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Superfluid nanomechanical resonator for quantum nanofluidics
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We have developed a nanomechanical resonator, for which the motional degree of freedom is a superfluid
4He oscillating flow confined to precisely defined nanofluidic channels. It is composed of an in-cavity capacitor
measuring the dielectric constant, which is coupled to a superfluid Helmholtz resonance within nanoscale
channels, and it enables sensitive detection of nanofluidic quantum flow. We present a model to interpret the
dynamics of our superfluid nanomechanical resonator, and we show how it can be used for probing confined
geometry effects on thermodynamic functions. We report isobaric measurements of the superfluid fraction in
liquid 4He at various pressures, and the onset of quantum turbulence in restricted geometry.
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I. INTRODUCTION

At low temperatures, liquid 3He and 4He transition into
superfluids, which exhibit exotic properties—such as dissipa-
tionless flow—as a result of macroscopic quantum coherence.
The coherent motion of the superfluid state is described by an
order parameter, whose spatial fluctuations are correlated over
a length scale given by the coherence length, ξ . This coherence
length diverges at the superfluid transition and reaches a finite
value in the low-temperature limit (ξ0 = 20−80 nm in 3He [1]
and ξ0 = 0.1 nm in 4He [2]). By confining these quantum
fluids in well-defined structures of size comparable to the
coherence length, nonbulk phenomena can be revealed. For
instance, nanofluidic confinement has allowed the study of the
order parameter fluctuation spectrum [3], as well as proximity
coupling [4], near the superfluid transition of 4He. In 3He,
confinement approaching the coherence length is predicted
to result in new superfluid phases [5,6] due to geometrically
induced distortion of the order parameter. This distortion is
directly related to surface states, which are predicted to be
Majorana fermions at the surface of 3He-B [7–10].

Despite the fact that these superfluids are well studied, only
a few experiments are capable of measuring such tiny volumes
or small surface effects at the edge of bulk volumes. The most
powerful experimental techniques to date are nuclear magnetic
resonance (NMR) [6] in 3He and heat capacity [3] in 4He,
although new techniques using nanomechanical structures are
promising [11–13]. Yet numerous theoretical predictions go
untested because the right experimental probes do not exist.
For example, a signature of Majorana fermions in superfluid
3He-B confined to channels of order ξ0 has been predicted in
the superfluid density, ρs/ρ [14]. Previous studies of superfluid
density by studying mass flow in confined superfluids have
been limited to Helmholtz resonators in large arrays of
particle-etch track pores [15], stacks of thousands of slabs
of superfluid [16,17], or hindered by normal state decou-
pling [18]. In this work, we demonstrate a quantum nanofluidic
experiment capable of measuring both the static properties
of a highly confined superfluid—in particular the dielectric
constant and total density—as well as dynamic properties,
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namely mass flow, superfluid density, and dissipation; we
use this quantum nanofluidic device to study superfluid 4He,
probing just nanoliters of liquid with high sensitivity. One
result of our system is a measurement of dissipation in thin
channels (∼500 nm) at velocities into the quantum turbulence
regime [19–22]. This presents a scenario in which vortex lines
may be pinned by surfaces in the confined geometry, and it
should open the door to new theoretical and experimental
studies.

In the dynamic regime, our experiment is a superfluid
Helmholtz resonator [23,24] and its behavior is well described
by analogy with a nanomechanical mass-on-a-spring. Here
the mass is given by the amount of superfluid within a
volume of 9 nL, a temperature-dependent quantity, which
ranges from ≈ 24 ng (ρs/ρ = 0.02%) at T − Tλ � 2 mK to
≈ 960 ng (ρs/ρ = 80%) near 1.6 K. This represents an unusual
nanomechanical system with small moving mass and intrinsic
quantum properties, and it may also provide an opportunity
to study mechanical resonators in the quantum regime. Unlike
classical mechanical resonators, superfluids are dissipationless
coherent macroscopic quantum states. At very low temperature
where the normal component is negligible, the mechanical
quality factor of a superfluid resonator can be exceedingly large
(Q > 1010), as in the groundbreaking work of De Lorenzo
et al. [25], in which they measured Q = 106 at 10 mK. Here,
the quality factor of our superfluid nanomechanical resonator
increases by three orders of magnitude between Tλ and 0.7 K.

II. EXPERIMENT

In the experiment, we have immersed the nanofabricated
structure shown in Fig. 1(e) in a liquid 4He bath sealed in
a copper sample cell mounted on a cryostat. The device
consists of features etched into glass, where the etch height
defines the relevant confinement length [26,27]. Specifically,
we form a circular cavity (radius rcav = 2.5 mm and height
hcav = 1100 nm) and four channels (length lcha = 2.5 mm,
width wcha = 1.6 mm, and height hcha = 550 nm). Electrodes
(height hele = 100 nm and radius rele = 2 mm) were deposited
on both inner sides of the cavity before bonding the device,
and they are electrically contacted from two of the channels.
The effective confinement length in the cavity is given by
the distance between the two electrodes (heff = hcav − 2hele =
900 nm).
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FIG. 1. (Color online) The superfluid nanomechanical resonator
is defined by an oscillating mass of superfluid 4He confined in the
channels of a nanoscale structure. (a)–(d) The nanofabrication process
for our devices (see Appendix A for details). (e) Photograph of the
completed device with an effective cavity height heff � 900 nm and
a channel height hcha � 550 nm. The light blue, yellow, and purple
colors are the result of optical interference.

