) = p−, the inte-

gral is nonzero for all frequencies in the interval 0 < � <

2αp−. For � � 2αp0, Im�0
00(0,�) ∝ |�|�. The profiles of

Im�0
33 as a function of � in 2D and 3D are shown in Fig. 15.

A graphic solution of Eq. (60) is shown in Fig. 16. The solid
and dashed-dotted lines depict the real and imaginary parts
of the RHS, correspondingly. In agreement with the argument
given in the preceding paragraph, the imaginary part is nonzero
in the interval of frequencies 0 � � � �−. The root of the
equation is shown by the dot. We chose the material parameters
appropriate for BiTeI: α = 4.0 eV Å [45,46], m1 = 0.1me

[46], m3 = 1.0me [47], and the background dielectric constant
ε∞ ≈ 20 [48]. Note that in the case of a semiconductor with the
background dielectric constant ε∞, one needs to replace e2 in
Eq. (60) by e2/ε∞ to obtain the “screened plasma frequency”;
the plasma frequencies in Figs. 16 and 17 are the screened ones.
In the top panel of Fig. 16, μ = ER (which is the right order of
magnitude for a typical BiTeI sample). The plasmon lies within
the Rashba continuum and is hence Landau-damped even at
q = 0. In the bottom panel, we show a hypothetical case of
μ = 500ER , when the plasmon is above the continuum.

Figure 17 shows the plasma frequency and the upper edge
of the Rashba continuum, �−, as functions of the chemical
potential, μ; all frequencies in units of the Rashba energy,
ER = m1α

2/2; the rest of the material parameters is the
same as in Fig. 16 and corresponds to BiTeI. In regard to
real materials, we note that ER ≈ 140 meV, while μ varies
substantially from sample to sample. The highest value of
μ reported in the literature is 66 meV (above the Dirac
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FIG. 16. (Color online) Graphic solution of Eq. (60) for a 3D
plasmon at q = 0. Solid: real part of RHS, dashed-dotted: imaginary
part of RHS, dashed: LHS. The frequency is measured in units of
the Rashba energy, ER = m1α

2/2. The top is for μ = ER , which is
a realistic value for BiTeI, and the bottom is for μ = 500ER . Other
material parameters are chosen for BTeI, as specified in the main text.

point) [45], which is more than twice smaller than ER .
Therefore BiTeI (and other materials from this family) appear
to be squarely in the regime of damped plasmons. For our
choice of the material parameters, undamped plasmons exist
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FIG. 17. (Color online) The plasma frequency (�pl) and the
upper boundary of the Rashba continuum (�−) as functions of
the chemical potential. All energies are measured in units of ER =
m1α

2/2. Material parameters for BiTeI are specified in the main text.

only when μ � 330ER , which implies an unrealistically high
doping level.

Although we looked at the limiting case of the in- and
out-of-plane plasmons, in reality, there is just one plasmon
branch with anisotropic dispersion. This is fundamentally
different from the 2D case, where there are two distinct
plasmon branches. Furthermore, as long as q has an in-plane
component, the plasmon is modified by Rashba SOC and,
if the number density of carriers is sufficiently small, it
may be damped by particle-hole excitations with the Rashba
continuum. We emphasize that Landau damping of plasmons
at q = 0 is a unique feature of a 3D Rashba system.

B. Optical conductivity and the sum rule

As in the 2D case, intersubband transitions give rise to
a nonzero real part of the optical conductivity even in the
absence of scattering. In 2D, the Rashba continuum occupies
an interval of frequencies �+ < � < �− and, consequently,
Reσ (�) �= 0 within the “box” bounded by these frequencies;
outside this box Reσ (�) = 0 in the absence of scattering (see
Fig. 5). In 3D, the Rashba continuum occupies the interval
0 < � < �− and Reσ (�) �= 0 within this range; thus the gap
between the Drude δ-function peak at � = 0 and �− is filled
(see Fig. 18). The frequency �+ in 3D marks a pronounced
feature in Reσ (�) �= 0 but not the lower edge of absorption,
as it does in 2D. The overall shape of Reσ (�) in Fig. 19 agrees
qualitatively with the optical data on BiTeI [47,49].

Following the standard procedure, one can relate σ (�)
to an experimentally observable reflectance spectrum, R(�).
The resulting R, along with real and imaginary parts of the
dielectric function, ε(�), are shown in Fig. 19. The top panel
corresponds to the case when the plasmon is damped by
the Rashba continuum (μ = ER), while the bottom one to
the case when the plasmon is above the Rashba continuum
(μ = 500ER). Note a weak feature in R(�) below the plasma
edge for � < �− in the second case. The material parameters
are the same as chosen for Fig. 16. For comparison, we also
show the reflectance of a system without SOC (the curve
labeled R0).
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FIG. 18. (Color online) The real part of the conductivity of a 3D
system with Rashba SOC for μ = ER . To simulate the effect of
disorder, the levels were broadened by 1/τ = 0.01μ. This plot is to
be contrasted to the 2D case in Fig. 5.
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FIG. 19. (Color online) Real and imaginary parts of the dielectric
function ε(�) and reflectance R of a 3D material with Rashba SOC.
R0 is the reflectance without SOC. The material parameters are chosen
for BiTeI. (Top) μ = ER . In this case, the plasma edge is broadened.
(Bottom) μ = 500ER . There is a weak feature in R for � < �− and
a sharp plasma edge at the plasmon frequency.

We see from Eq. (53) that the Drude weight (∼ �2

q2 �0
00)

is affected by SOC. Indeed, the Drude weight is proportional
to ñ(m3,α,� = 0) which, in general, does not coincide with
the actual number density, n3D . Just as in 2D, this indicates a
spectral weight redistribution between the Drude and Rashba-
continuum parts of the conductivity. To check if the sum rule is
satisfied, we calculate the in-plane conductivity of a 3D system
using the Kubo formula [Eq. (29)]. On adding the diamagnetic
term, we find

σ (�) = iK(�)

�
,

K(�) = e2

m1

[
n3D −

√
m3

m1

p3
0

π2

(
1

4
s2

1s2 + 1

4
s1 sin−1 s1

)

+
√

m3

m1

p3
0

π2

m1�

16p2
0

(L1(�) + L2(�))
]
. (65)

The frequency-independent term in ReK represents the Drude
weight reduced by intersubband transitions. Just as in 2D, the
loss of the spectral weight at � = 0 is compensated by the
contribution from the Rashba continuum at finite frequencies.

