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Tomasch effect in nanoscale superconductors
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The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting
order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting
gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooper-
pair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic
structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently
and describe the TE determined by two types of processes, involving two- or three-subband QPIs. Both types of
QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations
in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the
symmetries of the system. A reduced 4 × 4 inter-subband BdG Hamiltonian is established in order to describe
analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires
or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface
superconductivity.
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I. INTRODUCTION

Electronic structure has always been one of the most
important topics in understanding transport properties in
condensed matter. A variety of remarkable phenomena, from
traditional conducting, semiconducting or insulating behavior
to contemporary quantum Hall effect [1] and topological
insulator behavior [2], are induced by a diversity of electronic
structures.

For conventional superconductors, the well-known BCS
theory [4] and its generalization, the Bogoliubov-de Gennes
(BdG) equations [3], are the milestones needed to reveal
the electronic structure theoretically. An energy gap created
around the Fermi level, EF , in homogeneous superconductiv-
ity and low-lying bound states existing in the core of vortex
states [5–11] were successfully predicted and coincide with
experimental results from tunneling conductance and scanning
tunneling microscopy (STM) [12–15].

Nanoscale superconductors have also received considerable
attention in the last decades due to developments in nanotech-
nology and their unique properties such as shell effect [16],
quantum-size effect [17–21], and quantum-size cascades under
magnetic field [22]. All these effects are induced by changes in
the electronic structure resulting from quantum confinement,
such that energy levels are discretized in nanoparticles and
single-electron subbands appears in nanowires. In addition,
such electronic structure results in a spatially inhomoge-
neous superconducting order parameter [20], which further
induces other effects such as superconducting multigap struc-
tures [23,24], new Andreev states [24], unconventional vortex
states [25], and a position-dependent impurity effect [26].

An interesting phenomenon that appears due to inho-
mogeneous superconductivity is the Tomasch effect (TE),
which is a consequence of quasiparticle interference (QPI)
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due to scattering on a nonuniform energy gap [27–30]. The
underlying process consists in a quasiparticle interacting with,
and being condensed into, the sea of Cooper pairs leaving
behind a different but degenerate quasiparticle [29,30]. As a
result, the Tomasch oscillations appear as periodic oscillations
in the density of states (DOS) in superconducting junctions,
at energies larger than the superconducting gap [10,27,28,31].
These oscillations could be further enhanced when consid-
ering layered structures formed by intercalating successive
metallic and superconducting regions. In this case, the order
parameter is by design nonhomogeneous. Theoretically, these
oscillations were studied in multilayer structures by using
Green’s functions methods like Gor’kov equations [32,33].
However, the electronic structure under TE has not been un-
veiled because a fully self-consistent numerical calculation is
required in order to obtain the coherence between quasiparticle
states.

QPIs should also be observed in unconventional super-
conductors [34–36], where the interference should be more
pronounced due to the intrinsic inhomogeneous nature of the
superconducting order parameter. Theoretically, QPI due to
a local superconducting order parameter suppression in large
unconventional samples was demonstrated in Ref. [37]. How-
ever, in nanoscale structures, quantum confinement modifies
the symmetries of the electronic states. Thus the signatures of
QPI in nanoscale superconductors, although of same nature,
could be different in manifestation in large samples but with
intrinsic inhomogeneities [37].

In this paper, we investigate the electronic structure of clean
nanoscale superconductors by solving the Bogoliubov-de
Gennes (BdG) equations self-consistently. We focus on the TE,
which appears above the superconducting gap. High-precision
energy excitation spectra are needed in order to see the effect
of the QPI processes clearly. Two geometries, nanobelts and
nanowires, are used as typical examples in order to unveil the
properties of TE resulting from two- and three-subband QPIs.
The importance of the sample symmetry is discussed. We find
that even in the presence of weak disorder, the Tomasch effect
is robust.
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It is important to keep in mind that the mean-field BdG
approach has limited validity when describing supercon-
ducting nanobelts and nanowires with diameters down to
10 nm [38–41]. For such nanoscale samples, fluctuations might
play an important role, but are totally neglected by a mean-field
method. Moreover, the quasiparticles in the Landau-Fermi
liquid theory are only well defined near the Fermi level.
Therefore the discussion and results presented in this paper are
valid for larger samples where these effects are not significant.

The paper is organized as follows. In Sec. II, we first
investigate TE of two-subband QPI in nanobelts. The two-
dimensional BdG equations are outlined for nanobelts in Sec. II
A. Properties of the electronic structures under the TE of
two-subband QPI are presented in Sec. II B. A description
based on a reduced 4 × 4 BdG matrix is next introduced in
Sec. II C in order to explain the properties of TE as due to
two-subband QPI. A possible observable effect, modulated
wave patterns in LDOS, induced by TE of two-subband QPI is
discussed in Sec. II D. Signatures of QPI under the influence of
weak impurities are discussed in Sec. II E. Next, we investigate
TE of three-subband QPI in nanowires in Sec. III, where the
three-dimensional BdG equations are solved for nanowires
in Sec. III A. The electronic structure under the influence
of TE of three-subband QPI and their symmetry dependent
properties are presented in Sec. III B. Finally, our conclusions
are summarized in Sec. IV.

II. TOMASCH EFFECT IN SUPERCONDUCTING
NANOBELTS

A. Bogoliubov-de Gennes equations
for two-dimensional nanobelts

For a conventional superconductor in the clean limit, the
BdG equations in the absence of a magnetic field can be written
as (

He �(�r)
�(�r)∗ −H ∗

e

)(
un(�r)

vn(�r)

)
= En

(
un(�r)

vn(�r)

)
, (1)

where He = −(�∇)2/2m − EF is the single-electron Hamil-
tonian with EF the Fermi energy, un(vn) are electron(hole)-like
quasiparticle eigen-wave-functions and En are the quasi-
particle eigenenergies. The un(vn) obey the normalization
condition ∫

(|un(�r)|2 + |vn(�r)|2)d�r = 1. (2)

The superconducting order parameter is determined self-
consistently from the eigen-wave-functions and eigenenergies:

�(�r) = g
∑

En<Ec

un(�r)v∗
n(�r)[1 − 2f (En)], (3)

where g is the coupling constant, Ec is the cutoff energy,
and f (En) = [1 + exp(En/kBT )]−1 is the Fermi distribution
function, where T is the temperature. The core part of Eq. (3)
is the pair amplitude, which is defined as

Dn(�r) = un(�r)v∗
n(�r). (4)

The pair amplitude is the key parameter that shows the
coupling between electronlike and holelike quasiparticles for
each Bogoliubov quasiparticle.