The completed device realizes a parallel plate capacitor
with a nanoscale gap, which can be used to study the dielectric
properties of a fluid in the gap via measurement of the
capacitance. Specifically, C = (Aeleε0εr )/(heff), with heff the
effective confinement length, Aele = πr2

ele the surface area of
the electrodes, ε0 the vacuum permittivity, and εr the relative
permittivity of the liquid.

III. RESULTS AND DISCUSSION

We have used this device to measure the dielectric constant
of liquid 4He confined between the electrodes (Fig. 2). The
dielectric constant is given by εr = (C − Cs)/(C0 − Cs), with
C0 � 117 pF the capacitance of the empty capacitor and Cs

the stray capacitance originating from the capacitance of our
measurement coax. We computed the stray capacitance, Cs =
1.0 pF for our setup, by fitting our data at saturated vapor
pressure with the data of Donnelly et al. [28]. We see excellent
agreement with the temperature dependence of the bulk values
for the dielectric constant, shown in Fig. 2, despite the fact that
we are probing just 11 nL of liquid.
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FIG. 2. (Color online) Measurements of the dielectric constant
εr of 11 nL of liquid 4He confined between the electrodes of the
nanofluidic cavity, from 4 to 1.65 K at saturated vapor pressure (blue),
5 bar (orange), and 10 bar (green). Circles are bulk values at saturated
vapor pressure from Ref. [28]. The λ transition occurs at the kink
in εr .

By measuring the relative dielectric constant, εr , one can
obtain the density, ρ, via the Clausius-Mossotti relation,
which works well for a nonpolar liquid such as 4He [29].
Measurement of the temperature-dependent density is then
a characterization step of our nanomechanical resonator,
analogous to measuring the mass of the mass-on-a-spring.
Results are shown on the right-hand side of Fig. 2. Such
dielectric measurements may also be relevant in superfluid
3He, since the electric field couples weakly to the order
parameter of 3He [30,31], and it is currently unknown whether
there are electric field effects in 3He that could be probed with
this technique.

Beyond static measurements of the fluid density, one can
use these devices to perform dynamic quantum fluid flow
experiments. Indeed, a nonzero flow in the channels induces
a density change in the cavity, which can be detected as a
change in the relative dielectric constant. The flow of liquid
4He is well described by the two-fluid model [32] composed
of a normal component ρn and a superfluid component ρs .
Below a critical velocity, the two fluids behave independently
with their own local mass flow velocities vn and vs , and the
viscosity of the fluid is entirely given by the viscosity of the
normal component ηn. In a confined geometry, the normal
component can be clamped by the walls in the dynamic
regime if the confinement length is small compared to the
viscous penetration depth [33]. The viscous penetration depth
is defined as λν = √

(2ηn)/(ρnω), with ω/2π the frequency
of the oscillating flow. In this experiment, the frequency did
not exceed 5 kHz, and therefore λν > 1.0 μm. This is roughly
four times the distance to a wall in our device, therefore the
normal component is mostly clamped and only the superfluid
oscillates in the channels. The dynamic resonance described
below, therefore, only appears in the superfluid phase (T < Tλ)
when ρs/ρ �= 0. In the case of dc flow, however, it is possible
to measure a contribution from the normal density component
even for nanoscale channels [34,35].

We drive an ac Helmholtz resonance [23,24] with the
same voltage Vd that is used to measure the capacitance
of the nanofluidic capacitor. The electric field Ed = Vd/heff

between the electrodes produces an attractive electrostatic
force between the glass plates, Fstat = (1/2)Aeleε0εrE

2
d , which

bend under this load (Fig. 3). This deformation produces a
pressure increase in the cavity, which induces a flow in the
channels. It is interesting to note that other forces, such as
the electrostrictive and the Casimir forces, while of smaller
magnitude, exist in the system and can be enhanced by
modifying the present geometry (see Appendix G).

Fstat

mHe 

kplate  kHe
 

x(a) (b)
y

cavity channel

FIG. 3. (Color online) Simplified schematic of the superfluid
nanomechanical resonator. (a) The electrostatic force, Fstat, deforms
the glass cavity and generates a pressure gradient across the channel.
(b) A schematic of an equivalent mass-spring system—the plate
moves by x and the mass of superfluid, mHe, responds by moving
a distance y.

024503-2



SUPERFLUID NANOMECHANICAL RESONATOR FOR . . . PHYSICAL REVIEW B 91, 024503 (2015)

We describe the electrostatically driven Helmholtz reso-
nance in the channels [23,24], with a mass-on-a-spring model
(see Fig. 3). In this model, we consider a superfluid mass
mHe = 4ρsleffa, with leff the effective length of the channel,
which accounts for the end effects and is slightly larger than
its physical length, and a = wchahcha is the cross-sectional area
of the channel. This mass is attached to a spring of stiffness
kHe, accounting for the bulk modulus of the liquid in the cavity,
which is attached in series to another spring of stiffness kplate,
accounting for the flexural rigidity of the glass plates. The ef-
fective stiffness of this resonator, keff , is a combination of these
two springs in series multiplied by a geometric factor. The
resonance frequency of the mechanical system is then given by

ω2
0 = keff

mHe
= 4

(
ρs

ρ

)(
a

A2
plateleffρ

)
kplate

1 + 

, (1)

with 
 = kplate/kHe, kHe = (A2
plate)/(χVcav), Vcav is the

volume of the cavity, χ is the compressibility of liquid 4He,
and kplate = 1.94 × 107 N/m is the bending stiffness of the
glass plates, which we measured. Derivation and details can
be found in Appendix E.

