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We consider the Hall conductivity due to the motion of a vortex in a lattice model of a clean superconductor,
using a combination of general arguments, unrestricted Hartree-Fock calculations, and exact diagonalization. In
the weak-coupling limit, kF ξ � 1, the sign of the Hall response of the superconducting state is the same as that
of the normal (nonsuperconducting) state. For intermediate and strong coupling (kF ξ ∼ 1), however, we find that
the sign of the Hall response in the superconducting state can be opposite to that of the normal state. In addition,
we find that the sign reversal of the Hall response is correlated with a discontinuous change in the density profile
at the vortex core. Implications for experiments in the cuprate superconductors are discussed.
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I. INTRODUCTION

The sign of the Hall response in a metal or semiconductor
reveals the charge of the underlying charge carriers (electrons
or holes). In the absence of a crystalline lattice or disorder, the
Hall conductivity is fixed by Galilean invariance, and given by

σxy = nec

B
, (1)

where n is the electron density, c is the speed of light, B is
the applied magnetic field, and e is the the electron charge.
When a lattice is introduced, the Hall conductivity can deviate
from (1), both in magnitude and in sign. The explanation of the
Hall conductivity was one of the early successes of the Bloch
theory of metals.

When a metal undergoes a superconducting transition, its
Hall conductivity can change dramatically. Deep in the su-
perconducting phase, if the superconducting vortices become
pinned by disorder, the Hall resistance vanishes (as does the
diagonal resistance). If the pinning is sufficiently weak (in
clean samples, at high temperatures, or high magnetic fields),
vortex motion leads to a finite Hall resistance. If we neglect
the crystalline lattice, σxy is again fixed by Galilean invariance
and given by (1); in the presence of a lattice or impurities,
however, the magnitude and sign of the Hall response can
differ from that of the normal (nonsuperconducting) state. A
change in the sign of the Hall response upon approaching
the superconducting phase has been detected in the cuprate
superconductors in the underdoped [1–3] and optimally doped
[4] regime. A similar phenomenon has been observed in
conventional superconductor films [4].

The Hall response of a superconductor in the presence of
disorder has been investigated thoroughly in the literature
[5,6]. The effects of the crystalline lattice, however, have
not been fully clarified. Traditionally, the problem has been
analyzed phenomenologically in a time-dependent Ginzburg-
Landau framework [7]. The key is to analyze the motion of a
single superconducting vortex in the presence of a lattice and a
background superflow [5,8,9]; this is a collective phenomenon
in terms of the electrons (or Cooper pairs), and is thus not easy
to describe.

In this paper, we study the Hall response of a microscopic
model of a lattice superconductor. We follow the strategy of

Refs. [10–12], which studied the Hall conductivity of interact-
ing lattice bosons: the Hall conductivity of a system containing
a single vortex is formulated as a property of the many-body
wave function, which is calculated nonperturbatively in the
interparticle interactions. We find a rich behavior of the Hall
conductivity as a function of the number of electrons per unit
cell, n, and the strength of the attractive interaction that leads
to superconductivity, U (parametrized by the dimensionless
number kF ξ , where kF is the Fermi momentum and ξ is the
coherence length).

A representative phase diagram for the Hall conductivity is
seen in Fig. 1. In the Bardeen-Cooper-Schrieffer (BCS) limit,
kF ξ � 1, we find that the Hall conductivity changes sign as a
function of density at the point where the normal-state Fermi
surface changes its topology from particle-like to hole-like. In
this regime, therefore, the sign of the Hall response is the same
as in the underlying normal state. When kF ξ is of the order
of unity, however, the density at which σxy changes sign can
be different from that of the normal state. A nonmonotonic
behavior of this critical density as a function of kF ξ is found.
In a certain range of densities, the Hall conductivity changes
its sign as a function of temperature upon cooling from the
normal to the superconducting state. We discuss the origin
of this behavior, and possible implication for short coherence
length superconductors, such as the cuprates.

II. MODEL

We consider a model of interacting electrons hopping on a
square lattice. The Hamiltonian is given by

H = −
∑

�r,�r ′,σ=↑,↓
tσ�r�r ′c

†
�rσ c�r ′σ + H.c.

+
∑

�r

[
−U

(
n�r↑ − 1

2

) (
n�r↓ − 1

2

)
− μn�r

]
. (2)

Here, c�rσ annihilates an electron on site �r with spin σ ,
n�rσ = c

†
�rσ c�rσ , and n�r = n�r↑ + n�r↓. The hopping parameters

are chosen to be tσ�r�r ′ = teieAσ
�r�r′ for nearest-neighbor sites,

tσ�r�r ′ = t ′eieAσ
�r�r′ for next-nearest neighbors, and 0 otherwise.

