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Supercurrent dephasing by electron-electron interactions
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We demonstrate that in sufficiently long diffusive superconducting-normal-superconducting (SNS) junctions
dc Josephson current is exponentially suppressed by electron-electron interactions down to zero temperature.
This suppression is caused by the effect of Cooper pair dephasing which occurs in the normal metal and defines
a new fundamental length scale Lϕ in the problem. This length is fully consistent with that derived earlier from
the analysis of dissipative electron transport across NS interfaces at subgap energies. Provided the temperature
length exceeds Lϕ this dephasing length can be conveniently extracted from equilibrium measurements of the
Josephson current.
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I. INTRODUCTION

It is well established that hybrid metallic structures can
sustain a nonvanishing supercurrent even if they contain a
nonsuperconducting region located in between two supercon-
ducting reservoirs. The physical reason for that is transparent:
Cooper pairs passing through this region can maintain their
macroscopic quantum coherence and, hence, their ability to
carry a nondissipative current through the whole structure.
This is the celebrated dc Josephson effect which was initially
predicted for superconducting tunnel junctions [1,2] and later
investigated in other types of superconducting weak links, such
as, e.g., quantum point contacts [3–5] and superconductor-
normal-metal-superconductor (SNS) junctions [6–14]. In con-
trast to tunnel junctions containing insulating barriers with
typical thicknesses of a few angstroms, in SNS systems at
sufficiently low temperatures appreciable supercurrent can
flow even through a normal layer as thick as a few microns.
The latter feature is generic in both limits of ballistic [7,8,14]
and diffusive [6,9–13] metals irrespective of the quality of NS
interfaces ranging from poor [6,11,14] to perfect [7–10,12,13].
Quantitative agreement between theory and experiment was
demonstrated in diffusive SNS junctions with ideal [13] and
nonideal [15] NS interfaces. For a comprehensive coverage of
this and other issues related to dc Josephson effect in different
types of superconducting weak links we refer the reader to the
review papers [16–18].

It is important to stress that all the above results apply
provided the effect of electron-electron interactions remains
weak and can be neglected. However, the situation may
be different in sufficiently small superconducting junctions
in which case Coulomb effects can play an important role
and need to be taken into account. In the case of tunnel
barriers between superconductors the Coulomb blockade of
Cooper pair tunneling results in a large number of qualitatively
new features which have been studied in great detail [19].
With increasing barrier transmission Coulomb effects remain
qualitatively the same though decrease in magnitude and
eventually vanish in the limit of fully open barriers between
superconducing electrodes [20]. One can also consider the
effect of Coulomb interaction on the Josephson current in
more complicated superconducting weak links, such as, e.g.,

diffusive SNS junctions with low transmission NS interfaces.
For instance, the authors [21] addressed this problem within
the so-called capacitance model assuming that the Coulomb
interaction merely occurs across tunnel barriers at intermetallic
interfaces. They demonstrated that Coulomb effects result in
effective reduction of the Josepson current through the system.

In this work we will argue that electron-electron interactions
also provide an alternative mechanism of the supercurrent
suppression not directly related to the Coulomb blockade.
It is quantum dephasing of Cooper pairs which yields an
exponential reduction of the Josephson current in sufficiently
long diffusive SNS junctions even in the zero temperature limit.

Note that previously various aspects of the effect of
electron-electron interactions on dissipative (Andreev) cur-
rents in NS hybrid structures were studied by a number of
authors [22–26]. In particular, interaction-induced quantum
dephasing in such structures was addressed both phenomeno-
logically [23] and microscopically [26] demonstrating that
at sufficiently low temperatures this effect may strongly
modify the Andreev conductance of NS systems provided
the size of the normal metal becomes comparable with (or
bigger than) the fundamental scale of dephasing length Lϕ

which is set by interactions and stays finite down to zero
temperature. Although the effect of quantum dephasing of
Cooper pairs by electron-electron interactions [26] is to a
large extent similar to that previously investigated for normal
electrons [27–31] within the framework of the so-called weak
localization problem, there are also important differences
between these effects in NS structures and normal metals.
They are caused, e.g., by the different spin structure of the
propagators describing Cooper pairs and single electrons in
such systems [26] as well as by some other features. Hence,
it is not possible to directly adapt the results [27–31] to
superconducting hybrids in which case a separate analysis
is required. This analysis will be developed below for the
Josephson current flowing across diffusive SNS junctions.

The structure of the paper is as follows. In Sec. II we
describe our theoretical approach based on the real-time
(Keldysh) version of the nonlinear σ model. In Sec. III this
approach is employed for the analysis of the dc Joseph-
son current in diffusive SNS structures in the presence of
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FIG. 1. (Color online) Diffusive SNS Josephson junction. The
figure also illustrates the Cooperon and its spin structure relevant
for the supercurrent flowing across the junction.

electron-electron interactions. The effect of interaction-
induced Cooper pair dephasing on the supercurrent is ad-
dressed in Sec. IV. The paper concludes with a discussion
of our key observations in Sec. V. Further technical details are
relegated to Appendixes A and B.

II. THE MODEL AND BASIC FORMALISM

Let us consider an SNS structure depicted in Fig. 1
illustrating two bulk superconducting leads connected by a
normal wire of length L and cross section a2. In what follows
we will merely stick to the limit L � a and assume that
superconducting electrodes are sufficiently large, i.e., they are
not influenced by the central (normal) part of our system.
The normal wire is characterized by the density of states per
spin ν and diffusion coefficient D = vF �/3, where vF is the
Fermi velocity and � is the electron elastic mean free path.
The left and right superconductors are connected to the normal
wire via tunnel barriers with resistances Rl

I and Rr
I which are

assumed to strongly exceed the wire normal resistance, i.e.,
Rl

I ,R
r
I � RN = L/(σNa2), where σN = 2e2νD is the Drude

conductivity, and e is the electron charge.
Provided the superconducting phase twist θ is applied to

this SNS structure it develops a supercurrent I which is a
2π -periodic function of θ . The task at hand is to evaluate this
supercurrent in the presence of electron-electron interactions.