The oscillating superfluid in the channels generates a
density oscillation in the cavity that can be measured as a time-
dependent dielectric constant. We measured this by studying
the ac response of the dielectric constant of the superfluid
using a frequency-dependent capacitance measurement. The
electrodes of the nanofluidic capacitor were connected to a
capacitance bridge (General Radio 1615-A). The drive voltage
Vd applied to the capacitor was produced by a function genera-
tor (Stanford Research DS345), and the response of the capaci-
tance bridge was amplified and measured with a lock-in ampli-
fier (Stanford Research SR830) synchronized to the function
generator. Measurement of the two quadratures allowed us to
extract the real (in-phase) and imaginary (out-of-phase) parts
of the complex dielectric constant (εr = ε′

r − iε′′
r ), which were

simultaneously fit to a damped harmonic-oscillator equation,

ε̈r + ω2
0

Q
ε̇r + ω2

0εr = ω2
0ε

d
r , (2)

with Q the quality factor and εd
r the driving term proportional

to the force applied to the plates, Fstat.
The resonance frequency ω0/2π and quality factor Q of the

superfluid oscillator, from 1.6 K to Tλ at various pressures, are
shown in Fig. 4. Combined with Eq. (1), we can then extract the
superfluid fraction, ρs/ρ, shown in Fig. 4(c). Calculations [37]
and measurements [38,39] suggest the following functional
form for ρs/ρ:

ρs

ρ
= k(1 + Dρt

�)t ζ , (3)

with k = k0(1 + k1t), and t = (T − Tλ)/Tλ the reduced tem-
perature. k0, k1, and Dρ are pressure-dependent fit parameters
of the critical behavior, ζ = 0.6705 ± 0.0006 is the critical
exponent of the superfluid fraction [38], and � = 0.5; details
of the fit parameters can be found in Appendix F. We find
good agreement with Eq. (3) at all pressures, demonstrating
the universality of the λ transition in our data. An exciting
implication is that by replacing 4He by 3He in this superfluid
nanoresonator, one could measure the superfluid fraction
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FIG. 4. (Color online) Temperature dependence of the superfluid
nanomechanical resonator (a) frequency and (b) quality factor, taken
at a drive voltage Vd = 5 V, for various pressures: 2 (blue triangles),
5 (orange squares), 10 (green diamonds), 15 (red circles), 20 (black
diamonds), and 25 (purple diamonds) bar. The inset of (a) is the
superfluid fraction, ρs/ρ, extracted from the resonance frequency
using Eq. (1), with Tλ taken from Maynard sound measurements [36],
and the fit function (black line) given by Eq. (3). The inset of (b) is
a frequency sweep across the resonance, which shows the real part
(black circles) and imaginary part (blue circles) of the relative dielec-
tric constant measured at 2 bar and 1.62 K and the corresponding fit
functions obtained from Eq. (2).

ρs/ρ of confined superfluid 3He, which, according to Wu
et al. [14], will lead to a direct signature of the Majorana
surface excitations.

We note that the agreement between the data taken at a
low drive voltage (Vd � 5 V) and the fit shown in the inset of
Fig. 4(b) is an indication of the linear behavior of the oscillator.
We also measured the resonance at various drive voltages to
explore deviations from the linear regime. We show in Fig. 5(b)
that at low drive (Vd � 7 V), the data for the quality factor as a
function of temperature collapse on the same curve. At higher
drive (Vd � 7 V), they deviate from that curve at particular
temperatures (T1 � 1.75 K for Vd = 7 V and T2 � 1.85 K
for Vd = 10 V). This indicates a temperature-dependent drive
threshold. As can be seen in the inset of Fig. 5(b), the quality
factor measured at T = 1.7 K as a function of drive shows a
threshold near Vd ∼ 6 V. Above this threshold, the dissipation
increases because the flow in the channel enters a regime of
quantum turbulence [19].

The resonance frequency data remain unchanged even at the
highest drive, indicating that we are only in a slightly nonlinear
regime and so we can still fit the resonance curve with Eq. (2)
to a good approximation [inset of Fig. 5(a)]. This allows us
to calculate when the velocity of the oscillating mass in the
channel passes above the critical velocity, vc. For instance, at
T = 1.85 K and Vd = 10 V, the average superfluid velocity in
the channel at resonance is given by

vs = 1√
2

Aρ

aρs

Fstat

kplate
ω0Q ∼ 14 m/s, (4)
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FIG. 5. (Color online) Temperature dependence of the superfluid
nanomechanical resonator (a) frequency and (b) quality factor, taken
at constant pressure P = 5 bar for various drive amplitudes: 2, 5,
7, and 10 V. The inset of (b) shows the quality factor measured at
T = 1.70 K (black arrow) as a function of the drive voltage. The
inset of (a) is a frequency sweep of the in-phase (black circles) and
the out-of-phase (blue circles) dielectric response at Vd = 10 V with
their fit functions obtained from Eq. (2).