(We choose in units such that � = c = 1.) The spin-dependent
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FIG. 1. (Color online) Phase diagram. The Hall conductivity is
given by σxy = e2

2π
(n − 2p) with p ∈ Z and ρ denoting the density.

The line indicates the location where p changes from zero to one and
therefore signals a sign change in σxy . The stars at U = 0 mark the
location of the Van Hove singularities.

gauge field Aσ
�r�r ′ is introduced in order to induce vortices in the

system, and will be defined below. U is an on-site attractive
interaction. When U > 0 (which we assume in the following)
and μ 	= 0, the ground state of H in Eq. (2) is superconducting
for all values of U , crossing over smoothly from the BCS limit
U 
 max{|t |,|t ′|} to a Bose-Einstein condensate of tightly
bound pairs in the large-U limit. To suppress a competing
charge-ordering instability, it will sometime be useful to add
an extended interaction term HV = V

∑
〈ij〉(ni − 1)(nj − 1),

where 〈i,j 〉 are nearest-neighbor sites.

III. COMPUTATION OF σx y

In order to calculate σxy due to the motion of a single vortex,
we define the lattice model on a torus of size Lx × Ly . Next,
we need to choose the gauge field Aσ

ij . The flux of the gauge
field Aσ

�r�r ′ through the system is quantized to 2πNσ
φ , where Nσ

φ

are integers. The ground state is a condensate of Cooper pairs,
composed of one electron of each spin species; therefore, the
total flux seen by the condensate is 2π (N↑

φ + N
↓
φ ). We see that

if N
↑
φ = N

↓
φ , the total number of superconducting flux quanta

is an even integer. Then, there are at least two vortices on the
torus, and the analysis of the contribution of a single vortex to
σxy is complicated by intervortex interactions.

Alternatively, we may choose {N↑
φ ,N

↓
φ } = {1,0}, for which

there is a single vortex on the torus. This choice may look
odd at first glance, since it does not correspond to a physical
magnetic field. Nevertheless, we argue that it captures correctly
the contribution of a single vortex to σxy in the limit Lx,Ly �
ξ . To understand why, we note that the magnetic field in the
vortex core region is small. As we will argue in the following,
the Hall conductivity is determined by the structure of the core.
Therefore, in the limit of large system size, the only role of
the external magnetic field is to guarantee that the ground state
has a single vortex; the dynamics of the vortex is independent
of the precise way it was induced.

In the following, we set A
↓
�r�r ′ = 0, and choose A

↑
�r�r ′ such that

electrons with spin up are subject to a uniform flux of 2π/LxLy

per unit cell. An explicit gauge choice for A
↑
�r�r ′ is shown in

Appendix A. We imposed twisted boundary conditions such
that the electron operators satisfy and c�r+Lαêα,σ = ei�αc�r,σ for
α = x,y.

The Hall conductivity of the system at T = 0 may then be
expressed as [13,14]

σxy = e2

(2π )2

∫ 2π

0

∫ 2π

0
d�xd�yIm〈∂�x


|∂�y

〉, (3)

where |
(�x,�y)〉 is the many-body ground state wave
function, which depends on the boundary conditions.
Equation (3) requires that |
(�x,�y)〉 be unique for all
(�x,�y) ∈ [0,2π ], as is generically the case for our finite-size
system. Then, σxy is quantized in units of e2/2π .

Equation (3) relates σxy to the Berry phase accumulated
when �x , �y are changed adiabatically. Changing �x , �y

moves the position of the center of mass of the vortex on the
torus [12], so the Hall conductivity per site can be viewed as
the Berry phase �B associated with the adiabatic motion of
the vortex core around a single unit cell. This Berry phase is
related by a “generalized Luttinger theorem” to the density of
charged particles in the system [12,15,16]:

�B = 2π

(
n

2
+ p

)
, (4)

where n = n↑ + n↓ is the mean number of charge e particles
per unit cell, and p is an integer. (For more details, see
Appendix B.) As �x,y is changed by π , the vortex core moves
by Lx,y in the x or y direction, respectively [11,12] (note
that �x,y twists the boundary condition for both spin flavors).
Therefore, Eq. (3) can be expressed as σxy = e2

(2π)2 4LxLy�B .
In the absence of a crystalline lattice, p = 0; Eq. (4)

then reproduces the well-known result for the Berry phase
associated with the motion of a vortex in a superfluid in
free space [17]. In that case, the Berry phase is directly
related to the effective Lorentz force exerted on a moving
vortex: �FL = ν�Bẑ × �uv , where ν = ±1 is the vorticity of the
vortex and �uv is its velocity. In a lattice system, however, the
force on a vortex is, strictly speaking, an ill-defined concept.
Nevertheless, the connection of Eq. (4) to the Hall conductivity
of a single vortex, through Eq. (3), is still valid.