In order to accomplish this goal we employ a real-time
version of the nonlinear σ -model approach which provides an
effective low-energy description of disordered metals where
the relevant degrees of freedom are diffusive collective modes,
the so-called diffusons and Cooperons. The information about
these modes is contained in the 4 × 4 matrix (in both Keldysh
and Nambu spaces) dynamical variable Q̌ which depends on
the spatial coordinate and two times, i.e., Q̌ = Q̌(r,t,t ′).

The effective action of our system consists of three parts
S = Sw + SI + S�. The first two terms account, respectively,
for diffusive motion of electrons inside the wire,

Sw[Q̌,A,�] = iπν

4
Tr[D(∂̌Q̌)2 − 4
̌∂t Q̌ + 4i�̌Q̌], (1)

and electron tunneling between the wire and the leads [11],

SI [Q̌] = − iπ

4e2Rr
I a

2
Trr

[
Q̌r

SCQ̌
] − iπ

4e2Rl
I a

2
Trl

[
Q̌l

SCQ̌
]
,

(2)

while the third term S�[�] is responsible for electron-electron
interactions. Here the matrix Q̌

l(r)
SC accounts for the left (right)

bulk superconducting electrode and, hence, is independent of
the matrix Q̌.

The covariant derivative in Eq. (1) is defined as

∂̌Q̌ = ∂rQ̌ − i[
̌Ǎ,Q̌], 
̌ =
(

σ̂z 0

0 σ̂z

)
, (3)

where [x,y] is the commutator and the set of Pauli matrices
here and below is denoted by σ̂x , σ̂y , and σ̂z. The dynamical
variable Q̌ satisfies the standard normalization condition,

Q̌2 = 1̌δ(t − t ′). (4)

All multiplications in the above expressions are meant as
convolution of matrices (implying the integration over in-
termediate times) and Tr indicates the trace over the matrix
indices accompanied by the integration over both time and
coordinate variables. Note that below we will also employ a
special multiplication notation defined as

(A ◦ B)(t1,t2) =
∫

dtA(t1,t)B(t,t2). (5)

The effective action S of our system depends on the scalar
and vector potential fields �(r,t) and A(r,t) which account for
the effect of electron-electron interactions. These potentials are
defined on the forward (F ) and backward (B) branches of the
Keldysh contour. For our purposes it is convenient to introduce
the variables �± = 1√

2
(�F ± �B) and A± = 1√

2
(AF ± AB)

and to define the matrices,

�̌ =
(

�+1̂ �−1̂

�−1̂ �+1̂

)
, Ǎ =

(
A+1̂ A−1̂

A−1̂ A+1̂

)
. (6)

Similarly to our earlier works [24,26] we will employ
the so-called K-gauge trick [32,33] and perform the gauge
transformation,

Q̌(r,t,t ′) → ei
̌Ǩ(r,t)Q̌(r,t,t ′)e−i
̌Ǩ(r,t ′), (7)

in order to eliminate the linear terms in both the electromag-
netic potentials and deviations from the normal metal saddle
point,

Q̌N = Ǔ ◦
(

σ̂z 0

0 −σ̂z

)
Ǔ , (8)

Ǔ(t,t ′) =
(

δ(t − t ′ − 0)1̂ F (t,t ′)1̂

0 −δ(t − t ′ + 0)1̂

)
, (9)

where

F (t,t ′) =
∫

dε

2π
e−iεt tanh

(
ε

2T

)
= − iT

sinh(πT (t − t ′))
.

(10)

The latter goal is achieved if one chooses the K field to obey
the following equations,

�+
K(r,t) = D∂r A+

K(r,t)

−2iDT

∫
dt ′ coth(πT (t − t ′))∂r A−

K(r,t ′), (11)

�−
K(r,t) = −D∂r A−

K(r,t), (12)

with �K(r,t) = �(r,t) − ∂tK(r,t) and AK(r,t) = A(r,t) −
∂rK(r,t). As a result of this transformation the total action
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retains its initial form provided one substitutes � → �K and
A → AK as well as

Q̌
l(r)
SC (t,t ′) → e−i
̌Ǩ(r,t)Q̌

l(r)
SC (t,t ′)ei
̌Ǩ(r,t ′), (13)

with coordinate r chosen at the appropriate tunnel barrier at
the NS interface.