with Q � 50, Fstat � 7 × 10−3 N, and ω0/2π � 4 kHz. This
is larger than what has been measured by Clow et al. [40] in
porous materials with a pore diameter of 200 nm, where they
find a critical velocity of ∼ 1 m/s at 1.85 K. Exceeding the
critical velocity results in the formation of quantum turbulence,
which is known to decay through a cascade to smaller
vortices—the Kolmogorov spectrum [41]. Our superfluid
nanoresonators may allow the study of quantum turbulence in
a new regime, where vortices become pinned by the confined
geometry and therefore change this vortex decay, as compared
with bulk turbulence.

Finally, we present additional experiments that could be
performed using these superfluid nanomechanical resonators.
One can identify two limits in the mechanical system presented
above, depending on the ratio spring constants (
). In the
“soft plate” limit (
 � 1), the effective stiffness kplate/(1 +

) reduces to the stiffness of the plate kplate only, and
it does not depend on thermodynamic variables (T ,P ) of
the liquid. That is, one could remove the compressibility
of the superfluid from Eq. (1), which helps to isolate
the temperature and pressure dependence of the superfluid
fraction.

In the other “stiff plate” (
 	 1) limit, the resonant
frequency reduces to the formula for a fourth-sound Helmholtz
resonator [42], ω2

h = c2
4a/(leffVcav), where c4 =

√
ρs/(ρ2χ ) is

the fourth-sound velocity of liquid 4He [43,44], a sound mode
that propagates only in the superfluid phase when the normal
component is clamped. One can possibly drive this mode in
our resonator using an electrostrictive driving force. The work
presented here is between these two limits (
 ∼ 0.1); details
are given in Appendix G.

IV. CONCLUSION

We have presented devices to explore quantum fluids under
nanoscale confinement—probing just nanoliters of superfluid
with a high signal-to-noise ratio. In the low-frequency limit, we
measured the dielectric constant, and therefore the total den-
sity, of liquid 4He, which set the stage for probing the resonant
behavior of the confined superfluid. In the dynamic regime, the
device is a superfluid Helmholtz resonator, with a scale of tens
to hundreds of nanograms of oscillating liquid 4He. We used an
analytical model to describe its dynamics, and we performed
experiments to measure the superfluid fraction and the onset
of quantum turbulence. This system provides opportunities to
study superfluids in restricted geometries—such as measuring
the superfluid fraction in 3He, which will provide a direct
signature of Majorana fermions at the surfaces—as well as pro-
viding opportunities for studying nanomechanical resonators
at low temperatures with intrinsic quantum properties.
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APPENDIX A: NANOFABRICATION

An important component of our experiment is the re-
alization of very well-defined nanofluidic structures using
clean-room techniques. Here, the design of the nanofluidic
device is a cylindrical basin (radius rcav = 2.5 mm and height
hcav = 1100 nm) and four channels (length lcha = 2.5 mm,
width wcha = 1.6 mm, and height hcha = 550 nm). Electrodes
(height hele = 100 nm and radius rele = 2 mm) were deposited
on both inner sides of the cavity to form a nanofluidic capacitor.
In this appendix, we describe in detail the nanofabrication
process of our devices.

The process starts, Fig. 1(a), with the deposition of a Cr/Au
masking layer (30 nm/180 nm) on a 100 mm × 100 mm ×
1.1 mm borosilicate glass wafer previously cleaned with
a piranha solution (3:1 H2SO4 and H2O2). A first optical
lithography is performed to pattern the design of the cavity
and the channels. For that, a positive photoresist polymer
(HPR504) is spun onto the wafer (10 s at 500 RPM and then
40 s at 4000 RPM) and baked for 30 min at 115◦, leading to
a thickness of 1.2 μm. The photoresist is exposed for 2.2 s
with uv light (365 nm) through the photomask and developed,
and as a result the photomask pattern is transferred onto the
photoresist. We chemically etch the exposed masking layer
(Cr/Au) with an acidic solution and then the glass wafer down
to a certain depth (550 nm for this device) with a glass etchant
(50% HF, 10% nitric acid, and 40% water).
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FIG. 6. (Color online) Cross section of the channels having an
electrode passing through (a) and without an electrode (b). The region
of the nanofluidic device confining the liquid 4He: a cavity and four
channels (c).

At this point, the nanofluidic cavity and channels are etched
in the glass wafer. Afterwards, the photoresist and masking
layers are stripped off and a second optical lithography is
performed in order to pattern the electrodes. For that, we
repeat the steps described above with a second photomask.
Next, using a sputtering system, we deposit a Cr/Au thin film
(10 nm/90 nm) on the wafer. We then lift off the photoresist
to obtain the electrode pattern in the bottom of the cavity and
channels, Fig. 1(b).

At this stage, we dice the wafer into smaller rectangular
pieces (10 × 15 mm). These pieces are piranha-cleaned and
bonded using direct bonding, which consist of an additional
soft mechanical cleaning of the pieces with a soap solution and
the pressing by hand under the microscope of the two pieces
against each other. This finishes the nanofabrication, and the
relevant confinement length of this device, heff , is given by the
distance between the electrodes, Fig. 1(c).