Upon varying parameters of the Hamiltonian (2), the integer
p can only change discontinuously via a level crossing in the
many-body spectrum, at which the integrand of Eq. (3) is ill
defined. Since far away from the vortex core the system is
gapped [18], any level crossing must occur within the vortex
core. In the following, we will focus our attention to the vortex
core and map out the location of the jumps of the integer p in
Eq. (4).

IV. GENERAL ARGUMENTS

We are interested in σxy as a function of the electron density
n [tuned by the chemical potential in Eq. (2)], the interaction
strength U/t , and the next-nearest neighbor hopping t ′/t .
Below, we discuss general arguments that can be used to
constrain the form of σxy as a function of model parameters.
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FIG. 2. (Color online) Fermi surface for U = 0 and t ′/t = −0.3
at different densities n, relative to the density of the Van Hove
singularity, nVH.

Let us first discuss the case t ′ = 0. Then, under a
particle-hole transformation C defined through CQc�r,σC

−1
Q =

ei �Q·�rc†�r,σ where �Q = (π,π ), the Hamiltonian satisfies H (μ) =
H ∗(−μ). Because of the complex conjugation operation, σxy

is odd under CQ: σxy (μ,U/t) = −σxy(−μ,U/t). Under CQ,
n → 2 − n; therefore, σxy must change its sign at n = 1 for
any value of U/t . This change of sign occurs through a jump in
the integer p in Eq. (4), which is associated with a degeneracy
at the vortex core.

For t ′ 	= 0, particle-hole symmetry is broken, and the
critical density nc at which p jumps (and σxy changes sign)
can depend on U/t . Nevertheless, in the extreme limits of
weak and strong coupling, the position of the jump can be
deduced from the following arguments. For U/t = 0, the
system is noninteracting with a single-particle dispersion
given by ε�k = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky − μ.
The ground state is a filled Fermi sea. The Fermi surface
undergoes a Van Hove singularity at μ = 4t ′ (corresponding to
a density nVH), changing its character from a particle-like to a
hole-like Fermi surface (see Fig. 2). By standard semiclassical
reasoning [19], σxy is expected to change sign at n = nVH.
Continuity implies that in the limit U/t → 0, nc(U/t) → nVH.
In Appendix C, we show that nc indeed changes continuously
in the limit U/t → 0 and approaches nVH, by analyzing the
spectrum of a vortex core in the weak-coupling limit.

In the opposite limit, U/t � 1 (keeping t ′/t fixed), nc

can also be easily determined. To zeroth order in t/U , there
are infinitely many degenerate ground states, corresponding
to an occupation of either zero or two electrons in every
site. Expanding in powers of t/U , one obtains the following
effective hard-core boson Hamiltonian:

Hb = −
∑
�r,�r ′

t̃�r,�r ′b
†
�rb�r ′ + H.c. − 2μ

∑
�r

nb,�r

+
∑
�r,�r ′

Ṽ�r,�r ′

(
nb,�r − 1

2

)(
nb,�r ′ − 1

2

)
+ O

(
t3

U 2

)
,

(5)

where b
†
�r creates a pair of electrons with opposite spins on

site �r , nb,�r = b
†
�rb�r , and t̃�r,�r ′ , Ṽ�r,�r ′ are effective boson hopping

and interaction, which scale as t2/U . Explicit expressions for
t̃�r,�r ′ , Ṽ�r,�r ′ , as well as higher order terms in t/U , are given in
Appendix E.

To order t2/U , the system is particle-hole symmet-
ric: CBHb(μ)C−1

B = Hb(−μ), independently of t ′/t , where
CBb�rC−1

B = b
†
�r . This fixes nc(U/t → ∞) = 1, up to correc-

tions of higher order in t/U : Particle-hole symmetry breaking
terms appear in Eq. (5) at order t3/U 2, and their sign depends
on the sign of t ′. In Appendix E, we analyze the correction to
nc(U/t) due to these terms, and find that for positive (negative)
t ′, nc (U/t) approaches 1 from below (above) in the U/t → ∞
limit. This is supported by our numerical calculations which
we discuss next.