Finally, let us define the matrices Q̌l
SC and Q̌r

SC describing,
respectively, the left and the right superconducting electrodes.
The first of these matrices reads

Q̌l
SC = Q̌SC ≡ Ǔ ◦

(
ĜR 0

0 ĜA

)
◦ Ǔ , (14)

where

ĜR(t,t ′) =
∫

dε

2π

e−iε(t−t ′)√
(ε + i0)2 − 2

(
ε 

− −ε

)

≡
(

gR(t,t ′) fR(t,t ′)

−fR(t,t ′) −gR(t,t ′)

)

= δ(t − t ′ − 0)σ̂z

− θ (t − t ′)

(
J1((t−t ′)) iJ0((t−t ′))

−iJ0((t−t ′)) −J1((t−t ′))

)
,

(15)

Jk(x) is the kth Bessel function and ĜA = −[ĜR]T with the
transposition [...]T performed in both matrix indices and times.
Note that in contrast to our previous analysis of the Andreev
conductance [26] here we retain the complete dependence of
the Q matrices in the superconducting electrodes on both ε

and .
For the second (right) electrode one has

Q̌r
SC(t,t ′) = ei
̌(θ+ϒ̌χ(t))/2Q̌SC(t,t ′)e−i
̌(θ+ϒ̌χ(t ′))/2, (16)

where

ϒ̌ =
(

0 1̂

1̂ 0

)
, (17)

θ is the superconducting phase difference between the two
electrodes and χ (t) is the source field. Taking the variation
over this source field as

I = ie

∫
DQ̌

∫
D�

δ

δχ (t)
eiSw+iSI +iS�

∣∣∣∣
χ(t)=0

, (18)

one derives the equilibrium supercurrent I (θ ) across our SNS
junction.

III. JOSEPHSON CURRENT IN THE PRESENCE
OF INTERACTIONS

Our assumption about the presence of tunnel barriers at NS
interfaces with resistances R

l,r
I strongly exceeding RN allows

us to evaluate the current (18) perturbatively in tunneling. In
the leading order in the tunneling term SI (2) from Eq. (18)
we obtain

I (t) = i

16

π2

e3Rl
IR

r
I a

4

〈
δ Trr

[
Q̌r

SCQ̌
]

δχ (t)
Trl

[
Q̌l

SCQ̌
]〉

Q̌,�

,

(19)
where the averaging is now performed with the action
Sw + S�.

In order to proceed we will employ the strategy already
developed in Ref. [26]. The averages over the field Q̌ will be
handled within the Gaussian approximation. To this end we
expand the Q̌ matrix around the saddle point (8) as

Q̌ ≈ Q̌N + iQ̌N ◦ Ǔ ◦ W̌ ◦ Ǔ
− 1

2Q̌N ◦ Ǔ ◦ W̌ ◦ W̌ ◦ Ǔ + · · · (20)

Here the matrix W̌ describes the soft modes of the system,
diffusions d̂ and Cooperons ĉ1,2. It has the form,

W̌ =
(

ĉ1 d̂

d̂† ĉ2

)
, ĉ1,2 =

( 0 c1,2

c
†
1,2 0

)
, d̂ =

(
d1 0

0 d2

)
,

(21)

where (...)† denotes the Hermitian conjugation procedure, i.e.,
a†(t,t ′) ≡ ā(t ′,t). Expanding the action Sw (1) up to the second
order in these fields one recovers four different contributions,

Sw = S(0,2)
w + S(1,2)

w + S(2,1)
w + S(2,2)

w , (22)

where the term S(i,j ) is proportional to the ith power of
the electromagnetic potentials and to the j th power of the
matrix W̌ . By direct calculation one can verify that the
term S(2,1) depends only on the diffusion fields which—as
we will see later—turn out to be irrelevant for the problem
under consideration. Hence, our action does not contain the
first power of the Cooperon fields, and the corresponding
propagator—the Cooperon C—can be obtained as a solution
of a linear inhomogeneous equation containing the first and
the second powers of the electromagnetic potentials.

Let us now evaluate the combination Trl,r [Q̌l
SCQ̌]. For this

purpose it suffices to retain only the first-order terms in W̌ . Af-
ter some algebra with the aid of the parametrization (20) we get

−i Tr
[
Q̌l

SCQ̌
] ≈ Tr

[
e−iK̂ ◦ ĝ ◦ eiK̂ ◦ Û ◦ σ̂z

(
d̂1 − σ̂x d̂

T
2 σ̂x

) ◦ Û
]

− Tr
[
(â ◦ fR ◦ â + b̂ ◦ fR ◦ b̂ + F ◦ (â ◦ fR ◦ b̂ + b̂ ◦ fR ◦ â)) ◦ τ̂x

(
ĉ1 − τ̂x ĉ

T
2 τ̂x

)]
− Tr

[
(â ◦ F − F ◦ â + F ◦ b̂ ◦ F − b̂) ◦ (fR − fA) ◦ b̂ ◦ τ̂x

(
ĉ1 − τ̂x ĉ

T
2 τ̂x

)]
, (23)

where

Û(t,t ′) =
(

δ(t − t ′ − 0) F (t,t ′)

0 −δ(t − t ′ + 0)

)
, ĝ = Û ◦

(
gR 0

0 gA

)
◦ Û, K̂ =

(K+ K−

K− K+

)
, d̂1,2 =

( 0 d1,2

d
†
1,2 0

)
, (24)
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and â = e−iK+σ̂z cos(K−), b̂ = −iσ̂ze
−iK+σ̂z sin(K−). Eq. (23)

goes beyond our previous analysis [26]. It applies in the
first order in both the Cooperon and the diffusion fields and
contains three different contributions. The one in the first
line of Eq. (23) is proportional to the diffusion field being
independent of the superconducting phase θ . For this reason
such a term is irrelevant for the Josephson current and it will
be disregarded below. The contribution in the last line of
Eq. (23) is proportional to the difference between the
retarded and advanced anomalous Green functions. In the
noninteracting limit this contribution vanishes identically
while in the presence of electron-electron interactions it differs
from zero only at energies above the superconducting gap.
In other words, this contribution is caused by quasiparticles
excited by the fluctuating electromagnetic fields mediating
such interactions. Clearly, such quasiparticle contribution can
be neglected in the low temperature limit considered here.
Hence, we can restrict our analysis only to terms in the second
line of Eq. (23). Deep in the subgap regime one has

Tr
[
Q̌l

SCQ̌
] ≈ −i

√
2 Tr[(F ◦ (â ◦ fR ◦ b̂ + b̂ ◦ fR ◦ â)

+ â ◦ fR ◦ â + b̂ ◦ fR ◦ b̂) ◦ τ̂x ĉas], (25)

where we defined

ĉas = (
ĉ1 − τ̂x ĉ

T
2 τ̂x

)
/
√

2. (26)

Note that in the noninteracting limit the above expressions
eventually reduce to the well-known result [6]; see Appendix A
for the corresponding analysis.