We bond the two rectangular pieces perpendicularly,
Fig. 1(d), such that we can solder electrical wires to the
electrodes that are deposited in the bottom of the cavity. The
device is then placed in a copper sample cell and connected
to the electrical coaxial feedthroughs. Next, this sample cell is
sealed with an indium o-ring and mounted on a cryostat.

We study the properties of the flow in the four nanofluidic
channels defined by this nanofabrication process. The four
channels have the same dimensions, but because two channels
have electrodes passing through, they have different cross-
sectional geometry. We show in Fig. 6 the cross sections of the
two type of channels.

APPENDIX B: CHARACTERIZATION

During the nanofabrication process of our devices and prior
to the bonding, we control the depth of glass etch and the
thickness of metal depositions with a surface profiler (Alpha
Step IQ). It is a diamond tip on a piezoelectric transducer,
which is brought in contact with the device and moved laterally
across it to measure the topography. This tool has an excellent
resolution (∼1 nm).

We have also used a second technique based on optical
interference to characterize the confinement length after
bonding. This technique has been described previously [27]
and allowed us to precisely measure the uniformity of the
confinement length (∼ 1)%.

APPENDIX C: CONTROL OF TEMPERATURE
AND PRESSURE

We filled the sample cell and the nanofluidic structure with
liquid 4He of natural purity (∼ 300 ppb 3He). To regulate the
pressure in the cell, the fill line is filled with a gas pressure
and connected to a ballast containing a heater, which is dipped
into liquid nitrogen. A pressure gauge (Mensor CPT 6000)
with a precision of 2 mbar is connected to the fill line, and a
proportional-integral-derivative (PID) controller allows us to
regulate the temperature of the gas in the ballast in order to
maintain the pressure in the fill line.

We measure the temperature of the sample cell with a
carbon glass resistive thermometer and a resistance bridge
(LakeShore 370 AC). We regulate the temperature with a
heater on the sample and the PID controller of the resistance
bridge.

APPENDIX D: MEASUREMENT OF PLATE STIFFNESS:
kplate

The stiffness of the glass plates kplate can be computed
from classic theory of plate elasticity. To do that precisely, one
has to know all the mechanical properties at low temperature.
Another possibility is to measure it directly, and this is what
we have chosen to do. We performed a measurement of the
spacing between the plates via the capacitance while applying
an electrostatic force between the electrodes. We applied a
varying dc voltage (Vdc = 0−20 V) across the electrodes on
top of an ac voltage (Vac = 1 V), so the drive voltage is

Vd (t) = Vdc + Vac cos ωt (D1)

and the electrostatic force between the electrodes

Fstat(t) = 1

2
ε0εr

Aele

h2
eff

Vd (t)2. (D2)

This force leads to a deflection of the glass plates inversely
proportional to their bending stiffness. One can write the
relation between the average deflection across the electrodes
x(t) and the electrostatic force,

Fstat(t) = k′
platex(t), (D3)

with k′
plate = kplate/(1 + β) and β a factor related to the radius

difference between the electrodes and the glass plates, δr =
rcav − rele = 500 μm. By integrating the standard expression
for the bending of a circular plate [45] over the plate surface
area, we find

β = 2
δr

rcav
+ 3

(
δr

rcav

)2

− 4

(
δr

rcav

)3

+
(

δr

rcav

)4

(D4)

� 0.49. (D5)
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FIG. 7. (Color online) Capacitance measurement (blue circles)
of the nanofluidic capacitor under the application of a varying dc
voltage (0–20 V), which bends the cavity glass plates and increases
the capacitance C. These data are fit (gray line) to Eq. (D7) in order
to extract the bending stiffness of the glass plates.

The deflection of the glass plates is related to a change in
capacitance. To first order in x(t), the capacitance is given by

C(t) = Aε0εr

heff + x(t)
� C0 + C0

x(t)

heff
. (D6)

Substituting Eq. (D2) in Eq. (D3), and Eq. (D3) in Eq. (D6),
we obtain

C(t) = C0 + γVd (t)2, (D7)

with

γ = 1

2

C2
0

h2
effk

′
plate

. (D8)

We show in Fig. 7 a measurement of the capacitance as a
function of the average applied voltage squared,

Vd (t)2 = V 2
dc + V 2

ac

2
, (D9)

which allows us to extract γ and therefore k′
plate. In the

measurement, Fig. 7, performed at T = 1.68 K and with a
cell filled with liquid 4He at P = 5 bar, we fit the data with
Eq. (D7) and obtained C0 = 124.06 pF and γ = 7.3 × 10−4

pF/V2, which leads to

k′
plate = 1

γ

1

2

C2
0

h2
eff

� 1.30 × 107 N/m, (D10)

and finally the bending stiffness of the glass plate is given by

kplate = (1 + β)k′
plate � 1.94 × 107 N/m. (D11)

APPENDIX E: EQUATIONS OF MOTIONS FOR THE
SUPERFLUID NANOMECHANICAL RESONATOR

Our nanofluidic structure is composed of a cylindrical
cavity connected to four channels of a rectangular cross
section. The liquid 4He that filled the nanofluidic structure
has natural acoustic resonances. In addition, the cavity walls
are flexible and have drumlike resonant modes. To completely
describe this superfluid nanomechanical resonator, one has to