Indeed, it can easily be checked that the integral

∫ �−

0
d�Im[L1(�) + L2(�)] = 2πp2

0

m1

(
s2

1s2 + s1 sin−1 s1
)

(66)
gives exactly the weight missing from the Drude term.

C. Spin-chiral modes in three dimensions

The situation with the chiral-spin modes in 3D differs
qualitatively from that in 2D. First, the chiral-spin modes in 3D
occur only if the strength of the electron-electron interaction
exceeds a threshold value—this is in contrast to the 2D case,
where the modes occur even for an infinitesimally weak
interaction. Second, even the modes do occur, they lie within
the Rashba continuum and are thus Landau-damped by inter-
subband particle-hole excitations. Generically, the width of a
mode is comparable to its frequency and thus one can expect to
see only broad resonances rather than well-defined excitations.

We begin the analysis of the 3D case with the limit
of weak SOC and consider the modes only at q = 0. In
this case, the off-diagonal components of the spin-charge
susceptibility tensor vanish and the three chiral-spin modes
decouple. The masses of the modes are determined from
the equation 1 + (U/2)�0

ii(0,�) = 0 with i = 1,2,3. Noticing
also that �0

11(0,�) = �0
22(0,�) = (1/2)�0

33(0,�), we focus
on the 33 mode. The frequency of the mode at q = 0 is given
by the equation 1 + (U/2)Re�0

33(0,�) = 0 with

Re�0
33(0,�) = 1

π2
P

∫ √
2m3μ

0
dk3

∫ p̃−

p̃+
dk||

2αk2
||

�2 − (2αk||)2
,

(67)

where p̃± are defined in Eq. (63) and P
∫

denotes the Cauchy
principal value of an integral. For weak SOC, momenta p̃+ and
p̃− are close to each other and thus k|| under the integral can be

replaced by
√

2m1(μ − k2
3/2m3). After some rearrangements,

Eq. (68) is reduced to

Re�0
33(0,�) = −ν

[
1 − �2

�2
0

P
∫ 1

0

dx

x2 − 1 + (�/�0)2

]
,

(68)

where ν = m1
√

2m3μ/2π2 is the density of states at the Fermi
level (per one spin projection), x ≡ k3/

√
2m3μ, and �0 =

2α
√

2m1μ in the limit of small α. Solving the integral, we
obtain

Re�0
33(0,�) = −2νP

(
�

�0

)
,

P (y) = 1 +

⎧⎪⎨
⎪⎩

y2

2
√

1−y2
ln

1+
√

1−y2

1−
√

1−y2
, for 0 < y < 1;

− y2√
y2−1

arctan 1√
y2−1

, for y > 1.

(69)

Notice that P (0) = 1, P (y→1−) = 2, and P (y→1+) = −∞.
A plot of Re�0

33(0,�) is shown in Fig. 20.
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In a dimensionless form, the equation for the mass of the
mode reads

2

u
= P

(
�

�0

)
, (70)

where u ≡ Uν. At u > 0, the solution is possible only for � <

�0, where P is positive. In contrast to the 2D case, however, the
LHS of the equation is finite within this interval and thus there
are no solutions at weak coupling (u � 1). For the 33 mode, a
solution exists if 1/2 < u < 1. Notice that u = 1 corresponds
to a ferromagnetic (Stoner) instability, at least in the mean-
field approximation. For the 11 and 22 modes, one simply has
to replace u → u/2; consequently, the minimum value of u

moves up to u = 1. Within this approximation, therefore, there
are no 11 and 22 collective mode in the paramagnetic phase.
Still, the mean-field criterion for ferromagnetism may not be
accurate. Assuming for a moment that all the modes do occur
already in the paramagnetic phase, we proceed with estimating
their damping. Since the mode frequency is below �0, it is
within the Rashba continuum and thus damped by particle-
hole excitations. The imaginary part of �0

33 has already been
evaluated in Sec. IV A 2 [see Eqs. (61)–(64)]. In the small-α
limit, we find

Im�0
33(0,�) = −2ν

�|�|
�2

0

(71)

for � � �0. Extrapolating this formula with an order-of-
magnitude accuracy to the region � ∼ �0 and recalling that

u ∼ 1, we conclude that the width of the mode is on the order
of �0 and thus comparable to the frequency of the mode itself.
Therefore the mode is actually a rather broad resonance.

Thus far, we have considered the case of weak SOC,
which is not relevant to 3D materials with giant Rashba
splitting. However, relaxing the assumption of weak SOC does
not change qualitatively the conclusions obtained above: the
modes occur only if the interaction is above a threshold value
and are damped; the quantitative change is the threshold value
for u gets larger as α increases. For arbitrary α, we find

�0
33(0,�) = −√

m1m3
p0

2π2

1

s2
1

{
s2

1s2 + s1 sin−1 s1

− m1�

4p2
0

[L1(�) + L2(�)]

}
, (72)

where p0 is given in Eq. (16), s1,2 are defined in Eq. (52),
L1,2(�) are given in Eq. (58), and, as before, �0

11(0,�) =
�0

22(0,�) = (1/2)�0
33(0,�). The behavior of Re�0

33(0,�)
for a range of α is shown in Fig. 20. For very small α

(left panel), −Re�0
33 reaches a maximum value of 4, in

agreement with Eq. (69). As α increases, the maximum value
of −Re�0

33 decreases and, consequently, the threshold value
of u (defined now as u = U

√
m1m3p0/2π2) increases too:

umin = 0.52,0.71,1.18 from the left to right, correspondingly.
For stronger SOC, therefore, a stronger interaction is needed
to see the resonances in the susceptibility.