It is instructive to look at the spin structure of the
combination (26). Since the field ĉ1 (ĉ2) corresponds to the ↑↓
(↓↑) configuration (as it is also illustrated in Fig. 1), it is easy
to observe that ĉas (26) accounts for the antisymmetric singlet
combination (↑↓ − ↓↑)/

√
2, which is nothing but the spin

structure of a Cooper pair in a conventional superconductor. In
this respect the Cooperon fields relevant here are markedly
different from those encountered, e.g., within the weak
localization problem [27–31] described either by ↑↑ or by ↓↓
spin configurations (see [26] for more details on this issue).

One can distinguish two different contributions describing
interaction effects. The first one contains the K field at either
one of the two NS interfaces. This contribution is encoded in
the matrices â, b̂ and accounts for uniform in space fluctuations
of the electromagnetic field in the N -metal representing, e.g.,
Coulomb blockade effects. Such fluctuations can be handled
exactly; see Appendix B for further details.

The second contribution is controlled by the �K and
AK fields and includes nonuniform in space electromagnetic
fluctuations in the bulk of the normal metal. This contribution
can be expressed via the propagator of the Cooperon field and,
as we will demonstrate below, it is responsible for dephasing
of Cooper pairs inside the N metal.

IV. DEPHASING OF THE JOSEPHSON CURRENT

At sufficiently low temperature and in the absence of
interactions Cooper pairs entering the normal metal from a
superconductor can diffuse at a very long distance without
losing their coherence. However, in the presence of interactions
the wave function of a propagating Cooper pair accumulates
an extra randomly fluctuating phase which eventually yields
destruction of quantum coherence at length scales exceeding
the so-called decoherence length Lϕ which remains finite down
to zero temperature [26].

In order to analyze this effect one can employ different
approximations. In the limit of sufficiently short SNS junctions
L � Lϕ one can proceed perturbatively in the interactions
which amounts to formally expanding the exponent in Eq. (18)
in powers of the �K,AK fields and to making use of the Wick’s
theorem. In the case of NS structures it was demonstrated
[26,34] that this expansion yields a nonzero dephasing rate of
Cooper pairs at T = 0 already in the first order.

On the other hand, in the most interesting case of longer SNS
junctions with L � Lϕ (which we merely address here) this
approach is clearly insufficient. An appropriate approximation
in the latter case is the semiclassical expansion of the effective
action in the fluctuating fields �−

K,A−
K which allows one to

correctly analyze the effect of quantum dephasing of Cooper
pairs. This approach will be employed below in this section.

In the lowest (zero) order in the “quantum” fields �−
K,A−

K
for the combination (25) one finds

Tr
[
Q̌l

SCQ̌
] ≈ −i

√
2

∫
l

dd−1r l

∫
dtdt ′

∫
dεdω1dω2

(2π )3
eiω1t+iω2t

′ √
(ε + i0)2 − 2

(ei(K+(r l ,t)+K+(r l ,t
′))cas(r l ,ε − ω2,ε + ω1)

+ e−i(K+(r l ,t)+K+(r l ,t
′))c̄as(r l ,ε + ω1,ε − ω2)), (27)

δ Tr
[
Q̌r

SCQ̌
]

δχ (t)
≈ 1√

2

∫
r

dd−1rr

∫
dt ′

∫
dεdω1dω2

(2π )3
(eiω1t+iω2t

′ + eiω2t+iω1t
′
)

√
(ε + i0)2 − 2

tanh

(
ε + ω1

2T

)

×(e−i(K+(rr ,t)+K+(rr ,t
′)−iθ)c̄as(rr ,ε + ω1,ε − ω2) − ei(K+(rr ,t)+K+(rr ,t

′)−iθ)cas(rr ,ε − ω2,ε + ω1)). (28)

In order to evaluate the current across our system it is necessary to perform averaging over the Cooperon fields cas in Eq. (19) as
well as to integrate over the electromagnetic fields �+

K and A+
K. Let us introduce the Cooperon propagator Cas defined by means

of the equation,

〈c̄as(r1,ε1,ε
′
1)cas(r2,ε2,ε

′
2)〉 = 2

πν

∫
dtdτdτ ′e−i(ε1−ε′

1−ε2+ε′
2)t+i(ε1+ε′

1)τ/2−i(ε2+ε′
2)τ ′/2Cas(r1,r2; τ,τ ′; t). (29)
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This propagator is a functional of the electromagnetic potentials. It satisfies the following diffusionlike equation,

(2∂τ − i�+
K(r,t−τ/2)+i�+

K(r,t + τ/2) − D(∂r + i A+
K(r,t − τ/2) + i A+

K(r,t+τ/2))2)Cas(r,r ′; τ,τ ′; t) = δ(r − r ′)δ(τ−τ ′).