FIG. 8. (Color online) FEM simulation of the first mode of liquid
4He confined in the nanofluidic device. The color bar represents the
acoustic pressure on resonance (ω0/2π ∼ 7 kHz) in arbitrary units.
The mode shape is analogous to the Helmholtz resonance with four
masses in the channels connected to an effective spring in the cavity.
In this simulation, we increased the thickness of the structure by a
factor of 1000 so the mode shape is easier to see.

take into account the acoustic resonances of the liquid 4He, the
mechanical resonances of the nanofluidic structure itself, and
the coupling between these modes. However, we can make
useful approximations and obtain a simple analytical model
that describes satisfactorily the superfluid resonance.

We first assume that the cavity walls are rigid. In this
case, there is a resonance related to the oscillation of the
superfluid in the channels and the compression of the fluid
in the cavity. This Helmholtz resonance is analogous to a
mass-on-a-spring, with the potential energy stored by the
fluid in the cavity and the kinetic energy stored by the fluid
oscillation in the channels. This description is valid if the
dimensions of the structure are smaller than the acoustic
wavelength λa in the fluid. In our experiment, the highest
resonance frequency is ω0/2π = 5 kHz and the smallest first
sound velocity c1 = 230 m/s, so the acoustic wavelength is
λa > 46 mm. Since the largest dimension in our geometry
(∼10 mm) is about five times smaller than the smallest acoustic
wavelength, λa = 46 mm, this description is valid. In our
experiment, the cavity walls are flexible and have drumlike
resonances at much higher frequency (∼100 kHz) than the
Helmholtz resonance of the fluid (ω0/2π < 5 kHz). As a
result, these modes do not hybridize significantly, and, near the
Helmholtz resonance of the fluid, we can reasonably assume
that the effect of the flexible cavity walls is only to redefine
the stiffness constant kplate.

We show in Fig. 8 a finite-element method (FEM) simu-
lation of the acoustic mode of the liquid 4He confined in the
nanofluidic device. The mode shape is similar to the Helmholtz
resonance with four masses in the channels connected to an
effective spring in the cavity. To find the resonance frequency
of this mode, we write the kinetic and potential energy for this
mechanical system.

All the kinetic energy is concentrated in the vicinity of the
channel flow where the velocity is the largest. Since the channel
confinement length is smaller than the viscous penetration
depth (hcha < λν), the normal component is clamped and only
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the superfluid can oscillate. In our nanofluidic structure, there
are two pairs of channels of the same dimensions; one type of
channel has an electrode passing through, and the other one
does not. This leads to the following kinetic energy:

EK = 1
2ρsl

(
a1v

2
1 + a2v

2
2

)
2, (E1)

where a1 = 8.2 × 10−10 m2 and a2 = 8.8 × 10−10 m2 are the
cross-sectional areas of the channel type with an electrode and
without an electrode, respectively. l = 2.5 × 10−3 m is the
effective length of the channels, a sum of the physical length of
the channel plus a correction due to effects of the diverging flow
at the ends of the channel. This correction factor scales like the
cross-sectional area of the channel, which is small in this case,
and so this correction factor will be neglected in our analysis.
v1 and v2 are the average velocities of the superfluid in the two
different types of channels, which are related by a1v1 = a2v2

from conservation laws. As a result, we can define an effective
superfluid velocity v such that v = v1 = (a2/a1)v2. Hence, we
have

EK =
(

1 + a1

a2

)
ρsla1v

2. (E2)

This expression represents the kinetic energy of an effective
mass,

mHe = 2

(
1 + a1

a2

)
ρsla1, (E3)

moving at a velocity v.
The potential energy is stored in the deflection of the glass

plates and the compressibility of the liquid confined in the
cavity. The compressibility of the liquid outside the nanofluidic
device is much larger due to the volume difference, and so it
does not contribute. The potential energy can be written

EP = 1

2

kplate

1 + 

x2, (E4)

with 
 = kplate/kHe, kHe = A2
plate/(χVcav), χ the compress-

ibility of liquid 4He, Aplate the surface area of the cavity glass
plates, Vcav the volume of the cavity, kplate the stiffness of the
glass plates, and x the change in the cavity height induced by
the deflection of the glass plates. The conservation of mass
leads to the following relation:

xAρ = 2ρsa1

(
1 + a1

a2

)
y, (E5)

where y is the effective displacement of the superfluid mass in
the channels. Hence, the potential energy can be written

EP = 2
kplate

1 + 


(
ρsa1

ρAplate

)2(
1 + a1

a2

)2

y2, (E6)

which represents the potential energy of an effective spring,

keff = 4
kplate

1 + 


(
ρsa1

ρAplate

)2(
1 + a1

a2

)2

, (E7)

with an elongation y. The dynamics of the system is then
simply described by the superfluid mass mHe attached to an
effective spring keff . Using Eqs. (E3) and (E7), the resonance

frequency of this mechanical system becomes

ω2
0 = keff

mHe
= 2

(
1 + a1

a2

)(
ρs

ρ

)
a1

A2
plateρl

kplate

1 + 

. (E8)