In this section, we consider a two-dimensional nanobelt.
The width is W in the transverse direction, x, and, because
of confinement, Dirichlet boundary conditions are used at
the surface (i.e., un|x=0 = un|x=W = 0, vn|x=0 = vn|x=W =
0). We consider periodic boundary conditions along the y

direction, with a unit cell of length L. The length is set to be
large enough in order to guarantee that physical properties are
L independent.

In order to solve the BdG equations (1)–(3) numerically,
we expand un(vn) as(

un(�r)

vn(�r)

)
=

∑
j∈N+,k

ϕjk(x,y)

(
un

jk

vn
jk

)
, (5)

where

ϕjk(x,y) =
√

2

W
sin

(
πjx

W

)
eiky

√
L

(6)

are the eigenstates of the single-electron Schrödinger equation
Heφjk = ζjkφjk where the wave vector k = 2πm/L,m ∈ Z.
The expansion in Eq. (5) has to include all the states with
energy in the range −EF < ζjk < EF + ε in order to allow the
emergence of the TE well above the energy gap. The energy ε

is taken to be 5Ec, which guarantees sufficient accuracy. We
checked that higher ε does not change the results.

We remark that, for the chosen geometry, the order param-
eter depends only on the transverse variable x, i.e., �(�r) =
�(x). This implies no net momentum of the condensate in
the y direction and the quasiparticle amplitudes (un,vn)T are
k-separated. Then, the summation over k in Eq. (5) can be
removed and the BdG equation (1) is converted into a matrix
equation for each k whose contribution to � can be calculated
independently from the other values of k. This allows us to
include millions of quasiparticle states allowing very high
resolution in the energy dispersion, which is necessary to
observe clearly the Tomasch effect.

The local density of states (LDOS) is calculated as usual:

A(�r,E) =
∑

n

[|un(�r)|2δ(E − En) + |vn(�r)|2δ(E + En)],

(7)
and the total density of states (DOS) is obtained as

N (E) =
∫

A(�r,E)d�r. (8)

The spectral weight is

Zn =
∫

|un(�r)|2d�r, (9)

which represents the contribution of the electronic part of the
wave function of a Bogoliubov quasiparticle state.

In this section, we set the microscopic parameters to be the
same as those used in Refs. [7,10]. These parameters for bulk
are the following: effective mass m = 2me, EF = 40 meV,
Ec = 3 meV and coupling constant g is set so that the bulk
gap at zero temperature is �0 = 1.2 meV, which yields Tc ≈
8.22 K, ξ0 = �vF /(π�0) = 14.7 nm, and kF ξ0 = 21.23. The
prototype material can be, e.g., NbSe2 [7,10]. For nanobelts,
the mean electron density ne is kept to the value obtained
when W,L → ∞ by using an effective EF , where ne =
2
S

∑
n

∫ {|un|2f (En) + |vn|2[1 − f (En)]}d�r and S = W L is
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FIG. 1. (Color online) Nanobelt in the clean limit. (a) Spatially averaged �̄ as a function of width W . In the following we take, W = 16.8 nm
(marked by an open square), which is in the resonant regime. (b) Order parameter, |�(x)|, as a function of x. The horizontal dashed line
indicates the bulk value of the order parameter, �0, in (a) and (b). (c) Quasiparticle excitation spectrum as a function of positive longitudinal
wave vector k for the relevant single-electron subband j . The spectral weight of the states is indicated by color. The horizontal dashed line
indicates the cutoff energy Ec. �j is the superconducting energy gap for states of subband j and 2�jj ′ is the energy gap between the states of
subbands j and j ′ appearing due to the Tomasch effect. The electron and hole amplitudes, u and v, (at y = 0 as a function of x) of states α+
and α− [see (c)], which are under the influence of the Tomasch effect, are shown in (d). Their pair amplitudes, Dα+ and Dα− , and the total one,
Dα+ + Dα− , are shown in (e). Note that Dα+ and Dα− are shifted up for clarity. In (f) and (g), we show u, v, and D as a function of x for the
state β [see (c)], respectively. (h) The corresponding density of states. Peaks pj are due to the contributions from the states of the bottom of the
subbands j , while accompanying peaks p′j are due to the formation of the gaps, i.e., electron-hole coupling.

the area of the unit cell. All the calculations are performed at
zero temperature.

B. Tomasch effect from two-subband quasiparticle interference

Results for the nanobelt with width W = 16.8 nm are
presented in Fig. 1. We first discuss its general properties,
which will be used as a reference later on when the system is
under the influence of TE.

The width of the nanobelt is about ξ0 such that the
quantum size effect is significant. The spatially averaged order
parameter �̄ is shown in Fig. 1(a) as a function of the width
W . This nanobelt with width W = 16.8 nm is at resonance
and �̄ is about 20% higher than the bulk one, �0. As seen
from Fig. 1(b), the spatial distribution of the order parameter,
�(x), is clearly enhanced for most of the x values and shows
strong wavelike oscillations. This enhancement is induced by
quasiparticle states from the bottom of subband j = 8 which
have a large spectral weight as seen from Fig. 1(c). For this

narrow nanobelt, only a few subbands (j = 1–8) contribute to
the order parameter and are distinguishable from each other in
Fig. 1(c).