(30)

Combining all the above equations one can express the Josephson current I in terms of the Cooperon propagator Cas . We
obtain

I = πT 2 sin θ

e3νRr
IR

l
I a

4

∫
l

dd−1r l

∫
r

dd−1rr

∫ ∞

0
dτ

∫ ∞

0
dτ ′

∫ ∞

−∞
dt

J0(τ )J0(τ ′)
sinh(2πT t)

P(rr ,r l ; t ; τ,τ
′), (31)

where

P(rr ,r l ; t ; τ,τ
′) = 〈e−i(K+(rr ,t+τ/2)+K+(rr ,t−τ/2)−K+(r l ,τ

′/2)−K+(r l ,−τ ′/2))Cas(rr ,r l ; 2t − τ,τ ′; 0)〉�. (32)

Here the effect of electron-electron interactions is encoded in the function P(rr ,r l ; T ; τ,τ ′) which can be rewritten as a path
integral over diffusive trajectories,

P(rr ,r l ; t ; τ,τ
′) = 1

2
�(t − (τ + τ ′)/2)

〈
ei(K+(rr ,−t+τ/2)−K+(rr ,t+τ/2))

∫ x(2t−τ )=rr

x(τ ′)=r l

Dx(t ′)

× e− ∫ 2t−τ

τ ′ dt ′( (ẋ(t ′ ))2
2D

− i
2 (�+(x(t ′),−t ′/2)−�+(x(t ′),t ′/2))

〉
�

, (33)

where �(t) is the Heaviside step function. This representation is convenient for averaging over the field �. As a result
we obtain

P(rr ,r l ; t ; τ,τ
′) = 1

2
�(t − (τ + τ ′)/2)

∫ x(2t−τ )=rr

x(τ ′)=r l

Dx(t ′)e− ∫ 2t−τ

τ ′ dt ′ (ẋ(t ′))2
2D

−Sint [x(t ′)], (34)

where

Sint[x(t)] = i

2
(V++

K (rr ,rr ,0) − V++
K (rr ,rr ,2t))

+ i

4

∫ 2t−τ

τ ′
dt ′(V++

K� (rr ,x(t ′), − t + (τ + t ′)/2) − V++
K� (rr ,x(t ′), − t + (τ − t ′)/2)

−V++
K� (rr ,x(t ′),t + (τ + t ′)/2) + V++

K� (rr ,x(t ′),t + (τ − t ′)/2))

+ i

4

∫ 2t−τ

τ ′
dt ′

∫ t ′

τ ′
dt ′′(V++

� (x(t ′),x(t ′′),(t ′ − t ′′)/2) − V++
� (x(t ′),x(t ′′),(t ′ + t ′′)/2)). (35)

Here V++
� (r,r ′,t − t ′) = −2i〈�+(r,t)�+(r ′,t ′)〉� and the functions V++

K� , V++
K are defined analogously. Equation (31) combined

with Eqs. (34) and (35) constitutes the general expression for the Josephson current suitable for further analysis of quantum
dephasing by electron-electron interactions.

A standard (and sufficient for our purposes) approximation in Eq. (34) amounts to replacing 〈〈e−Sint〉〉 ≈ e−〈〈Sint〉〉, where 〈〈...〉〉
implies averaging over diffusive electron trajectories. It is convenient to introduce the dephasing function I as

P(rr ,r l ; t ; 0,0) = D(rr ,r l ; t)e
−I(rr ,r l ;t), (36)

where

I(rr ,r l ; t) = i

2
(V++

K (rr ,rr ,0) − V++
K (rr ,rr ,2t)) + i

2

∫
dd x

∫ 2t

0
dt ′(V++

K� (rr ,x, − t + t ′/2) − V++
K� (rr ,x, − t − t ′/2)

−V++
K� (rr ,x,t + t ′/2) + V++

K� (rr ,x,t − t ′/2))
D(rr ,x; 2t − t ′)D(x,r l ; t ′)

D(rr ,r l ; 2t)

+ i

∫
dd xdd x′

∫ 2t

0
dt ′

∫ t ′

0
dt ′′(V++

� (x,x′,(t ′ − t ′′)/2) − V++
� (x,x′,(t ′ + t ′′)/2))

× D(rr ,x; 2t − t ′)D(x,x′; t ′ − t ′′)D(x′,r l ; t ′′)
D(rr ,r l ; 2t)

. (37)

As we already pointed out, in the long junction limit εT h = π2D/L2 �  considered here the expression for the Josephson
current is dominated by the times exceeding the inverse Thouless energy 1/εT h. Accordingly, it suffices to establish only the
leading time behavior of this expression, which can be derived from the analysis of the most singular terms of its Fourier
transform.
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The correlators of the electromagnetic potentials in the
normal metal have the form,

V++
� (r,r ′,ω) ≈ −iω coth

(
ω

2T

) En<1/l2∑
n=1

ψn(r)ψn(r ′)
νDEn

, (38)

V++
K (r,r ′,ω) ≈ −iω coth

(
ω

2T

)

×
En<1/l2∑

n=1

ψn(r)ψn(r ′)
νDEn((DEn)2 + ω2)

, (39)

and V++
K� (r,r ′,ω) ≈ 0 in the so-called “universal limit”

of strong interactions. Here En = π2n2/L2 and ψn(x) =√
2

(1+δn,0)La2 cos(πnx
L

) are the eigenvalues and the eigenfunc-

tions of the Laplace operator with the von Neumann boundary
conditions. Our analysis of the dephasing function reveals
that at sufficienly long times it is dominated by the last
integral in Eq. (37), whereas the first term in that equation
just provides a constant which cannot be determined by means
of this approach. This constant, however, can be conveniently
recovered by treating the short wire limit in which case the
effect of interactions on the Cooperon can be neglected and
one can set �K equal to zero. The algebra remains the same
and now amounts to substituting