In addition, since a1 � a2, we have

ω2
0 � 4

(
ρs

ρ

)
a1

A2
plateρl

kplate

1 + 

. (E9)

Using Eq. (E9) and the bulk thermodynamic data of the
density ρ(T ,P ) and compressibility χ (T ,P ) obtained by
Maynard [36], we extract ρs/ρ from the resonance frequency
measurements ω0/2π of Fig. 4. We compared these data with
Maynard’s values for ρs/ρ and found a good agreement if we
add a correction factor α = 0.42, such that

ρs

ρ
= α

ω2
0(1 + 
)

2kplate

A2
plateρl

a1
(
1 + a1

a2

) . (E10)

Since this correction factor is the same at every pressure
between 2 and 25 bar and every temperature between Tλ and
1.6 K, it is related to the oversimplified analytical model used
here, which, for example, does not take into account the exact
mode shape of the superfluid resonance.

APPENDIX F: SUPERFLUID FRACTION IN LIQUID 4He

The study of thermodynamic functions (specific heat,
superfluid fraction, compressibility, etc.) at the superfluid
transition of 4He has provided an important test for the
theory of critical phenomena [46,47]. The bulk behavior
of the superfluid fraction ρs/ρ is well known [38], but
very close to Tλ, finite-size effects can be revealed with
nanoscale confinement [39], and these effects are still not fully
understood [3]. We show (Fig. 9) our measurements of the
superfluid fraction as a function of the reduced temperature.
In the bulk regime, previous works suggest the following

ρ  S
 / 

ρ

t

FIG. 9. (Color online) Temperature dependence of the superfluid
fraction, ρs/ρ, extracted from the resonance frequency using Eq. (1)
with Tλ taken from Maynard sound measurements [36]. Data taken
at a drive voltage Vd = 5 V, for various pressures: 2 (blue triangles),
5 (orange squares), 10 (green diamonds), 15 (red circles), 20 (black
diamonds), and 25 (purple diamonds) bar. The black line is obtained
by fitting the data measured at 2 bar with Eq. (F1).
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TABLE I. The best-fit parameters using the functional form
defined in Eq. (F1) for fitting the superfluid fraction data.

Pressure k0 k1 Dρ ζ

SVPa 2.38 −1.74 0.396 0.6705
P = 2 barb 2.38 −1.06 0.347 0.6705
P = 5 barb 2.24 −1.17 0.568 0.6705
P = 10 barb 2.14 −1.30 0.757 0.6705
P = 15 barb 2.14 −1.36 0.774 0.6705
P = 20 barb 1.99 −1.62 1.315 0.6705
P = 25 barb 2.14 −1.55 0.930 0.6705

aGoldner et al. [38] at saturated vapor pressure (SVP).
bThis work.

functional form:

ρs

ρ
= k(1 + Dρt

�)t ζ ,

(F1)
k = k0(1 + k1t),

with t = (T − Tλ)/Tλ the reduced temperature, k0, k1, and Dρ

the pressure-dependent fit parameters of the critical behavior,
ζ the critical exponent of the superfluid density fraction, and
� = 0.5 a fixed parameter (for a discussion about �, see
Ref. [46]). This functional form has been used by Goldner
et al. [38] for the reduced temperature range 3 × 10−7 < t <

10−2, and they obtained the fit parameters given in Table I.
The critical exponent ζ is universal and does not depend on
the details of the experiment (i.e., liquid pressure), so for our
fit analysis, we fixed ζ to the values obtained by Goldner
et al. [38], which are ζ = 0.6705 ± 0.0006. In our case,
the reduced temperature range is 2 × 10−3 < t < 2.5 × 10−1,
and using their best-fit parameters values for k0, k1, and
Dρ , the functional form starts to deviate from our data near
t � 5 × 10−2. To find a better agreement with the functional
form of Eq. (F1), we left the parameters k0, k1, and Dρ as
fit parameters. The best-fit parameters obtained for various
pressures are shown in Table I.

We obtained relatively good agreement with the values
obtained by Goldner et al. [38], especially for the data at
low pressure (P = 2 bar), which is closer to the saturated
vapor pressure near Tλ (P ∼ 0.05 bar) used in Goldner’s
experiment. Future analysis at lower reduced temperature t

may allow detection of finite-size effects in the superfluid
fraction. These effects, with the confinement length of our
channels (hcha ∼ 500 nm), should appear near t ∼ 10−4.

APPENDIX G: SUMMARY OF FORCES

The superfluid nanomechanical resonator can be driven by
various forces. As we described above, the voltage applied
between the electrodes generates an electrostatic force between
the glass plates, which is given by

Fstat = 1
2ε0εrAeleE

2
d, (G1)

with Ed = Vd/heff the electric field between the electrodes, ε0

the vacuum permittivity, and εr the dielectric constant of liquid
4He. In addition, this electrostatic field generates a pressure

gradient in the liquid given by

∇P = −ε0E
2

2
∇εr + ε0

6
∇

[
E2ρ

dε

dρ

]
. (G2)

This electrohydrodynamic effect has been previously de-
scribed for the general case [48] and for the case of superfluid
4He [49]. In our case, we can reasonably assume that the
dielectric constant is homogeneous between the electrodes,
so the first term in Eq. (G2) can be neglected and only the
second term (electrostriction) remains. In addition, since the
Clausius-Mossotti relation can be used for a nonpolar liquid
such as 4He [29], the second term of Eq. (G2) can be simplified.
Hence, the pressure difference between the region outside
the electrodes (Ed = 0) and the region between the electrode
(Ed �= 0) is given by

�Pstrict = ε0

6
(εr − 1)(εr + 2)E2

d . (G3)

As the electric field is increased, this pressure difference
induces a flow from the channels toward the cavity. On
the other hand, the electrostatic force induces a deflection
of the cavity walls, which generates an increase of pressure in
the cavity and a flow from the cavity toward the channels.
These two effects are competing and, depending on the
geometry of the nanofluidic structure, one can make an
electrostatically or electrostrictively driven resonator.