0 1 2 3 4

−5

0

5

10

Ω/μ

Π
0 33

(Ω
)/

ν

2/u

−ReΠ0
33

ImΠ0
33

0 1 2 3 4

0

2

4

6

8

10

Ω/μ

Im
χ 33

(Ω
)/

ν

u=0.8
u=0.2
u=0

FIG. 21. (Color online) (Left) Graphic solution of the equation 1 + (U/2)�0
33(0,�) = 0 defining the frequency of the mode in the 33

channel. The dimensionless electron-electron coupling u ≡ U
√

m1m3p0/2π 2 is chosen to be 0.8. (Right) Evolution of Imχ33(q,�) with the
strength of the electron-electron interaction. A resonance peak develops for stronger u.
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As before, the masses of the modes are given by 1 +
U
2 �0

ii(0,�) = 0 with i = 1,2,3. For arbitrary α, Eq. (70) for
the mass of the 33 mode is replaced by

2

u
= s2 + sin−1 s1

s1
− �

4m1α2
[L1(�) + L2(�)]. (73)

This equation is solved graphically in the left panel of Fig. 21
for u = 0.8. In contrast to the weak-SOC case, there are now
two solutions of 1 + (U/2)Re�0

ii(0,�) = 0 both of which
are, however, damped by the continuum. The right panel of
Fig. 21 depicts Imχ33(0,�) for various values of u. For u

above the threshold value, Imχ33(0,�) exhibits a peak whose
width (relative to its center) can be shown to be equal to
uπ (1 − s1)s2/4s1. The peak becomes more prominent for
stronger electron-electron interactions.

As in 2D, the intersubband part of the in-plane optical
conductivity, σ11(�), is related to the 22 component of the
spin susceptibility. Subtracting the Drude peak, we obtain for
the remainder

�σ22(�) = ie2α2

�
�U

22(0,�). (74)

The real part of �σ22(�) is plotted in Fig. 22 for material
parameters corresponding to BiTeI and 1/τ = 0.01μ. The
broad feature just below �+ is due to a damped chiral-spin
mode. Comparing Fig. 22 with the experimental data [47,49],
we see that the observed conductivity resembles more the
theoretical prediction for small u, in which case the chiral-spin
collective modes do not exist.

V. PROSPECTS FOR EXPERIMENTAL OBSERVATION
OF THE CHIRAL-SPIN MODES IN 2D

In the section, we discuss conditions under which the chiral-
spin modes can be observed in semiconductor heterostructures
via optical probes, which include absorption spectroscopy,
both without [50] and with a grating structure [51], inelas-
tic light scattering [22,52], and ultrafast pump-and-probe
techniques [53]. We focus here on detecting the in-plane
transverse (22) chiral-spin mode. The out-of-plane transverse

(33) mode can be detected using the technique suggested in
Ref. [32]. A detailed discussion of experimental conditions
for observing the 22 mode at q = 0 is given in Ref. [31]. For
completeness, we first re-visit the q = 0 case and extend the
analysis by including the Dresselhaus mechanism of SOC, and
then discuss the q �= 0 case.

Since disorder smears out the chiral-spin modes via the
Dyakonov-Perel mechanism, the candidate material must have
as little disorder as possible. Various effects arising from
SOC were studied in 2D electron gases in high-mobility
GaAs/AlGaAs and InGaAs/InAlAs quantum wells, and in
what follows we limit our discussion to these two systems.

Rashba SOC is characterized by two energy scales: the
spin-orbit splitting � = 2αkF and the Rashba energy ER =
m∗α2/2�

2. (In the section, we restore � and measure α in units
of energy×length.) Since α/� is much smaller than the Fermi
velocity in both systems, it is permissible to use the value of
kF in the absence of SOC. For future reference,

kF [μm−1] = 0.80×102
√

n[1011 cm−2], (75a)

μ [meV] = �
2k2

F

2m1
= 0.2

me

m1
n[1011 cm−2], (75b)

where me is the free electron mass.
The strength of SOC relative to disorder may be charac-

terized by three “quality factors” (two of which are related to
each other)

Q1 ≡ �τtr/�, (76a)

Q2 ≡ ERτtr/�, (76b)

Q3 ≡ 16Q2
2, (76c)

where τtr is the transport mean free time. (Strictly speaking,
the width of the chiral-spin resonance is determined by
two characteristic times: τ (1) ≡ τtr and τ (2), where 1/τ (l) =
nivF

∫
dφ[1 − cos(lφ)]d�/dφ, ni is the impurity number

density and d�/dφ is the differential scattering cross-section
of a single impurity [31]. We neglect this detail here.)

The Q1 factor characterizes the sharpness of the chiral-spin
resonance. The condition Q1 � 1 coincides with the require-
ment for the Dyakonov-Perel mechanism to be in the ballistic
regime and is readily achieved in high-mobility systems. The
Q2 factor determines whether the Rashba continuum can
be detected in an optical measurement because the width of the
continuum is given by 8ER . Also, Q2 defines the height of the
peak in the optical conductivity at the chiral-spin resonance
frequency �0:

σpeak = e2

h
Q2. (77)

Finally, the ratio of σpeak to the Drude conductivity at the
resonance frequency �0 determines the contrast of the peak
against the Drude background. Setting �0 = � for an estimate,
one obtains σD ≡ Reσ (�0) ≈ (e2/h)μ/�2τtr; thus

σpeak

σD

= Q3. (78)

Since ER � � for weak SOC, both Q2 and Q3 are much
smaller than Q1. If Q3 � 1, the resonance is masked by the
Drude tail.
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In conventional units, Q1, Q2, and Q3 can be written as

Q1 = 1.4α [meV Å]
√

n[1011 cm−2]

(
m1

me

)
μ

[
cm2

V s

]
×10−5,

(79a)

Q2 = 6.5

(
m1

me

α [meV Å]

)2

μ

[
cm2

V s

]
×10−8, (79b)

Q3 = 6.8

(
m1

me

α [meV Å]

)4(
μ

[
cm2

V s

]
×10−7

)2

. (79c)

The highest reported value of α for a GaAs/AlGaAs
heterostructure is α = 5 meV Å (Ref. [54]). Using m1 =
0.067me, n = 10×1011 cm−2, and μ = 107 cm2/V s, which
is available in the best samples [55], we obtain Q1 = 148.0,
Q2 = 0.07, and Q3 = 0.09. Although a large value of Q1

guarantees that the peak in Reσ is sharp, small values of Q2 and
Q3 make the amplitude of the peak to be very small. Also, the
Rashba continuum is smeared out. The total conductivity (the
sum of the Drude and resonance parts) for parameters specified
above shows no discernible features associated either with the
chiral-spin resonance or with the Rashba continuum. The peak
becomes visible on subtracting the Drude tail; however, it is
likely that this procedure will not be accurate enough when
applied to real data.