For a superconductor under quantum confinement and thus
with inhomogeneous order parameter, a multigap structure
was predicted [23,24]. The energy gap �j of the subband j

is defined by the lowest energy of that subband. As seen from
Fig. 1(c), the energy gaps �1, . . . ,�7 have almost the same
value but are lower than �8. This feature can be seen clearly in
the corresponding DOS, in Fig. 1(h), where three significant
pairs of coherence peaks form around the Fermi level. The
lowest energy pair of peaks are less important and are due
to the contributions of quasiparticles of subbands j = 1–7.
The second lowest pair of peaks are more significant and
most of the contributions are given by quasiparticle states of
the subband j = 8 around k = 0.2 nm−1 where it reaches
its local minimum, as shown in Fig. 1(c). It is worth noting
that these two pairs of peaks show electron-hole symmetry in
the DOS, whereas the third lowest pair of peaks do not. The
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latter ones are due to the contribution from states of subband
j = 8 around k = 0. The more significant peak in negative
bias is due to: (1) a large number of hole quasiparticle states
at the bottom of subband j = 8, and (2) the electron-hole
coupling asymmetry due to the higher energy level where
the Bogoliubov quasiparticle states are formed by the larger
weight of the hole component. This can be seen from Fig. 1(c)
where the spectral weight Zn represents the color(shade) of
the lines.

In an isotropic superconductor, Bogoliubov quasiparticles
are well defined only for energies close to the superconducting
gap �. For such states, the electron and hole components are
of the same weight, which maximizes the amplitude of the pair
amplitudes that generate the order parameter. With increasing
energy, Bogoliubov quasiparticles decompose into dominant
electron and hole components, accompanied by a dramatically
decreasing pair amplitude. Finally, they decompose into
separate electron or hole quasiparticles belonging to the normal
state.

For a conventional Bogoliubov quasiparticle, which is
well formed for energies near the gap, the electron and hole
components belong always to the same subbands j , i.e., j − j

coupling. As an example, we show more details of the lowest
energy state β of subband j = 7 [marked by an open circle
in Fig. 1(c)] in Figs. 1(f) and 1(g). The electron and hole
amplitudes at y = 0, i.e., uβ |y=0 and vβ |y=0, as a function of x

are shown in Fig. 1(f). vβ are shifted down for clarity. It can be
seen that both components are in phase because they belong to
the same subband j = 7. Thus the pair amplitude Dβ shown
in Fig. 1(g) as a function of x, is always positive and shows a
regular wavelike pattern with a constant envelope.

We next discuss the influence of the TE on the electronic
structure. First, we find that energy gaps are unexpectedly
opened between electron and hole quasiparticle states even
well above the Fermi level. As seen from Fig. 1(c), the most
pronounced energy gap above Ec is generated by states α+
and α− (marked by open circles) where subbands j = 7 and 9
were supposed to cross each other in case of a homogeneous
superconductor. Here, the states α± have the same k value
and they are chosen because they have the minimal gap
2�7,9 between the two subbands, i.e., Eα+ − Eα− = 2�7,9.
The energy of state α+ is higher than the state of α−. As there
are only two quasiparticles that take part in the QPI, we refer to
this effect as the Tomasch effect determined by two-subband
quasiparticles interference processes.

Second, we find that particle-hole mixing (Bogoliubov
quasiparticles) is always significant for states under the
influence of the TE. This can be seen from the spectral weight
of the related quasiparticle states in Fig. 1(c). Their color
changes gradually for both the upper and lower energy bands
that are associated with this gap. Furthermore, the electron
and hole wave-functions of the states under the TE have a
different structure because they belong to different subbands,
j and j ′, i.e., j − j ′ coupling. To see this characteristic, we
show electron and hole amplitudes at y = 0, u|y=0 and v|y=0,
of the states α± as a function of x in Fig. 1(d). Note that the
amplitudes of the state α− are shifted down for clarity. For both
states, α±, the spectral weights of the electron components are
the same as those of the hole components, which resembles the
conventional Bogoliubov quasiparticle state β. However, their

electron and hole wave-functions show a phase shift because
the electron components, uα± , belong to subband j = 9 and the
hole component, vα± , to subband j = 7. This can be noticed
by counting the numbers of nodes of the wave functions
in Fig. 1(d). The difference between these states is that α+
is the bonding(symmetric) combination of the electron and
hole components while α− is the antibonding(antisymmetric)
combination, i.e., |α±〉 = ±|uj=9〉 + |vj=7〉, as seen from
Fig. 1(d). As a result, their pair amplitudes Dα± as a function
of x, shown in Fig. 1(e) are not positive-definite and exhibit a
phase shift in space.

Third, the Bogoliubov quasiparticle states under the influ-
ence of TE do not directly affect the order parameter. As seen
from Fig. 1(e), the pair amplitudes Dα± are in antiphase due
to the nature of bonding and antibonding combinations. Thus,
their net pair amplitude Dnet = Dα+ + Dα− almost cancels out
as shown in Fig. 1(e). It is worth noting that, as proven in the
next section, the net pair amplitude of these states have nothing
to do with the TE. This contribution is always positive, while
the superconducting order parameter is weakly affected by TE
even if the energy of this avoided crossing is below the cutoff
energy Ec.

Fourth, TE results in BCS-like pseudogaps in the DOS,
which are symmetrically located on both positive and negative
bias. This is easy to understand because energy gaps are opened
for the relevant crossing subbands where particle-hole mixing
appears under the influence of the TE. Typically, the gaps
induced by the TE are smaller than the main superconducting
gap. They will appear as pseudo-gaps because of the under-
lying background given by the other subbands, which are not
gapped. For example, as shown in Fig. 1(h), the largest gap
induced by TE, 2�7,9 is only about 0.42 meV. However, the
effect of the gap resulting from the TE can be seen more clearly
from the enhanced peaks appearing at the gap edge when the
bottom of one subband touches the top of the other subband.
In Fig. 1(h), the gap 2�7,9 is surrounded by the peaks pj=7

and p′
j=7 in DOS for negative bias and by pj=9 and p′

j=9
for positive bias. The generation of the two pair of peaks are
similar to the pj=8, p′

j=8 except that they result from the top
of the holelike subband j = 7 and from the bottom of the
electronlike subband j = 9.