P(rr ,r l ; t ; τ,τ
′) → P0(rr ,r l ; t ; τ,τ

′)

= 〈e−i(K+(rr ,t+τ/2)+K+(rr ,t−τ/2)−K+(r l ,τ
′/2)−K+(r l ,−τ ′/2))〉�

× D(rr ,r l ; t − (τ + τ ′)/2). (40)

Evaluating the average in a standard manner, we obtain

I(0,L; t) ≈ − log(A) − t

2νLa2

∫
dz

2π
coth

(
z

2T

)

× 1 − (1 − i)L
√

z
2D

coth
((

1 − i)L
√

z
2D

))
z

,

(41)

where the integral is interpreted as a principal value at small z

and, as usually, it should be cut off at the largest energy scale of
the inverse elastic time ∼τ−1

e . The time-independent constant,

A ≈
⎧⎨
⎩(εT hτRC)

8
3g e

− 6.105
g

− 8πT
3gεT h , T � εT h,

(T τRC)
8

3g e
− 2.892

g
− 8πT

3gεT h , εT h � T ,

(42)

depends on the dimensionless conductance of the normal wire
g = 4πνDa2/L as well as on the corresponding RC time
τRC = L2C

2νe2Da2 (where C denotes the capacitance per unit wire
length), which we will assume to be short further below.
Evaluating the integral in Eq. (41), in the low temperature
limit T � εT h one finds

I(0,L; t) ≈ − log(A) + t

τϕ

, (43)

where the inverse dephasing time equals to

1

τϕ

� 1

4πνa2
√

2Dτe

−
log

(
2L2

Dτe

)
4πνa2L

+ πL3T 2

270νD2a2
+ · · · (44)

With the aid of all the above expressions it is now
straightforward to derive the Josephson current taking into
account the effect of Cooper pair dephasing by electron-
electron interactions. We obtain

I = πTA sin θ

2e3νRr
IR

l
ILa2

∫ ∞

0
dt

ϑ3
(

1
2 ,e

− π2Dt

L2
)
e
− t

τϕ

sinh(2πT t)
, (45)

where ϑk(z,q) is the kth Jacobi theta function. One observes
that the Josephson current—as compared to the noninteracting
limit (A4)—essentially depends on the extra energy scale
which is the inverse dephasing time 1/τϕ .

Provided the temperature is sufficiently high LT =√
D/2πT � L the Josephson current reduces to an exponen-

tially small value,

I = 2πTALc sin θ

e3νDRr
IR

l
I a

2
e− L

Lc , (46)

where

Lc =
√

Dτϕ

1 + 2πT τϕ

(47)

defines the critical length which—unlike in the noninteracting
case—now depends on both temperature and the dephasing
time τϕ .

In the opposite low temperature limit L,Lϕ � LT one finds

I � A sin θ

2e3νRr
IR

l
ILa2

log

(
coth

(
L

2
√

Dτϕ

))
. (48)

V. DISCUSSION

The above results clearly demonstrate that dephasing of
Cooper pairs by electron-electron interactions may strongly
influence the Josephson current in diffusive SNS junctions
at low temperatures. The supercurrent suppression in such
structures is controlled by the ratio of the normal wire length
L to the effective critical length Lc (47). Note that the latter
parameter can also be rewritten as

Lc = LT Lϕ√
L2

T + L2
ϕ

, (49)

where we defined the Cooper pair dephasing length Lϕ =√
Dτϕ . In the low temperature limit LT � Lϕ the magnitude

of the Josephson current depends on the relation between the
two lengths L and Lϕ . In this limit and for L � Lϕ this current
is not significantly affected by electron-electron interactions,
i.e., I drops almost linearly with 1/L and depends on Lϕ only
logarithmically; cf. Eq. (48). In this case nonvanishing Cooper
pair dephasing provides a natural cutoff of the divergence in
Eq. (A5) at T → 0 [35]. On the other hand, as soon as the
length L exceeds Lϕ the power law dependence of I on L turns
into an exponential one I ∝ exp(−L/Lϕ). Thus, in sufficiently
long SNS junctions the Josephson current is exponentially
suppressed even at T = 0 due to the effect of dephasing of
Cooper pairs which occurs in the N metal in the presence of
electron-electron interactions.

The length Lϕ constitutes a new fundamental parameter
in our problem which can be detected experimentally [36]
by measuring the low temperature Josephson critical current
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FIG. 2. (Color online) Josephson current in diffusive SNS junc-
tions as a function of the normal metal wire length L at T = 1 mK.
Here we set D = 20 cm2/s, a = 10 nm, and Lϕ = 215 nm.

in diffusive SNS junctions as a function of the normal
wire length L; see also Fig. 2. In fact, such kinds of
experiments were recently performed [38] and their results
appear to be consistent with our theoretical predictions. A
complementary way to experimentally probe Cooper pair
dephasing in sufficiently long SNS junctions is to measure
the temperature dependence of the supercurrent I (T ) which
should cross over between the interaction-dominated regime
I ∝ exp(−L/Lϕ) at T τϕ � 1 and the high temperature one
T τϕ � 1 in which case electron-electron interactions are
irrelevant and the standard dependence I ∝ exp(−L/LT ) is
realized; see also Fig. 3.