It needs to be pointed out that a typical GaAs/AlGaAs
quantum well has both Rashba and (linear) Dresselhaus types
of SOC with comparable coupling constants. For example,
α = 5 meV Å and β = 4 meV Å (Ref. [54]) or, according to
a different study [56], α = 1.5 meV Å and β = −1.4 meV Å.
Without repeating all the derivations of the previous sections
with Dresselhaus SOC taken account, we consider the (rel-
evant) case when both α and β are small (compared to the
Fermi velocity). For a (001) quantum well with both Rashba
and Dresselhaus couplings, the energy spectrum of spin-split
subbands is given by

ε±
k = �

2k2

2m1
± k

√
α2 + β2 + 2αβ sin(2θk). (80)

An optical measurement probes direct transitions between the
subbands. The width of the region of allowed transitions—the
intersubband part of the particle-hole continuum—depends
on α and β. At β = 0 and to linear order in α, this region
reduces to a point: � = 2|α|kF . If both α and β are present,
the width of the region is determined by the maximum and
minimal values of the energy splitting �(k) = ε+

k − ε−
k =

2k
√

α2 + β2 + 2αβ sin(2θk), evaluated at k = kF . This gives
for the width of the particle-hole continuum

2kF ||α| − |β|| � �� � 2kF (|α| + |β|). (81)

The lower boundary of the continuum is always smaller
compared to the case when only one of the two mechanisms
is present. Since the chiral-spin modes are located below
the continuum, their frequencies will also be reduced cor-
respondingly. We thus see that a competition between the
Rashba and Dresselhaus mechanisms is quite detrimental for
chiral-spin waves. As the chiral-spin resonance is practically
invisible in the optical conductivity for parameters relevant
for a GaAs/AlGaAs heterostructure even if only the Rashba

mechanism is taken into account, we conclude that this system
is not an optimal material for the purpose of observing chiral-
spin waves, at least at q = 0. At finite q, one can maximize the
combined effect of the Rashba and Dresselhaus couplings by
choosing q along the direction in which the energy splitting
is maximal (θ = ±π/4 for the same and opposite signs of α

and β, correspondingly). We defer a detailed analysis of this
situation to another occasion.

In InGaAs/InAlAs quantum wells, SOC is much stronger,
e.g., α = 100 meV Å at n= 16 × 1011 cm−2 (Ref. [5]), which
helps to compensate for smaller mobilities typical for these
structures; the highest mobilities reported for InGaAs/InAlAs
samples are in the range μ = (2 − 5)×105 cm2/V s (Refs. [57]
and [58]). Also, SOC in these structures is predominantly of
the Rashba type [5,59], which alleviates the problem with
a competition between the Rashba and Dresselhaus mecha-
nisms. Choosing α = 100 meV Å, μ = 2×105 cm2/V s, n =
16×1011 cm−2, and m1 = 0.042me, we obtain Q1 = 47.0,
Q2 = 0.23, and Q3 = 0.84. Notice that μ = 83 meV at this
value of n. Both the Rashba continuum for noninteracting
electrons and the chiral-spin resonance for interacting once
are now visible in the total optical conductivity (Fig. 23,
top); on subtracting the Drude tail, the peak becomes very
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FIG. 23. (Color online) (Top) Real part of the optical conduc-
tivity for parameters corresponding to an InGaAs/AlGaAs quantum
well. Solid: interacting electrons with u = 0.5. Dashed: noninter-
acting electrons. (Bottom) Real part of the optical conductivity
with the Drude tail removed. Material parameters: α = 100 meV Å,
μ = 2×105 cm2/V s, n = 16×1011 cm−2, and m1 = 0.042me; for
these values of n and m∗, kF = 3.2×102 μm−1 Å and μ = 83 meV.
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FIG. 24. (Color online) Effective conductivity [Eq. (47)] for a
range of wave numbers, as indicated in the legend. The effective
conductivity for a system without SOC was subtracted for clar-
ity. Material parameters are the same as in Fig. 23 except for
n = 1012 cm−2.

much pronounced (Fig. 23, bottom). The effective conductivity
(with the Drude contribution subtracted) is shown in Fig. 24.
The only free parameter in this estimate is the value of the
dimensionless coupling constant for short-range interaction,
which we chose as u = 0.5. In this case, the frequency of the
22 mode is ≈ 0.066μ.

The chiral-spin mode can also be detected by measuring
reflectivity rather than absorption. The disadvantage of this
method in 2D is that the reflectance is proportional to the
absolute value of the conductivity rather than to its real part
[at least as long as |σ (�)| � c, cf. Eq. (46)]; therefore a large
imaginary part of Drude tail also serves as a background
for the resonance. The reflectance spectrum for parameters
corresponding to a InGaAs/AlGaAs is plotted in Fig. 25. The
resonance feature in bare reflectance (inset) is quite faint but
becomes quite pronounced on subtracting the reflectance of a
quantum well without SOC (main panel).

FIG. 25. (Color online) The reflectance of an interacting 2D
electron gas (u = 0.5) minus the same quantity in the absence of
SOC. (Inset) Zoom of the bare reflectance around the resonance.
Material parameters correspond to an InGaAs/AlGaAs quantum well
are the same as indicated in the caption to Fig. 23.

We now turn to probing the dispersion relations of the
chiral-spin modes. A conventional way to measure the
dispersion of a collective mode in 2D is via imposing a
grating structure, as discussed in Sec. III D. If the thickness
of the insulating layer, d � 1/q, then εeff, in Eq. (47) for the
effective conductivity is reduced to εeff = (ε1 + ε2)/2 = 12
(from Ref. [60]). Using this, we calculate the effective
conductivity for a GaAsIn/InGaAs quantum well for the same
set of material parameters as used in calculating Reσ (�) in
the bottom panel, except for n = 1012cm−1. This is shown
in the bottom panel of Fig. 23. For clarity, the corresponding
quantity without SOC was subtracted. The evolution of the
peak with q follows the dispersion of the in-plane transverse
(22) mode.

Recent advances in inelastic light spectroscopy made it pos-
sible to observe spin-plasmon collective modes—as defined
in Sec. I—in GaAs/AlGaAs [22] and CdMnTe [23] quantum
wells with sub-meV resolution. This method also allows to
measure dispersion relations directly, without grating, as the
scattering wave number, q, is controlled by the wave number
of the exciting light (typically, in the near-infrared range)
and by the scattering geometry. References [22] and [23]
probed the spin-plasmon dispersion at q on the scale of few
μm−1, which is exactly the range of q used in bottom panel
of Fig. 23. For reasons explained earlier in this section, the
prospects of observing a chiral-spin mode in a GaAs/AlGaAs
heterorstructure are not very promising. However, we believe
that it can be observed in a high- quality InGaAs/AlGaAs
heterostructrure, and inelastic light spectroscopy employed in
Refs. [22] and [23] appears to be well suited for this purpose.