V. NUMERICAL CALCULATIONS

In the intermediate interaction regime, U/t ∼ 1, we
lack a small expansion parameter and therefore resort
to a numerical calculation of �B . We apply an unre-
stricted Hartree-Fock approximation by minimizing the energy
〈
({��r ,μ�rσ })|H |
({��r ,μ�rσ })〉 where |
({��r ,μ�r,σ })〉 is the
ground state of the trial Hamiltonian

HHF = −
∑

�r,�r ′,σ=↑,↓
tσ�r�r ′c

†
�rσ c�r ′σ + H.c. +

∑
�r

�∗
�r c�r↑c�r↓ + H.c.

−
∑

�r,σ=↑,↓
μ�rσ n�rσ . (6)

We determine the (self-consistent) variational parameters
{��r ,μ�rσ } via iteration. For the numerical results presented
below, we use lattices up to a size of Lx × Ly = 50 × 50,
such that Lx,y � ξ .

In Fig. 3 we show the resulting gap ��r and density n�r
profiles. We confirm that for the gauge field A

↑
�r�r ′ a topological

defect in the phase field of ��r is stabilized. The location of
the vortex is determined by the boundary conditions. For the
figure we use (�x,�y) = 2π/L × (10,10), which in our gauge
(Appendix A) leads to a location of the vortex �rV = (10,10).

By varying the boundary conditions (�x,�y) we can
calculate the Chern number of the many-body ground state
|
({��r ,μ�rσ })〉 using Eq. (3). (The calculation of overlaps
of BdG wave functions is discussed in Appendix D.) Our
results are in accordance with the rule (4), relating �B to the
density up to an integer. As the density is increased at a fixed
value of U/t , the integer p changes abruptly from 0 to −1
at a critical density nc(U/t). Figure 1 shows nc as a function
of U/t , for different values of the second-neighbor hopping
amplitude t ′. The integer p takes the value 0 (−1) for densities
below (above) nc, corresponding to negative (positive) σxy ,
respectively. As expected, for U/t 
 1, nc → nVH, while
for U/t � 1, nc → 1. The critical density has a different
asymptotic behavior for U 
 t and U � t : nc(U/t → 0) < 1
while nc(U/t → ∞) > 1. Hence, we find that nc(U/t) has a
nonmonotonic dependence on U/t .

Figure 3 shows the density and pairing potential profiles
for two solutions on either side of the critical density nc(U/t).
While the pairing potential profiles look similar, the density
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FIG. 3. (Color online) Vortex cores. Order parameter (left pan-
els) and density profiles (right panels) for U/t = 3, V/t = −0.05,
t ′/t = −0.3, Lx = Ly = L = 14. In the left panels the color indicates
the amplitude of the order parameter while the arrow indicates
its phase. In the right panels the color reflects the total density.
(a) Particle-like superconductor at n ≈ 0.63 where the vortex core
nucleates a charge density wave with a depleted site at the vortex
core. Here σxy < 0. (b) Hole-like superconductor at n ≈ 1.35 with a
charge density wave where the central site carries an excess density
and σxy > 0. In both cases the vortex was centered on a site by using
fluxes through the openings of the torus (�x,�y) = (10,10) × 2π/L.

profiles show a clear distinction: Below the critical density
[n < nc, panel (a)], the vortex core is depleted, while the situ-
ation is reversed above the critical density [n > nc, panel (b)],
where the core carries an excess density. These two solutions
cross in energy at nc(U/t). Such a level crossing indicates a
possible change in the Chern number (3) and hence the Berry
phase �B . Note that the density in the core is modulated with
a wave vector Q ∼ (π,π ). This is a result of the competing
charge density wave (CDW) instability for a Fermi surface
which exhibits some amount of nesting near half filling; cf.
Fig. 2. In a homogeneous system, the CDW instability is
suppressed by the superconducting order. At the vortex core,
however, the vanishing of the gap ��rV promotes the CDW
locally [20].

VI. FINITE TEMPERATURE

The zero-temperature results, summarized in Fig. 3, show
that there is a range of densities near half filling at which the
sign of σxy in the superconductor is different from the normal
state. Within this range, one expects also a sign change in σxy

when we destroy superconductivity by raising temperature at a
fixed value of U/t . We now generalize our approach to address
the temperature dependence of σxy .