Let us also note that an additional interaction-induced
suppression of the Josephson current is encoded in the
parameter A (42). This is a specific contribution to dephasing
of Cooper pairs provided by uniform in space fluctuations
of the electromagnetic field [26,39]. The magnitude of this
effect is controlled by the dimensionless conductance of the
normal wire g. As this parameter typically remains large for
generic metallic junctions, the corresponding reduction of
the supercurrent may be less significant than that caused by
nonuniform in space electromagnetic fluctuations giving rise to
the parameter τϕ (44). Note that in contrast to the situation [26]

FIG. 3. (Color online) Josephson current in diffusive SNS junc-
tions as a function of temperature for LT = √

D/(2πT ) � L =
400 nm with and without interaction. The parameters are the same as
in Fig. 2.

(where spatially uniform fluctuations provide extra decay of
quantum correlations; cf. the first term in Eq. (19) in Ref. [26]),
here such fluctuations only contribute to the time-independent
parameter logA in Eq. (43).

It is necessary to emphasize that both the dephasing time τϕ

and the dephasing length Lϕ derived here in the limit T → 0
coincide—up to a numerical factor of order one—with anal-
ogous parameters previously obtained from the calculations
of the subgap (Andreev) conductance of NS structures [26]
and of the weak localization correction to the conductance of
normal metals [27–31]. This agreement is, of course, by no
means a pure coincidence. Rather it emphasizes universality
of the phenomenon of low temperature quantum decoherence
by electron-electron interactions which can be observed
in a variety of normal and hybrid normal-superconducting
structures. The underlying physics of the effect is simple
and remains essentially the same in all situations. Here two
electrons initially forming a Cooper pair propagate in the
normal metal between two superconductors, pick up random
phases while interacting with the fluctuating electromagnetic
field produced by other electrons, and eventually become
incoherent at length scales exceeding Lϕ .

At the same time, an important peculiar feature of our
present problem is that—unlike in a number of other cases
[26–31]—it addresses nondissipative electron transport
demonstrating that quantum dephasing of Cooper pairs occurs
exactly in the equilibrium ground state of our system. This
property of diffusive SNS hybrids is generic, i.e., it is
not specific, e.g., to the limit Rl,Rr � RN analyzed here
but should also hold for structures with highly transparent
intermetallic interfaces.
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APPENDIX A

Let us briefly demonstrate how to recover the well-known
results [6] for the noninteracting limit by means of our
technique. For this purpose it is necessary to simply drop
the fluctuating electromagnetic potentials from the above
expressions. This step amounts to substituting

P(rr ,r l ; t ; τ,τ
′) → D(rr ,r l ; t − (τ + τ ′)/2)

= 1

2
�(t − (τ + τ ′)/2)

∫ x(2t−τ )=rr

x(τ ′)=r l

Dx(t ′)e− ∫ 2t−τ

τ ′ dt ′ (ẋ(t ′ ))2
2D

(A1)

in Eq. (31). Evaluating the path integral in Eq. (A1) for a
quasi-one-dimensional (quasi-1D) normal metallic wire (with
length L and cross section a2) and expressing the result via
the Jacobi theta function ϑ3(z,q), we obtain

D(x, y; t) = �(t)

4La2

(
ϑ3

(
x + y

2L
,e

− π2Dt

2L2

)

+ϑ3

(
x − y

2L
,e

− π2Dt

2L2

))
. (A2)
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As a result we arrive at the Josephson current in the form,

I = πT 2 sin θ

2e3νRr
IR

l
ILa2

∫ ∞

0
dτ

∫ ∞

0
dτ ′

×
∫ ∞

τ+τ ′
2

dt
J0(τ )J0(τ ′)

sinh(2πT t)
ϑ3

(
1

2
,e

− π2D(2t−τ−τ ′)
2L2

)
. (A3)

Having in mind that Bessel functions decay at times τ, τ ′
exceeding −1 and the function ϑ3 is nonzero only for times
larger than the inverse Thouless energy 1/εT h, in the limit of
sufficiently long junctions εT h �  and subgap temperatures
T �  we can safely neglect set τ, τ ′ equal to zero everywhere
except in the arguments of the Bessel functions. Then we get

I = πT sin θ

2e3νRr
IR

l
ILa2

∫ ∞

0
dt

ϑ3
(

1
2 ,e

− π2Dt

L2
)

sinh(2πT t)
. (A4)

Evaluating the integral in Eq. (A4) in high and low temperature
limits, we obtain

I ≈ sin θ

4e3νRr
IR

l
ILa2

×
{ 4L

LT
e−L/LT , L � LT ,

log
(

4D
πL2T

) + γ + 7π2L4T 2

540D2 + · · · , L � LT ,
(A5)

where γ = 0.577... is the Euler constant and LT = √
D/2πT

is the temperature length. These expressions reproduce the
well-known result [6]. Note that the current (A5) formally
diverges in the zero temperature limit T → 0. In the absence
of interactions this divergence can be cured only by taking
into account higher order tunneling terms. In the presence
of electron-electron interactions this is not necessary, as
the low temperature divergence in Eq. (A5) is naturally
eliminated by including the effect of Cooper pair dephasing;
cf. Eq. (48).

Note that an alternative way to regularize the noninteracting
result (A5) in the limit T → 0 is to take into account
Coulomb blockade effects [21]. Within the model adopted
here this task requires a separate calculation presented below in
Appendix B.