VI. CONCLUSIONS

We have studied collective modes in 2D and 3D systems
with a linear Rasbha-type SOC of arbitrary strength. For the
3D case, we assumed that the Rashba coupling is in the x-y
(or 1-2, in our notations) plane. Using a perturbative technique
which combines an RPA sum for a long-range (Coulomb)
and ladder sum for a short-range (screened) interaction, we
find the collectives modes as poles of susceptibilities. Loosely
speaking, the charge susceptibility, obtained by re-summing
the RPA series, yields the charge collective modes while
the three components of the spin susceptibility, obtained by
resumming the ladder series, yields three collective modes in
the spin channel. More precisely, the charge susceptibility is
coupled to the 22 susceptibility while the 11 susceptibility
is coupled to the 33 susceptibility. Intermode couplings are
proportional to q and do not affect the masses of the modes
but do affect their dispersions.

Our specific results for the 2D case are as follows. The
system supports two plasmon modes: one is the usual

√
q

plasmon that splits off the charge continuum at q = 0. The
other one is an intersubband plasmon that splits off the upper
edge of the Rashba continuum but remains exponentially close
to it. This closeness is due to a logarithmic singularity in the
real part of the charge susceptibility at the edges of the Rashba
continuum. Thermal smearing and disorder can make it hard to
detect this mode experimentally. We have shown that the Drude
weight is reduced due to the SOC (this is not unique to Rashba
systems but any two or more band system that mixes the
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bands will show such a reduction). This lost weight is exactly
recovered at finite frequencies in agreement with the sum rule.

In the spin sector, we have shown that there are three
chiral-spin modes. With the direction of q chosen as the x1

axis, these are a longitudinal mode with magnetization along
the x1 axis and two transverse modes with magnetizations
along the x2 and x3 axes. We refer to these modes as to 11,
22, and 33 modes, correspondingly, as they occur primarily as
poles in corresponding components of the spin susceptibility.
The 11 and 22 modes are degenerate at q = 0 but disperse
differently (as was also found in Refs. [32] and [33]) and
run quickly into the Rashba continuum. The 33 mode is
more “robust”: it disperses all the way down to � = 0. The
33 mode does not “see” the charge continuum despite its
coupling to the 11 mode. We have shown that the chiral-spin
modes, first predicted in Refs. [31] and [32] for the case of
weak SOC, exist also for arbitrary SOC, and even if only the
lowest spin subband is occupied. In the weak-SOC limit, our
results for the frequencies of the modes coincide with those
obtained within the FL theory [31,32]. However, we have also
identified another regime, in which SOC is stronger than the
electron-electron interaction. In the this regime, the modes are
exponentially close to the boundary of the Rashba continuum
at weak electron-electron coupling but move away from this
boundary at stronger interaction. Absorption by the 22 mode
both at q = 0 and finite q (in the presence of diffraction
grating) should by detectable experimentally.

In 3D, the results are qualitatively different. In the charge
sector, there is only one (anisotropic) plasmon mode. If q if
out of the plane, the plasmon dispersion is independent of the
SOC. If q is in the plane, the plasmon may or may not be
damped depending on the ratio of the SOC energy scale to
the chemical potential. For parameters characteristic of giant
Rashba semiconductors of the BiTeI family, the plasmon is
damped (even at q = 0), which is a unique feature of 3D system
with SOC. This is a consequence of the fact that the Rashba
continuum extends all the way to zero frequency, in contrast to
the 2D case, when the continuum occupies a finite interval of
frequencies. Another consequence of the extended continuum
is that the chiral-spin collective modes are Landau-damped.
Some features of the 3D system are similar to 2D, e.g., there
is a loss of the Drude weight which is recovered at higher
frequencies. Although the conductivity spectrum is different
in 2D and 3D, the kinks in the spectrum of a 3D system are at
the same energies as in 2D.

We have made quantitative estimates regarding the possi-
bility of the 22 mode to be observed in optical measurements
in 2D. Our conclusion is that a high-mobility InGaAs/AlGaAs
quantum well is an ideal candidate material for this purpose.
Recent realization of synthetic SOC in systems of cold 40K
and 6Li atoms [61,62] can also serve as an interesting platform
to test some of our results.
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APPENDIX A: EXPLICIT FORMS OF Ti j

The matrix elements for the intra/interband transitions F rs
ij ,

defined by Eq. (11), are explicitly given by

F rs
00 = 1 + rs cos(θk − θk+q), (A1a)

F rs
01 = r sin θk + s sin θk+q, (A1b)

F rs
02 = −(r cos θk + s cos θk+q), (A1c)

F rs
03 = irs sin(θk − θk+q), (A1d)

F rs
10 = F01, (A1e)

F rs
11 = 1 − rs cos(θk + θk+q), (A1f)

F rs
12 = −rs sin(θk + θk+q), (A1g)

F rs
13 = −i(r cos θk − s cos θk+q), (A1h)

F rs
20 = F02, (A1i)

F rs
21 = F12, (A1j)

F rs
22 = 1 + rs cos(θk + θk+q), (A1k)

F rs
23 = −i(r sin θk − s sin θk+q), (A1l)

F rs
30 = −F03, (A1m)

F rs
31 = −F13, (A1n)

F rs
32 = −F23, (A1o)

F rs
33 = 1 − rs cos(θk − θk+q), (A1p)

where r,s = ±1 are the chiralities of the Rashba subbands. The
integrands Tij of the expressions (11) for polarization bubbles
are then given by

T00 = (g+g+ + g−g−)[1 + cos(θk − θk+q)]

+ (g+g− + g−g+)[1 − cos(θk − θk+q)], (A2a)

T01 = (g+g+ − g−g−)[sin θk + sin θk+q]

+ (g+g− − g−g+)[sin θk − sin θk+q], (A2b)

T02 = −(g+g+ − g−g−)[cos θk + cos θk+q]

− (g+g− − g−g+)[cos θk − cos θk+q], (A2c)

T03 = i(g+g+ + g−g− − g+g− − g−g+) sin(θk − θk+q),

(A2d)

T10 = T01, (A2e)

T11 = (g+g+ + g−g−)[1 − cos(θk + θk+q)]

+ (g+g− + g−g+)[1 + cos(θk + θk+q)], (A2f)