For the chosen width, there are more gap structures
induced by TE in the excitation spectrum [see Fig. 1(c)]
and corresponding peaks in the DOS [see Fig. 1(h)]. For
example, the gap 2�6,8 appears for the coupling of states from
subbands j = 6 and 8 at E = 9.4 meV but its influence on the
DOS is weak. We also find other gaps such as 2�5,7, 2�4,6

and 2�3,5.
TE is a common effect in inhomogeneous superconductivity

and is strongly related to the symmetry, parity and structure
of the order parameter. In the case of the clean limit, as we
showed here, it is important to realize that avoided crossings
exist only between electron and hole quasiparticle states of
subbands j and j + 2n, where n is an integer. This is because
the order parameter has an even function with respect to
y = 0. Similarly, an odd-functional order parameter would
result in TE between states of subbands j and j + (2n − 1).
In the arbitrary situation where the order parameter shows a
random distribution due to strong disorder, TE should happen
between all degenerate electron and hole quasiparticles. All
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these properties can be explained by a reduced 4 × 4 BdG
matrix as shown in the next section.

C. 4 × 4 BdG matrix for the two-subband
quasiparticle interference

Due to the fact that only two subbands are involved in the TE
of two-subband QPI, we find it can be qualitatively described
by a reduced 4 × 4 BdG matrix where only the two Bogoliubov
quasiparticles and their correlations are considered. We start
from the general BdG equations (1) but only keep a hole state
of subband j and an electron state of subband j ′ for a given
wave vector k. For the hole state, its energy and wave function
are determined by the single-electron Schrödinger equation
He|j 〉 = −ζj |j 〉. Note that −ζj < 0 due to the hole excitation.
Again, the energy and wave function of the electron state is
determined by He|j ′〉 = ζj ′ |j ′〉 where ζj ′ > 0. The orthogonal
relation between the hole state |j 〉 and the electron state |j ′〉
yields 〈j |j ′〉 = δjj ′ . For simplicity and fitting the case of
previous section, |j 〉 and |j ′〉 are chosen as real and to generate
the real order parameter �(�r). Then, the electron component
of a Bogoliubov quasiparticle is un = Uj |j 〉 + Uj ′ |j ′〉 and the
hole component is vn = Vj |j 〉 + Vj ′ |j ′〉, where Uj and Vj are
the component amplitude of subband j for electron and hole,
respectively. The 4 × 4 BdG matrix reads

⎡
⎢⎣

−ζj 0 �j �jj ′

0 ζj ′ �j ′j �j ′

�j �jj ′ ζj 0
�j ′j �j ′ 0 −ζj ′

⎤
⎥⎦

⎡
⎢⎢⎢⎣

Un
j

Un
j ′

V n
j

V n
j ′

⎤
⎥⎥⎥⎦ = En

⎡
⎢⎢⎢⎣

Un
j

Un
j ′

V n
j

V n
j ′

⎤
⎥⎥⎥⎦ (10)

with the matrix elements �j = 〈j |�(�r)|j 〉 and �jj ′ =
〈j |�(�r)|j ′〉 = �j ′j . Note that the �jj ′ is the exchange integral
between the two states from different subbands. In a homoge-
neous superconductor, the constant order parameter �(�r) ≡ �

leading to the zero exchange integral, �jj ′ = 0, results in the
decomposition of Eq. (10) into two sets of general 2 × 2 BdG
matrices for the two states respectively. Thus there is no TE
for this case.

For an inhomogeneous superconductor with a perturbation
in the order parameter �(�r) = � + δ�(�r), the matrix elements
are

�j = 〈j |� + δ�(�r)|j 〉 ≈ �, (11)

and

�jj ′ = 〈j |� + δ�(�r)|j ′〉 = 〈j |δ�(�r)|j ′〉 = �j ′j �= 0.

(12)

Note that the nonzero exchange integral �jj ′ �= 0 in this case
is responsible for the TE.

The TE of QPI reaches its maximum when states of two
subbands are degenerate in energy, i.e., ζj = ζj ′ = ζ . So
Eq. (10) is written as

⎡
⎢⎣

−ζ 0 � �jj ′

0 ζ �jj ′ �

� �jj ′ ζ 0
�jj ′ � 0 −ζ

⎤
⎥⎦

⎡
⎢⎢⎢⎣

Un
j

Un
j ′

V n
j

V n
j ′

⎤
⎥⎥⎥⎦ = En

⎡
⎢⎢⎢⎣

Un
j

Un
j ′

V n
j

V n
j ′ .

⎤
⎥⎥⎥⎦. (13)

The eigenvalues and eigenstates of matrix (13) are exactly
solvable and the four eigenvalues are

±E± = ±ε ± �jj ′ , (14)

where ε =
√

ζ 2 + �2 is the quasiparticle excitation energy
of the isotropic superconducting gap �. The gap induced by
TE, �T E , is the energy difference between the two positive
eigenvalues:

�T E =
{

2�jj ′ if �jj ′ < ε

2ε if �jj ′ � ε
. (15)

Typically, the exchange integral �jj ′ is smaller than the
excitation energy gap ε. As a result, �T E = 2�jj ′ and that
is why we labeled the gaps as 2�j,j ′ in Fig. 1.

When the exchange integral is positive, i.e., 0 <

�jj ′ < ε, the eigenvalues sorted by their values are
(−E+ −E− E− E+) and their corresponding eigen-
states are ⎛

⎜⎜⎜⎝
Un

j

Un
j ′

V n
j

V n
j ′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

A A B B

B −B −A A

−B −B A A

−A A −B B

⎞
⎟⎠, (16)

where

A = 1

2

(
1 + ζ

ε

) 1
2

,

B = 1

2

(
1 − ζ

ε

) 1
2

. (17)

Normalization is chosen to satisfy Eq. (2), i.e., 2(A2 + B2) =
1. For both eigenstates with positive eigenvalue E+ and E−,
their spectral weights ZE± = 0.5 indicate that Bogoliubov
quasiparticles are well formed by the coupling between the
electron and hole subbands. The difference between the two
states are the bonding and antibonding combinations of the
electron and hole components.