We use a thermal state of Hamiltonian (6) to determine self-
consistently the parameters {��r ,μ�rσ }. Then, one can calculate
the thermally averaged Chern number [11]

σxy(T ) =
∑

α

e2

(2π )2

∫ 2π

0
d�xd�ye

− Eα
kBT Im

〈
∂�x


α

∣∣∂�y

α

〉
,

where α runs over all excited states. Figure 4 summarizes our
results for one density n ≈ 1 at t ′/t = −0.3 and V/t = −0.05.
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FIG. 4. (Color online) Finite temperature. In panel (b) we show
the dependence of the order parameter � as well as the Berry phase
�B as a function of temperature for U/t = 2.6, t ′/t = −0.3, V/t =
−0.05, and n ≈ 1. The change in sign in �B below Tc is apparent
and its location defines Tσ . In panel (a) we show a phase diagram for
n ≈ 1 with Tc and Tσ indicated showing that there is a sign change in
σxy within the superconducting region. Lines in panel (a) are a guide
to the eye.

In panel (b) we show one temperature trace of �B evaluated
in a thermal ensemble for U/t = 2.6. We see that �B changes
its sign before the order parameter vanishes, i.e., within the
superconductor. Moreover, we see that the sharp jump at T = 0
is washed out by thermally excited states. We can now define
the temperature Tσ where �B changes sign and Tc where
superconductivity is lost. Panel (a) shows a phase diagram that
summarizes our finite-temperature results.

VII. DISCUSSION

We have analyzed the Hall response of a lattice-
superconductor, by examining the motion of a single vortex
in a background superflow. By combining general arguments
with numerical simulations, we have shown that in the vicinity
of half filling, it is possible to find situations where the
normal-state Hall response is opposite in sign compared to
that of the superconducting ground state, leading to a sign
change in σxy as a function of temperature. Unlike previously
proposed mechanisms, the present mechanism is an effect of
the crystalline lattice, and does not disappear in the clean limit.

It would be interesting to generalize our results to models
applicable to the cuprate superconductors. In particular, one
needs to include the d-wave symmetry of the order parameter
and the strong correlations due to on-site repulsive interactions.
Interestingly, the density of carriers in the hole-doped cuprates
satisfies nVH < n < 1. Therefore, within the simple model
used here, it lies in the range in which the sign of σxy in
the superconductor at intermediate coupling is different from
that of the normal state.
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APPENDIX A: CHOICE OF GAUGE

In Fig. 5 we show the Landau gauge we used for the
numerical calculations. The arrow indicate the phases picked
up by the ↑ electrons when hopping over the respective link.
The arrows denote the following values:

〉 = �

2LxLy

and 〉 = 2Lx × 〉, (A1)

where Lx is the extent of the lattice in the horizontal direction
in Fig. 5 and � = 2π for one vortex.

Note that at the right edge of the lattice there is a winding
of 2π for the hopping in the horizontal direction (blue arrows).
When comparing to the phase pattern φ(�r) = arg[�(�r)] of the
superconducting order parameter in Fig. 3 of the paper, we see
that the gauge-invariant current j ∼ ∇φ(�r) − e �A(�r) is indeed
continuous [11].

APPENDIX B: VORTEX BERRY PHASE AND THE
HALL CONDUCTIVITY

In the following we clarify the origin of the “generalized
Luttinger theorem” for the Berry phase accumulated when
taking a vortex around a single unit cell. First, consider twisting
only the boundary condition for the spin-up electrons by �

↑
x,y ,

by defining the gauge field as

A
↑
�r �r ′ = (AL)σ�r �r ′ +

(
�

↑
x

Lx

,
�

↑
y

Ly

)
· (�r − �r ′)/|�r − �r ′|, (B1)

FIG. 5. (Color online) Gauge choice.

where (AL)σ�r �r ′ is the gauge field configuration appearing in

Fig. 5. In this case, changing �
↑
x,y by 2π/Lx,y moves the vortex

by one lattice site in the x or y direction [11,12]. Moreover,
such a change in �

↑
x,y gives a Hamiltonian which is unitarily

equivalent to the original one. Therefore, a similar construction
to the one appearing in Ref. [12] yields a “generalized
Luttinger theorem” which gives the Berry phase acquired when
taking the vortex around a single unit cell as

�B = 2π (n↑ + p). (B2)

In the model analyzed in this paper, n↑ = n↓ = n/2.
Now consider twisting the boundary conditions for both

spin values �
↑
x,y = �

↓
x,y = �x,y . The vortex moves by one

lattice site upon changing �x,y by π/Lx,y (as a Cooper pair
is twisted by 2�x,y). When Lx,Ly � ξ , we expect the Berry
phase accumulated when moving the vortex around a single
unit cell using a twist for both spin flavors to also give �B as in
Eq. (B2). This is indeed verified by our numerical calculations.
Therefore, for Lx,Ly � ξ , we obtain the relation between the
Hall conductivity and �B as