T12 = −(g+g+ + g−g− − g+g− − g−g+) sin(θk + θk+q),

(A2g)
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T13 = −i(g+g+ − g−g−)[cos θk − cos θk+q]

− i(g+g− − g−g+)[cos θk + cos θk+q], (A2h)

T20 = T02, (A2i)

T21 = T12, (A2j)

T22 = (g+g+ + g−g−)[1 + cos(θk + θk+q)]

+ (g+g− + g−g+)[1 − cos(θk + θk+q)], (A2k)

T23 = −i(g+g+ − g−g−)[sin θk − sin θk+q]

− i(g+g− − g−g+)[sin θk + sin θk+q], (A2l)

T30 = −T03, (A2m)

T31 = −T13, (A2n)

T32 = −T23, (A2o)

T33 = (g+g+ + g−g−)[1 − cos(θk − θk+q)]

+ (g+g− + g−g+)[1 + cos(θk − θk+q)]. (A2p)

Terms that contain sin θk and sin θk+q vanish upon angular
integration and, as a result, only six out of sixteen �0

ij survive.
The charge spin susceptibility was explicitly evaluated in

Ref. [28] in terms of the elliptic functions. As our primary goal
is obtain numerical results for the dispersions of the various
modes, we will evaluate the integrals over the frequency
and angle analytically but perform the last integration—over
the magnitude over the momentum—numerically. In what
follows, we demonstrate these steps explicitly for an example
of �0

00.
Carrying the frequency summation in any �0

ij , one arrives
at the combination

nF

(
εr

k

) − nF

(
εs

k+q

)
i� + εr

k − εs
k+q

. (A3)

Focusing on the T = 0 case, we regroup the terms with
Fermi functions together and split the resulting expression for
�0

00(q,�) into two terms as �0
00(q,�) = �+

00 + �−
00, where

�+
00 = −

∫
kdkdθk

(2π )2
�(μ − ε+

k )
∑
±

(±)

(
A± − kq

m1
cos θk

) ± α|k ± q| cos(θk − θk±q)(
A± − kq

m1
cos θk

)2 − α2|k ± q|2

= ∓
∫

kdk

2π
�(μ − ε+

k )
1

z±
2 − z±

1

⎡
⎣A± ± αk − (1 − m1α

p
)z±

1√
(z±

1 )2 − (
kq

m1

)2
sgnRe(z±

1 ) −
A± ± αk − (

1 − m1α
p

)
z±

2√
(z±

2 )2 − (
kq

m1

)2
sgnRe(z±

2 )

⎤
⎦ , (A4)

where A± = �̄ ± αk ∓ q2

2m1
, �̄ = � + iδ, and

z+
1,2 = A+ − m1α

2 ± α
√

k̄2 + 2m1�̄, z−
1,2 = A− − m1α

2 ± α
√

k̄2 − 2m1�̄, (A5)

with k̄ = k + mα. In deriving Eq. (A5), we used an identity |k ± q| cos(θk − θk±q) = k ± q cos θk. The second part of polarization
bubble is related to the one calculated above via �−

00(α) = �+
00(−α). After straightforward transformations, one obtains for the

polarization bubble

�0
00 = m1

4π

∫ p0

m1α

z+dk̄√
k̄2 + 2m1�̄

⎡
⎣sgnRe(z+

1 )

√
(2m1αz+ +

√
2m1�̄)2 − q2z2+

z2+
√

2m1�̄z2+ − q2
− sgnRe(z+

2 )

√
(
√

2m1�̄z+ − 2m1α)2 − q2√
2m1�̄ − q2z2+

⎤
⎦

+ m1

4π

∫ p0

m1α

z−dk̄√
k̄2 − 2m1�̄

⎡
⎣sgnRe(z−

1 )

√
(z−

√
2m1�̄ − 2m1α)2 − q2√

2m1�̄ − q2z2−
− sgnRe(z−

2 )

√
(2m1αz− −

√
2m1�̄)2 − q2z2−

z2−
√

2m1�̄z2− − q2

⎤
⎦

+ (α → −α), (A6)

where z± = 1√
2m1�̄

(k̄ +
√

k̄2 ± 2m1�̄). It is important to keep δ finite when taking the limit of � → 0 in all components of the

polarization bubbles; otherwise, some contributions can be missed [28]. The one-dimensional integral in Eq. (A6) can be easily
calculated numerically.

All other components of the polarization bubble can be obtained in a similar fashion. For example, for �0
33 one obtains

�0
33 = �+

33 + �−
33, where

�+
33 = −

∫
kdkdθk

(2π )2
�(μ − ε+

k )
∑
±

(±)
A± − kq

m1
cos θk ∓ α|k ± q| cos(θk − θk±q)(

A± − kq

m1
cos θk

)2 − α2|k ± q|2
,

�−
33 = −

∫
kdkdθk

(2π )2
�(μ − ε−

k )
∑
±

(∓)
B± − kq

m1
cos θk ∓ α|k ∓ q| cos(θk − φk∓q)(

B± − kq

m1
cos θk

)2 − α2|k ∓ q|2
, (A7)

where B± = �̄ ± αp ± q2

2m1
, and similarly for other components.
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APPENDIX B: OPTICAL CONDUCTIVITY
OF A NONINTERACTING ELECTRON SYSTEM

WITH RASHBA SPIN-ORBIT COUPLING

The optical conductivity of noninteracting electrons with
Rashba SOC was calculated in Ref. [38] using the Kubo for-
mula and in Ref. [63] using the quantum Boltzmann equation.
To keep our presentation self-contained, we reproduce the
results of these two approaches here and show that resulting
equation for the plasmon modes is the same as obtained within
our RPA approach in the main text [Eq. (20)].

1. Quantum Boltzmann equation

The charge-density fluctuation in response to the electric
field E, is obtained by combining the Poisson’s equation
(−∇2φ = 4πρ), continuity equation (ρ̇ + ∇ · j = 0), and
Ohm’s law (j = σE). Plasmon modes are found at the solutions
of the equation (� + 4πiσ )ρ = 0 in 3D and (� + 2πiqσ )ρ =
0 in 2D.