It is interesting to realize that the A and B are �jj ′ -
independent and

√
2(AB)T is the eigenstate of the positive

eigenvalue of the general 2 × 2 BdG equations, i.e.,
(

ζ �

� −ζ

)(√
2A√
2B

)
= ε

(√
2A√
2B

)
, (18)

where the eigenenergy is ε and the
√

2 is introduced to satisfy
the normalization condition, Eq. (2). It turns out that the total
pair amplitude of the states E+ and E− are the same as the one
without TE, i.e.,

DE+ + DE− = 2AB(|j 〉2 + |j ′〉2) = Dj + Dj ′ . (19)

Finally, we have to mention that the exchange integral �jj ′

is sensitive to the symmetry, parity, and spatial variation of
the order parameter �(�r). For the nanobelt in the clean limit,
�(�r) has a spatial distribution with even parity with respect to
y = 0. The exchange integral is exactly zero when both states
|j 〉 and |j ′〉 have different parity. This is the reason why TE
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FIG. 2. (Color online) Spatial order parameter distribution
|�(x)| for a sample with W = 153.3 nm. Note that the order
parameter converges to �0 in the bulk.

only appears between electron and hole quasiparticle states of
subbands j and j + 2n, which have the same parity, resulting
in a possible nonzero exchange integral �jj ′ .

D. Modulated waves in the local density
of states due to the Tomasch effect

Previously, we introduced the properties of the TE of two-
subband QPIs for a narrow sample. However, the mean-field
BdG theory is of limited validity in such a case due to the
increasing importance of phase fluctuations and, moreover,
quasiparticles are not well defined far above the Fermi level.
In this section, we investigate the TE in wider samples in order
to avoid these issues. The results of this section show that (1)
properties obtained previously are still valid, and (2) the TE
results in a modulated wave structure in the local density of
states, which should be observable in experiments.

As an example, we present results for a nanobelt with
width W = 153.3 nm, which is more than 10ξ0. The spatial
distribution of the order parameter �(x) is shown in Fig. 2.
It can be seen that the order parameter shows Friedel-like
oscillations at both edges but it converges to its bulk value
�0 far away from the edges. The flat order parameter in the
central area suppresses the TE. Fortunately, the energy gaps
induced by TE can still be seen clearly in the corresponding
quasiparticle excitation spectrum in the upper panel of Fig. 3.
Here, we focus on the gaps at the intersection between states
of subbands j and j + 2, which are indicated by a dashed
curve. Due to the smaller energy difference between the
adjacent subbands in the wider sample, the gaps appear at
energies close to the superconducting gap energy �0 and far
below the cutoff energy Ec, where the quasiparticles are well
defined.

The TE exhibits all the properties that have been intro-
duced previously except that the quasiparticle states generate
considerable net pair amplitude, contributing to the order
parameter. To show this feature, we present the electron and
hole amplitudes, u and v, and their pair amplitude, D, of
selected quasiparticle states γ+ and γ− (marked by open
circle in the upper panel) as a function of x in the lower
panels of Fig. 3. Both states have the same wave vector k

and are separated by an energy gap due to the influence of
TE. It can be seen that u and v exhibit rapid oscillations

with slowly varying envelopes. The envelopes show modulated
wave structures due to the combination of states of subbands
j and j + 2. The difference in envelope for states γ+ and γ−
are due to the bonding and antibonding combinations of the
two single-electron wave functions, respectively. Meanwhile,
the phase shift between the u and v components leads to more
complex pattern in their pair amplitude. Finally, the net pair
amplitude Dγ+ + Dγ− (shown in the lower panel of Fig. 3) is
large and positive, showing a modulated wave structure.

As a reference, we also present the electron amplitude, u,
hole amplitude, v, and its pair amplitude, D, of a conventional
Bogoliubov quasiparticle state γ (also marked by open circle
in the upper panel) as a function of x in the lower panels of
Fig. 3. Because u and v belong to the same subband j , they
are in phase leading to a positive pair amplitude with a flat
envelope.

The states γ+ and γ−, which are under the influence of
TE, induce peaks in the DOS and modulated wave structures
in the LDOS. Figure 4 show the corresponding DOS in the
lower panel and the LDOS under the influence of TE in the
upper panel. In the DOS, the peaks induced by states γ± sit
at the symmetrical bias energy E = ±1.65 meV. The insets
magnify the relevant areas. In the insets, the outer peaks are
induced by the state γ+ while the inner peaks are induced by
the state γ−. The LDOS shows very different patterns at these
two energies, which can be seen from the upper panels. For
the outer peaks in DOS, the LDOS is enhanced at the edge
whereas, for the inner peaks, it is enhanced at the center. The
envelope of LDOS varies slowly as a function of x. Therefore
it may be easily detected by STM.

E. Discussion on the signature of the Tomasch
effect in the presence of disorder

Previously, only the TE in clean superconductors were
considered. However, in all experiments, superconductors are
rather “dirty,” where additional scattering processes of quasi-
particles appear due to surface roughness, impurities, substrate
and so on. These factors will broaden the single-electron levels,
modify electronic wave functions, reduce the electron mean
free path and, thus, lead to noise and modifications in DOS
and LDOS. In this section, we study TE under such additional
scattering processes by introducing a random distribution of
weak impurities. The results of this section show that (1) many
more gaps induced by TE are opened in this case, (2) one
can still recover the dominant gaps seen the clean limit by
comparing the DOS of superconducting and normal states,
and (3) the LDOS shows more complex scattering patterns
but follows the same bonding and antibonding combination of
involved quasiparticle wave functions.