APPENDIX B

In order to fully account for charging effects in the case
of relatively short normal metal wires (with length L shorter
that Lϕ) within the framework of our formalism it is necessary
to retain the fields K+ and K− simultaneously dropping the
fields �K and AK. The latter approximation implies that
averaging over the Cooperon fields should be performed in
the noninteracting limit with

〈c̄as(r1,ε1,ε
′
1)cas(r2,ε2,ε

′
2)〉 = (2π )2δ(ε1 − ε2)δ(ε′

1 − ε′
2)

2

πν

∞∑
n=0

ψn(r1)ψn(r2)

−i(ε1 + ε′
1)+DEn

. (B1)

Then the general expression for the supercurrent reads

I = π2 sin(θ )

e3νRr
IR

l
I a

4

∫
l

dd−1r l

∫
r

dd−1rr

∫ ∞

0
dτ

∫ ∞

0
dτ ′

∫ ∞

−∞
dt

∫ ∞

−∞

dω

2π
J0(τ )J0(τ ′)e−iω(t−(τ+τ ′)/2)Ic(rr ,r l ,τ + τ ′; ω)

×
(

Re(PFF (rr ,r l ; t ; τ,τ
′)) + i coth

(
ω

2T

)
Im(PFF (rr ,r l ; t ; τ,τ

′))
)

, (B2)

where

Ic(rr ,r l ,τ + τ ′; ω) = T

∞∑
m=0

∞∑
n=0

ψn(rr )ψn(r l)e−zm(τ+τ ′)

−iω + 2zm + DEn

, (B3)

zm = πT (2m + 1), and

PFF (rr ,r l ; t ; τ,τ
′) = 〈ei(K+(rr ,t+τ/2)+K+(rr ,t−τ/2)−K+(r l ,τ

′/2)−K+(r l ,−τ ′/2))ei(K−(rr ,t+τ/2)+K−(rr ,t−τ/2))−i(K−(r l ,τ
′/2)+K−(r l ,−τ ′/2))〉�. (B4)

All the integrals here should be understood as a principal value.
As before, let us restrict our analysis to the well-pronounced
subgap regime and set both τ and τ ′ equal to zero. Then
Eq. (B4) reduces to

PFF (rr ,r l ; t) = 〈e2i(K+(rr ,t)−K+(r l ,0)+K−(rr ,t)−K−(r l ,0))〉�,

(B5)

and one readily finds

PFF (rr ,r l ; t) = e−2i(V++
K (rr ,rr ,0)−V++

K (rr ,r l ,t))

×e2i(V+−
K (rr ,r l ,t)+V+−

K (rr ,r l ,−t)). (B6)

The general expressions for the correlators in the above
equation have the form [40],

V+−
K (r,r ′,ω)

= −
En<1/l2∑

n=0

ψn(r)ψn(r ′)
(DEn − iω)

(
2νDEn − iU−1

0 ω
) ; (B7)

V++
K (r,r ′,ω) =−iω coth

(
ω

2T

)

×
En<1/l2∑

n=0

2
(
2ν + U−1

0

)
DEnψn(r)ψn(r ′)

((DEn)2+ω2)
(
(2νDEn)2+U−2

0 ω2
) .

(B8)
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Here U0 denotes the unscreened Coulomb interaction between
electrons. In the quasi-1D geometry considered here one
has U0 = e2a2/C. We also note that the condition U0ν ∼
(epF a)2/(vF C) � 1 is usually well satisfied in metallic
structures.

In order to evaluate the supercurrent across our SNS
structure we need to establish the behavior of the correlation
functions at times exceeding the inverse Thouless energy
1/εT h � τRC . In this limit it suffices to ignore all terms in
Eqs. (B7) and (B8) except for one with n = 0 (where one
should also account for the contribution from the ion jelly in
the normal metal). Then in the long time limit εT ht � 1 one
finds

V+−
K (r,r ′,t) ≈ −i�(t)tεC, V++

K (r,r ′,t) ≈ 0, (B9)

where εC = e2/(LC) is the charging energy of the normal
wire. On the other hand, in the short time limit t → 0 one gets

V++
K (0,0,0) ≈ − 4iπT

3gεT h

+ 4i

3g

{
log

(
εT hτRC

π2

) + · · · , T � εT h,

log(T τRC) − 2.169 + · · · , εT h � T .

(B10)

Combining all the above expressions, we obtain

PFF (0,L; t)

≈
⎧⎨
⎩(εT hτRC)

8
3g e

− 6.105
g

− 8πT
3gεT h

−2iεC |t |
, T � εT h,

(T τRC)
8

3g e
− 2.892

g
− 8πT

3gεT h
−2iεC |t |

, εT h � T .
(B11)

At high enough temperatures T � εC charging effects can be
safely neglected and one can set ImPFF ∼ sin(2εC |t |) ≈ 0. In

the opposite low temperature limit T � εC one finds

I = πT 2A sin θ

e3νRr
IR

l
ILa2

×
∞∑

m,k=0

∞∑
n=−∞

(−1)n

zm + zk + DEn

4εC

(zm − zk)2 + 4ε2
C

.

(B12)

Performing the summation over n we arrive at the result,

I = πT 2A sin θ

e3νRr
IR

l
IDa2

∞∑
m,k=0

√
D

zm + zk

× 4εC(
(zm − zk)2 + 4ε2

C

)
sinh

(
L

√
zm+zk

D

) . (B13)

In the limit T → 0 one can replace the double sum in
Eq. (B13) by the double integral and get

I ≈ A sin θ

4e3νRr
IR

l
ILa2

{
log(2εT h/(π2εC)), εT h � εC,

0.271εT h/εC, εT h � εC.

(B14)

In the limit εT h � εC the above expression holds within the
logarithmic accuracy and demonstrates that Coulomb blockade
effects naturally eliminate the divergence of the noninteracting
result (A5). A similar observation was previously made [21]
within a simple model taking into account both the gate
capacitance and those of the tunnel barriers. Although we
deliberately ignored all these capacitances here, if needed,
they can easily be restored by a proper modification of the
expressions for the correlators [(B7) and (B8)].
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