σxy = 4e2

(2π )2
LxLy�B. (B3)

APPENDIX C: WEAK-COUPLING LIMIT

For noninteracting electrons, semiclassical reasoning [19]
shows that the sign of σxy is determined by the topology of
the Fermi surface. For an electron-like (a hole-like) Fermi
surface, σxy is negative (positive), respectively. In the limit
U/t 
 1, one may expect σxy to approach its noninteracting
value, and hence nc(U/t) → nVH as U/t → 0. This is not
entirely obvious, however, since the ground state changes its
nature singularly in the limit U → 0. In this section, we show
explicitly that σxy is indeed smooth for U → 0.

By the arguments in the main text, the critical density nc in
which σxy changes sign is associated with a level crossing at the
vortex core. Let us analyze the spectrum of Marticon–Caroli–
de Gennes (MCdG) states in the core. The Bogoliubov–de
Gennes (BdG) Hamiltonian is of the form

HBdG = ε(�k)τ z + � (�r) τ+ + H.c., (C1)

where ε(�k) is a general energy dispersion as a function of the
crystal momentum �k, �(�r = i �∇k) is a pairing potential that
includes a vortex at �r = �rV , and �τ are Pauli matrices acting
in Nambu space on the spinor ψT

�k = (c�k,↑,c
†
−�k,↓). We assume

that the system is defined on a square lattice, such that ε(�k)
is symmetric under C4. The Fermi surface is at ε(�k) = 0. For
simplicity, let us consider a linear gap function which describes
a vortex at �rV = 0:

�(�r) = �0

ξ
(x − iy), (C2)

where �0 and ξ are parameters. The precise gap profile is not
expected to change our results qualitatively.

We now transform the coordinates to a new frame (k‖,k⊥)
such that k‖ (k⊥) is parallel (perpendicular) to the Fermi sur-
face, respectively. The transformation is depicted in Fig. 6(a).
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FIG. 6. (Color online) (a) Transformation to the Fermi surface
coordinates (k‖,k⊥) defined via Eq. (C3). (b) Spectrum of the BdG
Hamiltonian (C6), on either side of the Van Hove density nVH. The
states are labeled by l, their angular momentum under rotation by π/2
(defined mod2π ). The fine dashed lines show the schematic evolution
of the spectrum as n is varied across nVH.

The new coordinates are related to the old ones by

dkx = cos θdk⊥ − J sin θdk‖,
(C3)

dky = sin θdk⊥ + J cos θdk‖.

Here, θ (k‖/kp) is the angle between the normal to the Fermi
surface and the horizontal axis (kp is the perimeter of the Fermi
surface), and J is the Jacobian of the transformation. We fix
the orientation of k‖ by requiring∫ kp

0
dk‖

dθ

dk‖
= +2π. (C4)

Since Eqs. (C3) must be total differentials, we find that
∂k⊥J = ∂k‖θ . The following choice of J is consistent with
this constraint:

J (k⊥,k‖) = 1 + k⊥
kp

θ ′
(

k‖
kp

)
. (C5)

Performing the coordinate transformation (C3), lineariz-
ing the dispersion near the Fermi surface, and finally
performing a similarity transformation HBdG → H̃BdG =
J 1/2UHBdGU−1J−1/2 where U = exp[iθτ z/2], the BdG
Hamiltonian takes the form

H̃BdG = H‖ + H⊥, (C6)

where

H‖ = �0

ξ

(−i

J

)
τ y

(
∂k‖ + 1

2J

∂J

∂k‖

)
,

(C7)

H⊥ = �0

ξ
τ xi∂k⊥ + vF (k‖)k⊥τ z.

Here, vF (k‖) = ∇kε(k⊥ = 0) · n̂⊥ is the Fermi velocity, where
n̂⊥ = (cos θ, sin θ ) is the unit vector normal to the Fermi
surface. Note that due to the unitary transformation U , the
eigenstates of (C6) satisfy antiperiodic boundary conditions
as a function of k‖.