The random impurities are introduced by using the potential
U (�r) in the single-electron Hamiltonian defined Eq. (1),
i.e., He = −(�∇)2/2m + U (�r) − EF . As a result, the order
parameter, �(�r), is no longer longitudinally independent, i.e.,
�(�r) = �(x,y). Following the numerical approach introduced
in Sec. II A, we take a periodic unit cell with length L and
width W and expand the electron(hole)-like quasiparticle wave
functions un(vn) by using Eq. (6). Using Bloch’s theorem, the
BdG equations will be separated for each reciprocal vector.
By considering a large number of k points, we achieve a
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FIG. 3. (Color online) (Top) Quasiparticle excitation spectrum as a function of positive longitudinal wave vector, kz, for energies below
1.8 meV for a nanobelt of width W = 153.3 nm. The spectral weight of the quasiparticle states are indicated by color. The three quasiparticle
states γ+, γ−, and γ marked by open circle are chosen for showing the electron and hole amplitudes, u and v, as a function of x at y = 0 and
their pair amplitudes D in the lower panels. The red thick lines are the envelopes of the curves. The quasiparticle states γ+ and γ− are under
the influence of the Tomasch effect and show a phase difference between their u and v components. The net pair amplitude of the two states
Dγ+ + Dγ− is shown in the right-most panel.

good resolution in the DOS in order to observe the TE. In
this section, we take W = 16.8 nm and L = 40 nm. Such
nanobelt in the clean limit (U = 0) has been introduced in
Sec. II B. The impurity potential profile is modeled by a
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FIG. 4. (Color online) DOS and relevant LDOS for the sample
with W = 153.3 nm. The DOS is shown in the lower panel. The
oscillatory structures induced by the Tomasch effect are magnified in
the two insets. The corresponding LDOS A(x,E) along the transversal
direction are shown in the upper panels.

random collection of symmetric Gaussian functions, U (�r) =∑
i Uiexp[−(�r − �ri)2/2σ 2], where Ui is the amplitude, �ri

is the location of the impurity and σ = 0.02 represents the
spread of the potential (full width at 1/10th of maximum is
0.86 nm). For the situation of weak impurities (disorder), we
take 100 impurities in the unit cell with random locations ri and
random amplitude Ui with a maximum Umax

i = 0.1EF . After
the BdG equations are solved self-consistently, as described in
the previous sections, the order parameter, �, has almost the
same distribution as the one with U = 0.

We show in Fig. 5 the spectral weight of quasiparticles
Zn as a function of energy of states En for the case in
the clean limit and the case with impurities. In clean bulk
superconductors, particles and holes never mix at energies
away from the superconducting gap, i.e., Zn = 0 or 1, for holes
or electrons, respectively. In the case of clean superconductor
under quantum confinement, as seen from Fig. 5(a), particle-
hole mixing indicates the emergence of TE due to the stripelike
inhomogeneity of the order parameter. In the presence of the
impurities, as shown in Fig. 5(b), TE appears for much wider
range of energies due to the symmetry broken of the electronic
wave functions. It indicates that many more TE gaps are
opened at the crossover of electron and hole subbands for
more realistic situations. Nevertheless, for weak disorder, the
stronger contribution is still observed at the same energies as
obtained in the clean limit.
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FIG. 5. (Color online) Spectral weight of quasiparticles Zn as a
function of energy of states, En, for the nanobelt of width W =
16.8 nm (a) in the clean limit (U = 0) and (b) under the influence of
random impurities.

To find the signature of TE, we show the DOS of
both superconducting and normal states in the presence of
impurities in Fig. 6. The noiselike oscillations in the DOS
are imposed over the signature of TE. After matching both
oscillations in DOS by mapping the DOS of normal state to
a rescale energy range, one can find TE signatures (1) where
there are new oscillations in the superconducting DOS, and (2)
where there are different oscillatory structures between DOS of
superconducting and normal states. In Fig. 6, these signatures
are marked by arrows. It is worth noting that the TE modifies
the DOS on positive and negative biases symmetrically.
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FIG. 6. (Color online) DOS of the superconducting (blue) and
normal (red) states for the nanobelt of width W = 16.8 nm under
the influence of the random impurities. The inset shows details of
the DOS between E = 3 and 10 meV. The arrows indicate signatures
of the TE. Note that the normal DOS is mapped on a new energy
scale, in order to match the oscillations in the DOS induced by the
impurities. The mapping is done by rescaling, Enew =

√
E2

old + |�̃|2,
where Enew and Eold are the new and old energies, and �̃ is a fitting
parameter whose value is close to the mean amplitude of the order
parameter |�̄|.

Finally, we have to mention that the LDOS under the
influence of random impurities shows much more complex
patterns. However, the pattern still follows the bonding
and antibonding combination of involved quasiparticle wave
functions as described in the previous sections.

As the impurity strength increases, the band structure
together with order parameter become strongly affected. In
this case, while the TE is also strongly enhanced, it becomes
increasingly difficult to compare with results obtained in the
clean limit. Depending on the particular impurity distribution,
TE contributions to the DOS could be individually recognized
but these are of different manifestation, when compared to the
DOS modifications obtained in the clean limit.

III. TOMASCH EFFECT IN SUPERCONDUCTING
NANOWIRES

In this section, we consider superconducting nanowires
with square and rectangular cross sections. We find a new type
of TE, i.e., TE induced by three-subband QPI. Its influence on
the electronic structure and its dependence on the symmetry
of the system will be discussed in the following sections.

A. Bogoliubov-de Gennes theory
for three-dimensional nanowires

Here, we consider a three-dimensional superconducting
nanowire with rectangular cross section (transverse dimen-
sions Lx and Ly). Due to quantum confinement in the trans-
verse directions, the Dirichlet boundary conditions are taken
on the surface [i.e., un(�r) = vn(�r) = 0, �r ∈ ∂S]. Along the
longitudinal direction z, we introduce a periodic computational
unit cell with length Lz where periodic boundary conditions
are used.

Due to the fact that the order parameter is independent of the
longitudinal direction, i.e., �(�r) = �(x,y), the electronlike
and holelike wave functions un and vn can be expanded, for
each longitudinal wave vector kz, as

(
un(�r)

vn(�r)

)
= eikzz

√
Lz

∑
jx ,jy∈N+

φjk(x,y)

(
un

jxjy

vn
jxjy

)
, (20)

where

φjxjy
(x,y) = 2√

LxLy

sin

(
πjxx

Lx

)
sin

(
πjyy

Ly

)
, (21)

are the eigenstates of the single-electron Schrödinger equation
Heφjxjy

= ζjxjy
φjxjy

. The longitudinal momentum, kz, satisfies
the quantization condition, i.e., kz · Lz = 2πm,m ∈ Z. Fol-
lowing the previous section, the expansion in Eq. (20) includes
the states with energies −EF < ζjxjy

< EF + ε where ε =
5Ec is taken sufficiently large in order to guarantee the
accuracy.