In this section, we use the quantum Boltzmann equation to
find the optical conductivity σ (�). The distribution function
is a 2×2 matrix in the spin basis:

f̂0 +
(

f11 f12

f21 f22

)
≡ f̂0 + f̂ , (B1)

where f̂0 is the equilibrium distribution function given by f̂0 =
1
2 + i

∫
dω
2π

Ĝ = 1
2 (1 + η̂)nF (ε+) + 1

2 (1 − η̂)nF (ε−) with η̂ =
σ̂1 sin θ − σ̂2 cos θ with θ ≡ θp and f̂ is a nonequilibrium part.
In the absence of scattering, f̂ satisfies the quantum Boltzmann
equation with a spatially homogeneous E in the x direction:

∂f̂

∂t
+ i

2
�[η̂,f̂ ] + eE

∂f̂0

∂p1
= 0, (B2)

where � ≡ 2αp. The analysis is simplified by switching to the
chiral basis via a unitary transformation M̂†(. . . )M̂ , where M̂

is the matrix that diagonalizes the Rashba Hamiltonian (1a):

M̂ = 1√
2

(
1 1

−ieiθ ieiθ

)
. (B3)

Using M̂†η̂M̂ = σ̂3, we obtain for the components of
ˆ̃f = M̂†f̂ M̂

�f̃11 = iEeδ(ε+
p )

(
p

m1
+ α

)
cos θ,

�f̃22 = iEeδ(ε−
p )

(
p

m1
− α

)
cos θ,

(� − �)f̃12 = −Ee
nF (ε+

p ) − nF (ε−
p )

2p
sin θ,

(� + �)f̃21 = Ee
nF (ε+

p ) − nF (ε−
p )

2p
sin θ, (B4)

where ε±
p are given by Eq. (2). The current density is found as

j1 = e

∫
d2p

(2π )2
Tr

[(
p1

m1
− ασ̂2

)
f̂

]

= e

∫
d2q

(2π )2
Tr

[(
p1

m1
− αM†σ̂2M

)
ˆ̃f

]
. (B5)

Noting that

M†σ̂2M =
(− cos θ i sin θ

−i sin θ cos θ

)
, (B6)

we evaluate the trace in Eq. (B5) as

Tr[. . . ] =
(

q1

m1
+ α cos θ

)
f̃11 +

(
q1

m1
− α cos θ

)
f̃22

+ iα sin θ (f̃12 − f̃21). (B7)

Using ˆ̃f from Eq. (B4), we find

Tr[. . . ] = iEe

�
cos2 θ

[
δ(ε+

p )

(
q

m1
+ α

)2

+ δ(ε−
p )

(
q

m1
− α

)2]

+ iEe

q
α sin2 θ [nF (ε+

p ) − nF (ε−
p )]

�

� − �
. (B8)

Using δ(ε±
p ) = m1

p0
δ(p ± m1α − p0) and noting that the factor

of nF (ε+) − nF (ε−) restricts integration to the interval be-
tween p+ and p−, we obtain for the conductivity

σ (�) = ie2

(
p2

0

2πm1�
− L(�)

16π

)
, (B9)

where L(�) is given by Eq. (19).
Plasmon modes correspond to zeros of � + 2πiqσ (�)

which, on using Eq. (B9), leads to the same transcendental
equation (20) as derived using the RPA in the main text.

2. Evaluation of the Kubo formula for the conductivity

Here, the evaluate the conductivity bubble in Eq. (26). First,
we evaluate the trace

Tr[. . . ]

=
[

k2
1

m2
1

+ α2

2
(1 + cos 2θ ) + 2k1α

m1
cos θ

]
(g+g+ + g−g−)

+ α2

2
(1 − cos 2θ )(g+g− + g−g+) (B10)

keeping in mind that grgs ≡ gr (k,ω)gs(k + q,ω + �) and
that the conductivity is evaluated at q = 0. In this limit,∫

dω
2π

(g+g+ + g−g−) = 0. This leaves us with

K(�) = e2α2
∫

kdk

2π

∫
dθ

2π

∫
dω

2π
(g+g− + g−g+) . (B11)

The angular integral is trivial as the integrand does not depend
on the angle. The remaining integrals give∫

kdk

2π

∫
dω

2π
(g+g− + g−g+) = −m1

2π

[
2 + �

4m1α2
L(�)

]
.

(B12)

Substituting this result into K yields Eq. (28) of the main text.

035106-24



COLLECTIVE MODES IN TWO- AND THREE- . . . PHYSICAL REVIEW B 91, 035106 (2015)

APPENDIX C: EXPANSION OF �0
00 UP

TO FOURTH ORDER IN Q

In this Appendix, we present details of the calculation
leading to Eq. (25) of the main text. We may write �00 as a
sum of contributions each pair of the Greens’ function: �++

00 +
�−−

00 + �+−
00 + �−+

00 . For q � 2m1α, an exact expression for
�0

00 reads

�++
00 = − m1

2π2

∫ q

0
dy

∫ y

−y

dx

√
(2p+ + x)2 − q2

q2 − y2

× (2p0 + x)y

−4m2
1�

2 + (2p0 + x)2y2
. (C1)

We need to expand Eq. (C1) (and the analogous expressions
for other components of �0

00) to order O(q4). Notice that the
phase space of the integral in the x-y plane is O(q2) by itself.
This means we need to keep terms up toO(q2) in the integrand.
We make use of expansions

√
(2p+ + x)2 − q2 ≈ 2p+ + x − q2

4p2+
p0,

1

−4m2
1�

2 + (2p0 + x)2y2
≈ − 1

4m2
1�

2

(
1 + y2p2

0

m2
1�

2

)
(C2)

and arrive at the following result:

�++
00 = m1

2π2

p0p+q2

m2
1�

2

×
(

A − q2

8p2+
A + q2

4p0p+
B + q2p2

0

m2
1�

2
C

)
, (C3)

where the numerical coefficients are A ≡ ∫ 1
0 dt

∫ t

−t
ds t√

1−t2 ,

B ≡ ∫ 1
0 dt

∫ t

−t
ds s2t√

1−t2 , and C ≡ ∫ 1
0 dt

∫ t

−t
ds t3√

1−t2 . Since we
are only interested in sorting out the order of terms with various
powers of � and q, we do not really need to evaluate the
coefficients A, B, C (although this can performed easily).