Anticipating H‖/�0 ∼ ξ−1∂k‖ ∼ (kpξ )−1 
 1, we diago-
nalize H̃BdG perturbatively in H‖. To zeroth order in H‖, H̃BdG

has a family of zero modes parametrized by k‖, of the form

ϕ(k⊥,k‖) = ϕ0[k⊥a(k‖)]

(
1

−isgn(vF )

)
. (C8)

Here, ϕ0(x) = √
2/πe−x2/2 is the harmonic oscillator

ground state wave function, and we have defined a(k‖) =√
vF (k‖)ξ/2�0. Note that away from the Van Hove point,

vF 	= 0 for all k‖, and therefore sgn(vF ) is independent of k‖.
H‖ lifts the degeneracy within the zero-energy subspace of

H⊥. Inserting ψ(k‖,k⊥) = χ (k‖)ϕ(k⊥,k‖) into the eigenvalue
equation for H̃BdG and projecting both sides onto the subspace
of zero modes defined by Eq. (C8), we get the following
eigenvalue equation for χ [to leading order in (ξkp)−1]:

�0

ξ
isgn(vF )

(
∂k‖ − 1

a

∂a

∂k‖

)
χ (k‖) = Eχ (k‖). (C9)

The eigenstates are of the form χn = a(k‖) exp[ik‖/qn],
where 1/qn = π (2n + 1)/kp, n ∈ Z, and the corresponding
eigenenergies are En = − �0

ξqn
sgn(vF ). These are nothing but

the well-known MCdG states, whose minimum energy is
�0
ξkp

∼ �2
0/EF (where we have used the estimates ξ ∼ vF /�0

and EF ∼ vF kp).
Now, let us consider the low-energy spectrum on either side

of the Van Hove point, in which the Fermi surface undergoes
a change of topology. According to our definition of the
orientation of the Fermi surface, Eq. (C4), sgn(vF ) > 0 for
a particle-like Fermi surface (n < nVH), while sgn(vF ) < 0
for a hole-like Fermi surface (n > nVH). Therefore, we see
that across the Van Hove point, the two states χ−1 and
χ0 interchange their energy. These two states transform
differently under C4 (e.g., under rotation by π/2, χ0 and χ−1

pick up phases of e±iπ/4, respectively). Hence, χ0,−1 cannot
hybridize with each other. We conclude that as the density
crosses nVH, there must be a level crossing between χ−1

and χ0.
More generally, under rotation by π/2, χn acquires a phase

of exp[iln], where ln = (2n + 1)π/4. Near the Van Hove point,
χ2n−1 and χ2n cross in energy. The distance from the level
crossing point to the Van Hove point goes to zero in the weak-
coupling limit, kpξ → ∞. The spectrum on either side of the
Van Hove point is shown in Fig. 6(b).

In terms of the many-body spectrum, a zero-energy state
in the BdG spectrum corresponds to a level crossing between
the ground state and the first excited state. Since the Chern
number can only change via a level crossing, this implies that
in the weak-coupling limit, the jump in the Hall conductivity
occurs arbitrarily close to the Van Hove point. This conclusion
is consistent with our numerical simulations (Fig. 1 in the main
text).

Note that our argument relies on the presence of a C4

symmetry. Indeed, if the C4 symmetry is broken, there is
generically no single Van Hove density in which the Fermi
surface changes its character from particle-like to hole-like.
The regions of electron and hole-like Fermi surfaces are
generically separated by a density range with an open Fermi
surface, in which the normal-state Hall conductivity is ill
defined in the clean limit.
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APPENDIX D: OVERLAPS OF BOGOLIUBOV–DE GENNES
WAVE FUNCTIONS

In order to calculate Chern numbers [Eq. (3) of the
main text], we need to compute overlaps of many-body
wave functions. In the Hartree-Fock approximation, these
wave functions are ground states of a variational quadratic
Hamiltonian [Eq. (6) in the main text]. In order to derive a
formula for the overlap between two such wave functions, it
is convenient to perform a particle-hole transformation on one
of the spin species:

c�r↑ = d1,�r ,
(D1)

c�r↓ = d
†
2,�r .

In terms of the new operators d1,2, HHF has the form

HHF = −
∑

�r,�r ′,σ=↑,↓
(t↑�r�r ′d

†
1,�rd1,�r ′ − t

↓
�r�r ′d

†
2,�rd2,�r ′ +H.c.)

−
∑

�r
�∗

�r d
†
2,�rd1,�r +H.c.

−
∑

�r,σ=↑,↓
(μ�r↑d

†
1,�rd1,�r − μ�r↓d

†
2,�rd2,�r ). (D2)

Note that HHF contains no anomalous terms. The conservation
of the number of d particles, N̂d = ∑

�r (d†
1,�rd1,�r + d

†
2,�rd2,�r ),

corresponds to the conservation of the total spin in the z

direction in the original problem.
One can diagonalize (D2) by performing a unitary (Bogoli-

ubov) transformation⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1
...