The pair amplitude Dn(�r) and spectral weight Zn for each
state are calculated from the Eqs. (4) and (9), respectively.
The LDOS A(�r,E) and the DOS N (E) are calculated from the
Eqs. (7) and (8), respectively.
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FIG. 7. (Color online) Results for the nanowire with a square cross section: Lx = Ly = 8 nm. (a) Quasiparticle excitation spectrum as a
function of positive longitudinal wave vector kz for the relevant single-electron subbands (jx,jy). Note that the notation (jx,jy)∗ represents two
degenerate subbands (jx,jy) and (jy,jx). The spectral weight of the quasiparticle states is indicated by color. The excitation spectrum in the
red rectangle is magnified in (e) in order to show the influence of the Tomasch effect due to three-subband quasiparticle interference. The three
quasiparticle states I -III are marked by open circle in (e) and their spatial distribution of electron and hole amplitude, u and v, at z = 0 are
shown in (c), (d), (f)–(h). Note that the electron amplitude of the state II is not shown because uII (x,y) = 0. (b) The spatial distribution of
the order parameter �(x,y). (i) The corresponding DOS. The gaps due to the Tomasch effect as determined by three-quasiparticle interference
processes are marked by red arrows. Peaks p(jx ,jy ) are due to the contributions from the states of the bottom of the subbands (jx,jy), while
accompanying peaks p′(jx ,jy ) are due to the formation of the gaps, i.e., electron-hole coupling.

We use the same microscopic parameters as the one
introduced in Sec. II A for bulk NbSe2. The mean electron
density ne = 2

V

∑
n

∫ {|un|2f (En) + |vn|2[1 − f (En)]}d�r for
nanowires with V = LxLyLz. ne is kept to its bulk value
obtained when Lx,y,z → ∞. All the calculations are performed
at zero temperature.

B. Tomasch effect due to three-subband
quasiparticles interference

We first show results in Fig. 7 for a nanowire with square
cross section (Lx = Ly = 8 nm) where the geometry of the
sample and the order parameter show C4 symmetry. Figure 7(a)
shows the excitation spectrum as a function of the positive
wave vector kz > 0. All the subbands displayed in the panel
are distinguishable and labeled by a set of quantum numbers
(jx,jy). Note that the (jx,jy)∗ is a shorthand notation for
the pairs (jx,jy) and (jy,jx) because of their overlap due to
degeneracy. The spectral weight Zn is marked by color for
each quasiparticle state.

As seen from Fig. 7(a), the bottom of the subband (3,3)
lying below the cutoff energy Ec results in a resonant and

spatially inhomogeneous order parameter �(x,y), which is
shown in Fig. 7(b). �(x,y) shows C4 symmetry due to the
square cross section. The symmetry of the system and the order
parameter determine the properties of TE and its emergence.
For example, two sets of TE from two-subband QPI appear at
the intersection of subbands (1,2)∗ and (1,3)∗, while TE from
three-subband QPI appears at the intersection of subbands
(1,3)∗ and (3,3) or (1,3)∗ and (1,1), respectively.

We next investigate the most significant three-QPI appear-
ing at the intersection of two hole quasiparticle states from
subbands (1,3)∗ and one electron quasiparticle state from
subband (3,3). This is indicated by the open red rectangle
in Fig. 7(a) and the relevant three dispersion relations of the
energy bands are amplified in Fig. 7(e). It is clearly seen that
the upper and lower energy bands exhibit a gaplike structure,
while the middle energy band crosses the gap diagonally. The
Bogoliubov quasiparticles are well formed for the states close
to the bottom of the upper band and the top of the lower
band. Note that the state pertaining to the middle band are
pure holelike quasiparticles states with zero amplitude of
the electron component. This is an interesting phenomenon
because if a gap opens between states from subbands (1,3)
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and (3,3), the other gap was supposed to be opened between
states from subbands (3,1) and (3,3). The reason is that the
gap induced by the exchange integral only depends on the
symmetry of the wave functions of the relevant states.

In fact, this interesting asymmetrical energy band structure
is due to the symmetric and antisymmetric combinations of
the two hole states from subbands (1,3)∗. To see this, in
Figs. 7(c), 7(d), and 7(f)–7(h), we show the spatial distribution
of the hole and the electron amplitude, u(x,y) and v(x,y), of
states I -III marked by open circles in Fig. 7(e). The three
states have the same wave vector kz, chosen such that the gap
has a local minimum [see Figs. 7(e)]. The electron components
of the gapped states, uI and uIII [shown in Figs. 7(c) and 7(g)],
have contributions only from the electron state of subband
(3,3). Therefore they show the same pattern as φ3,3, which is
the eigenstate of the single-electron Schrödinger equation with
quantum numbers jx = 3 and jy = 3. For the corresponding
amplitude of hole components, vI and vIII [shown in Figs. 7(d)
and 7(h)], they have the same spatial distribution as the
symmetric combination of the two eigenstates, i.e., φ1,3 + φ3,1,
but with opposite sign for the two amplitudes I and III .

Clearly, the Bogoliubov quasiparticle states, I and III , are
the bonding and antibonding combinations of the electron and
hole components. The reason is that both the wave-functions
and the order parameter exhibit C4 symmetry and, thus, result
in nonzero exchange integrals, which are responsible for TE
and generate energy gaps. The quasiparticle state II does
not take part in the quasiparticle interference because its hole
component, vII , has C2 symmetry, [vII (x,y) = −vII (y,x)],
due to the antisymmetric combination of the two hole
eigenstates, i.e., φ1,3 − φ3,1, leading to a vanishing exchange
integral.

We now conclude the appearance of TE due to three-
subband QPI. First, hole states from subbands (1,3) and
(3,1) are combined in order to generate symmetric and
antisymmetric states but which are degenerate in energy. Then,
the symmetric combination couples with the electron state
from subband (3,3) and forms Bogoliubov quasiparticle states,
therefore inducing a gap. Finally, the energy and the wave
function of the antisymmetric combination is unaffected.