The component �−−
00 is obtained by changing p+ to p− in

�++
00 . Thus the sum �++

00 + �−−
00 may be written as

�++
00 + �−−

00 = m1

2π

v2q2

�2

(
1 + c1

q2

p2
0

+ c2
v2q2

�2

)
, (C4)

where v = p0

m1
and ci’s are numerical coefficients, which can

be determined but whose particular values are not important.
Similarly, an exact form of �+−

00 + �−+
00 for q < 2m1α is

�+−
00 + �−+

00 = − m1

2π2

∫ q

−q

dy

∫ 2p−+y

2p+−y

dx

√
q2 − y2

(x)2 − q2

× (2p0 + x)y

−4m2
1�

2 + (2p0 + y)2x2
. (C5)

After a few more steps of expansion, the final form can be
written as

�+−
00 + �−+

00 = m1

2π

{[
q2

m1�
+ d1

q4(m1α)2

m3
1�

3

]
L(�)

+ d2
q4(m1α)2

p2
0

}
(C6)

with di’s being numerical coefficients. Since we need an
expression for �0

00 at finite � ≈ �−, the only small quantity
Eqs. (C4) and (C6) is q. Adding up all the contributions, we
obtain the result presented in Eq. (25).

APPENDIX D: SPLITTING OF THE 11 AND 22
CHIRAL-SPIN MODES AT FINITE Q

In-plane rotational invariance of the Rashba Hamiltonian
(1a) ensures that the chiral-spin modes with in-plane compo-
nents of magnetization (11 and 22 modes) are degenerate at
q = 0. Once the direction of q in the plane is chosen, e.g.,
as the x axis, the 11 and 22 modes become longitudinal
and transverse modes, correspondingly, and the degeneracy
is lifted. The difference in the dispersions of the 11 and 22
modes at finite q occurs naturally within the FL theory [32]
and is also evident in the numerical results of Ref. [33]. In
this appendix, we provide some details on how the lifting of
degeneracy occurs within our approach.

The q dependences of the various components of the
polarization tensor to order q2 are presented in Eq. (14). Recall
that the dispersions of the collective modes are given by the
roots of the equation Det(Î + U

2 �̂0) = 0. Making use of the
fact that �̂0 is block-diagonal, we obtain the following set of
equations:

(
2

U
+ �0

00

)(
2

U
+ �0

22

)
− (�0

02)2 = 0,

(
2

U
+ �0

11

)(
2

U
+ �0

33

)
+ (�0

13)2 = 0. (D1)

While we can substitute formulas from Eq. (14) into Eq. (D1)
as they are, it suffices to denote the various components of
�̂0 as �0

00 = a0q
2; �0

11 = −(b + a1q
2), �0

22 = −(b + a2q
2),

�0
33 = −2b + a3q

2, �0
02 = cq, and �0

13 = dq. The coefficient
b is a function of �. At q = 0, Eq. (D1) reduces to b = 2/U

(two degenerate equations) and b = 1/U . The solutions to
these equations give the frequencies of the three chiral modes.
To obtain the dispersions of the modes to O(q2), we look
for solutions in the form �2

j = �2
j (0) + vjq

2 with j = 1,2,3.
The exact analysis is quite cumbersome and we refrain from
presenting it here as our goal only to see the splitting of the
11 and 22 modes. The above ansatz for �j results in b →
bj + λjq

2. Substituting the last equation into Eq. (D1) and
solving for λi’s, we obtain

λ1 = U

2
d2 + a1, λ2 = −U

2
c2 + a2,

λ3 = −U

2
d2 + a3

2
. (D2)

Since a2,3 are coefficients of expansion in q of the bare bubble,
it is independent of U and makes λ1 and λ2 to be different.
This is indicative of the splitting between the 11 and 22 modes.
The full effect of this splitting is presented in Fig. 9.
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APPENDIX E: CONDUCTIVITY OF AN INTERACTING
SYSTEM AT FINITE Q

The current-current correlation function is found as

KU
off(q,�) = e2

∫
K

Tr[v̂1(q)ĜKβ̂(−q)ĜK+Q], (E1)

where the vertex β(q) satisfies the finite-q version of
Eq. (E1):

β̂(q) = v̂1(q) − U

∫
P

Ĝ(P )β̂(q)Ĝ(P + Q) (E2)

with v1(q) defined in Eq. (50). Expanding β̂(q), as before,
over a complete set of Pauli matrices β̂ = Naσ̂a , we find that
N1,N3 = 0, whereas N0 and N2 satisfy a system of integral
equations:

N0(k) = k1 + q

2

m1
− U

2

∫
P

1

2
T00N0(p) − U

2
�0

22N2,

N2 = −α − U

2

∫
P

1

2
T02N0(p) − U

2
�0

02N2, (E3)

where T ’s are defined in Appendix A. To solve this sys-
tem, we define two yet-to-be determined variables: Q00 ≡∫
P

1
2T00N0(p) and Q02 ≡ ∫

P
1
2T02N0(p). The quantities N0(k)

and N2 are determined once Q00 and Q02 are found. To find the
latter, we multiply the equation on N0(k) by T00 and separately

by T02, and integrate over K . This leads to(
1 + U

2
�0

00

)
Q00 =

∫
K

(
k1 + q

2

m1

1

2
T00

)
− U

2
�0

00�
0
02N2,

Q02 =
∫

K

(
k1 + q

2

m1

1

2
T02

)
− U

2
Q00�

0
02

− U

2
�02�

0
02N2. (E4)

The integral equation is now reduced to an algebraic one where

only L0p ≡ ∫
K

k1+ q

2
m1

1
2T0p need to be evaluated. Notice that at

the smallest q thatL00(q) ∼ q3 because T00 ∝ q2 provides and
k1 integrates out to null;L02(q) ∼ q2. Solving Eq. (E4) for Q’s
and putting them back into Eq. (E3) to find N ’s, we obtain

N2 = −
(

1 + U

2
�0

22 −
(

U
2 �0

02

)2

1 + U
2 �0

00

)−1

×
(

α + U

2
L02 +

U
2 �02

U
2 L00

1 + U
2 �0

00

)
,

N0(k) = k1 + q

2

m1
−

U
2 L00

1 + U
2 �0

00

−
U
2 �0

02

1 + U
2 �0

00

N2. (E5)

The pole in the spin susceptibility corresponds to 1 + U
2 �0

22 =
0. Because N0 and N2 have their own poles, the pole as seen
in the conductivity at finite q is shifted with respect to that in
the spin susceptibility and is determined from a + U

2 �0
22 = 0,

where a = 1 − (U
2 �0

02)2(1 + U
2 �0

00)−1. For small q, a − 1 ∝
U 2q2 because �0

02 ∝ q.
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