γN

γN+1
...

γ2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= U

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d1,�r1

...
d1,�rN

d2,�r1

...
d2,�rN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (D3)

Here, U is a 2N × 2N unitary matrix, and N is the number of
lattice points. After this transformation, HHF = ∑2N

j=1 Ejγ
†
j γj .

Let us order the eigenstates such that Ej < 0 for j =
1, . . . ,N0, where N0 is the number of negative energies.
Then, the many-body ground state can be written as a Slater
determinant:

|
{��r ,μ�rσ }〉 =
N0∏
j=1

γ
†
j |0̃〉. (D4)

Here, |0̃〉 = ∏
�r c

†
�r↓|0〉 is defined as the vacuum state of the d1,2

operators, and |0〉 is the original vacuum of the c↑,↓ operators.
Let us define W as an N0 × N matrix containing the N0 first
rows of the matrix U . Then, one can verify that the overlap
between two ground states is

〈
{��r ,μ�rσ }|
{�̃�r ,μ̃�rσ }〉 = det[WW̃ †], (D5)

where W̃ is the N0 × N matrix corresponding to the occupied
states in |
{�̃�r ,μ̃�rσ }〉.

APPENDIX E: STRONG-COUPLING EXPANSION

In the strong-coupling limit, U/t � 1, the physics of the
negative-U Hubbard model is dominated by strongly bound
pairs of electrons. We can use a Schrieffer-Wolff transforma-
tion to obtain an effective hard-core boson Hamiltonian for
these pairs:

Heff =
∑
〈i,j〉

[−J
(
Sx

i Sx
j + S

y

i S
y

j

) + (J + Ja)Sz
i S

z
j

]

+
∑
〈〈i,j〉〉

[−J2
(
Sx

i Sx
j + S

y

i S
y

j

) + J2S
z
i S

z
j

]

+ 12Jring

∑
i,jk

Sz
i S

z
jS

z
k − 2Jring

∑
i,jk

[
Sz

i S
+
j S−

k + H.c
]
.

(E1)

The different couplings can be expressed as

J = 2t2

U
, J2 = 2t ′2

U
, Ja = 4V, Jring = t ′t2

U 2
. (E2)

The first line in (E1) contains processes up to second order in
t (t ′). Note that this Hamiltonian is manifestly particle-hole
symmetric at half filling independently of t ′. The easiest way
to see this is that the sublattice gauge transformation ei �Q·�r with
Q = {π,π} appearing in the particle-hole transformation for
the fermions is absent in the bosonic case as no fermionic signs
have to be corrected for.

The first particle-hole symmetry breaking terms appear in
third order in the hopping. In (E1) we only show those third-
order terms that lead to such a symmetry breaking. They all
contain Jring where exactly one hopping takes place over a next-
to-nearest neighbor bond. Note that we suppress the gauge field
in (E1) for simplicity.

To study the effect of the particle-hole symmetry breaking
terms ∝t2t ′ we use exact diagonalization on clusters up
to Lx × Ly = 4 × 4 using the hard-core boson model. We
investigate the half-filled lattice and observe a degeneracy
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FIG. 7. (Color online) Strong coupling. Energy of the two lowest
states at half filling in the hard-core boson model. At t ′ = 0 there is a
degeneracy between two different vortices. At nonzero values of Jring

the particle-type condensate with a vortex with a density depletion
forms in the ground state.
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between two different vortex states at t ′ = 0 as expected;
cf. Fig. 7. When turning on a t ′/t < 0 as in the main text
we find that the vortex with a density depletion is lower in
energy. From this we conclude that the line where the integer
p jumps from zero to −1 moves towards densities n > 1, in
accordance with the results in the main text. These findings are
also supported by the calculation of the Chern number [12].
For the actual calculations we used values for J2, Ja , and Jring

that do not obey the rules (E2) for the following reason: Our

aim is to study the breaking of particle-hole (PH) symmetry
by the application of Jring terms. For that we need a t ′ in the
fermionic Hamiltonian. However, this induces also J2, which
does not break PH symmetry but which has to be counteracted
by a larger Ja in order to fight the competing CDW. To keep the
vortex smaller than the system size, we use J = 1, J2 = 0.2,
Ja = 0.7 and we change Jring from 0 to 0.2. There is no reason
to expect that by changing J2 and Ja the main conclusion
would change.
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