The process results in oscillations in the DOS, which are
symmetrical in bias [see Fig. 7(i)]. The oscillations induced
by TE from the three-QPI are marked by arrows for both
positive and negative biases. When comparing with the DOS
of a nanobelt shown in Fig. 1(h), we notice that there are less
oscillations induced by TE. The reason is that TE emerges
only in case of a nonzero exchange integral. This becomes
harder to achieve for a system with two quantum numbers,
(jx,jy), because the condition has to be fulfilled by both. Next
we will show that the TE of three-subband QPI in a nanowire
depends strongly on the symmetry of the electronic structures
and the geometry of the sample. For this purpose, we consider
nanowires with rectangular cross section, i.e., Lx �= Ly where
the C4 symmetry is broken and, more importantly, results in
the splitting of the subbands (jx,jy) and (jy,jx). In Fig. 8, we
present the appearance of the TE due to three-subband QPI for
states of hole subbands (1,3), (3,1) and electron subband (3,3)
for nanowires with Lx = 8 nm and Ly = 8.03, 8.05, 8.07, and
8.10 nm, respectively. The spectral weight of the relevant states
is indicated by color. The three subbands without TE are shown
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FIG. 8. (Color online) Symmetry-dependent Tomasch effect of
three-subband quasiparticles interference for states of subbands (1,3),
(3,1), and (3,3) for rectangular cross section Lx < Ly . The left-most
panel shows the band dispersion for the three subbands without the
Tomasch effect. The other four panels show the band dispersion versus
longitudinal wave vector kz for Lx = 8 nm and Ly = 8.03, 8.05, 8.07,
and 8.10 nm, respectively. They are shifted horizontally for clarity.
The spectral weight of the quasiparticle states is indicated by color in
all panels.

in the most left panel. As mentioned previously, the two hole
subbands (1,3) and (3,1) split while the electron subband (3,3)
crosses them. The states of subband (3,1) have higher energy
than those of subband (1,3) for a given kz when Ly > Lx . It can
be seen that the bottom of the highest energy subband shifts
to the right with increasing Ly , while the top of the lowest
energy subband shifts to the left. When comparing with the
result for a square cross section shown in Fig. 7(e), we find that
the previously unaffected hole subband becomes and shows
mixed electron-hole components, signaling a coupling with
the electron subband. Finally, the three-subband QPI converts
into two sets of two-subband QPI, appearing for states from
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FIG. 9. (Color online) (a) Band dispersion for the energy bands
(LI -LIII ) due to the Tomasch effect of three-quasiparticles interfer-
ence of the energy subbands (1,3), (3,1), with (3,3) for a rectangular
cross section Lx = 8 nm and Ly = 8.05 nm. The spectral weight of
the quasiparticle states are indicated by color. The electron and hole
components of these states are shown in (b)–(d), respectively.
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subbands (1,3) and (3,3) and separately from subbands (3,1)
and (3,3), as seen in Fig. 8 for Ly = 8.1 nm.

An interesting phenomenon is noticed for Ly = 8.05 nm
where the middle energy band exhibits a flat region, as seen in
Fig. 8. The spectral weight Zn and the corresponding states [see
Fig. 9] show that the Bogoliubov quasiparticle states couple
the hole and electron components. For the upper energy band
LI , the quasiparticle states are converted from the hole-like
states v3,1 to the electron-like states u3,3 as kz is increased, as
seen in Fig. 9(b). The same is true for the lower energy band
LIII but now from the electronlike states u3,3 to the hole-like
states v1,3, as seen in Fig. 9(d). The middle energy band shows
a more complex coupling among the three subbands as it is
converted from v1,3 to v3,1 with the help of u3,3 due to the
compatible symmetry of these states.

IV. CONCLUSION AND DISCUSSION

In conclusion, we investigated the Tomasch effect on the
electronic structure in nanoscale superconductors by solving
the Bogoliubov-de Gennes equations self-consistently. Here,
the Tomasch effect is induced by an inhomogeneous order
parameter appearing due to quantum confinement. We found
that the Tomasch effect couples degenerate electron and
hole states above the superconducting gap due to quasi-
particle interference leading to additional pairs of BCS-like
Bogoliubov-quasiparticles that generate energy gaps resulting
in oscillations in the DOS. When the energies of the paired
states are far from the Fermi level, the pair states show
pseudo-gap-like structures in the DOS. When they are close
to the Fermi level, the pair states result in modulated wave
patterns in the local density of states. All these are due to
the intersubband electron-hole coupling and their bonding and
antibonding combinations generating the pair states.

The Tomasch effect is strongly related to the geometrical
symmetry of the system and the symmetry, parity and spacial

variation of the order parameter. For the nanobelt, the Tomasch
effect only leads to two-subband quasiparticles interference
processes. With even-parity order parameter in the clean limit,
the Tomasch effect only plays a role for two states with the
same parity. A reduced 4 × 4 BdG matrix can describe well
the results. For a nanowire with a square cross section, the
Tomasch effect also results in three-subband quasiparticle
interference processes due to the higher degree of symmetry.
We observe coupling only for the symmetric combination
of two hole states, while the antisymmetric one remains
unaffected. This leads to a unique energy band structure,
where one of the subband crosses diagonally across the
induced gap. For nanowires with rectangular cross section,
the three-subband quasiparticles interference is converted into
two sets of two-subband quasiparticles interference leading to
a distortion of the previously unaffected band.

The Tomasch effect is commonly formed in inhomogeneous
superconductivity but it could be difficult to observe it exper-
imentally. One reason is that the effect can be shadowed by
other states present at the same energy. Another reason is that
the large size of Cooper pairs may result in a complex global
electronic structure. However, the effect can be enhanced in the
following ways: (1) by reducing the symmetry of the sample
such as realized by surface roughness and by making layered
junctions; (2) by breaking the symmetry of the order parameter
by, e.g., disorder and impurities, and (3) by designing the
sample such that the relevant electron and hole subbands touch
each other near their bottom and top, respectively. We have
show that for a realistic case, in the presence of weak disorder,
the modifications in the DOS due to the TE survive and can
be clearly distinguished from oscillations induced by impurity
scattering.
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