We now compare these two driving terms for our geometry.
Off resonance, the electrostatic force induces a change in the
cavity height given by

x = Fstat

kplate
, (G4)

so the displacement of the effective superfluid mass in the
channels is

ystat = Fstat

kplate

ρ

ρs

Aplate

2a1
(
1 + a1

a2

) . (G5)

On the other hand, the electrostriction induces a displacement
of the superfluid mass in the channels given by

ystrict = −χVcav�Pstrict
ρ

ρs

1

2a1
(
1 + a1

a2

) , (G6)

which can be rewritten

ystrict = −Fstrict

kHe

ρ

ρs

Aplate

2a1
(
1 + a1

a2

) , (G7)

with Fstrict = Aplate�Pstrict. To find the dominant effect, one
can write

ystrict

ystat
= Fstrict

Fstat

kplate

kHe
, (G8)

and when 
 = kplate/kHe ∼ 0.1, as for our geometry, we have

ystrict

ystat
� Aplate

ε0
6 (εr − 1)(εr + 2)E2

d

1
2ε0εrAeleE

2
d

× 0.1. (G9)

For our geometry, this leads to ystat > 100ystrict. As a result,
in our experiment the resonator is mainly driven by the
electrostatic force applied on the cavity walls. However, one
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this work

FIG. 10. (Color online) Displacement of the superfluid mass y

induced by the electrostatic drive (red line) and the electrostrictive
drive (blue line) as a function of the stiffness of the glass plates. In
our geometry, the superfluid nanoresonator is mainly electrostatically
driven.

can possibly obtain an electrostrictively driven resonator by
increasing the stiffness of the plates, which can be done by
reducing the cavity radius or increasing the thickness of the
cavity glass walls. We show (Fig. 10) the displacement induced
by the electrostatic and electrostrictive drive as function of the
stiffness of the glass plates.

Finally, other forces acting on the glass plate can drive the
superfluid nanomechanical resonator. There is an attractive
electromagnetic Casimir force [50] between the electrodes,
which is given by

F EM
Cas = π2

240

�c

h4
eff

Aele, (G10)

with � Planck’s constant and c the speed of light. This
force results from the confinement of the electromagnetic
field vacuum fluctuations. Its magnitude is usually too small
to be detected on the macroscopic scale, but it becomes
non-negligible in nano/microstructures, as pointed out by Chan
et al. [51]. There is also a critical Casimir force given by

F crit
Cas = 2kBTλ

h3
eff

Aplate (G11)

at T = Tλ. This force arises from the confinement of the
order-parameter fluctuations spectrum near the critical point
(Tλ) [52]. We show in Fig. 11 the magnitude of these forces
driving the superfluid nanomechanical resonator as a function

this work

FIG. 11. (Color online) Magnitude of the four forces acting on
the superfluid nanomechanical resonator as a function of the gap
heff between the electrodes for Vd = 1 V. There is an electrostatic
force Fstat (red line), an electrostrictive force Fstrict (blue line), an
electromagnetic Casimir force F EM

Cas (green line), and a critical Casimir
force F crit

Cas (black line).

of the gap between the electrodes. By lowering the drive
voltage, we decrease the magnitude of the electrostatic and
electrostrictive forces with respect to the Casimir forces.
The electromagnetic Casimir force is nearly independent of
temperature near Tλ, but the critical Casimir force is strongly
temperature-dependent and is nonzero only near Tλ, where
its magnitude is given by Eq. (G11). It may be possible to
realize a direct measurement of the critical Casimir force in
liquid 4He near Tλ by measuring the deflection of the plates if
their stiffness is small enough. For example, using a standard
capacitance bridge, one can measure the capacitance with
a resolution of δC/C = 10−8, which means a resolution on
the deflection of the same amount x/heff = 10−8. The force
sensitivity of our device is given by

Fmin = kplateheff10−8 � 180 nN. (G12)

This force sensitivity can be increased by reducing the gap
between the electrodes and reducing the plate stiffness. As an
example, with heff ∼ 100 nm and the same stiffness kplate, one
can already have a force sensitivity (F0 ∼ 10 nN) high enough
to probe the critical Casimir force (F crit

Cas ∼ 1 μN).
An exhaustive summary of forces should include the

dissipative and reactive forces induced by the thermal
effects in superfluid 4He flows, as mentioned by Backhaus
et al. [23,24].
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Guénault, E. A. Guise, R. P. Haley, O. Kolosov, P. V. E.
McClintock, G. R. Pickett, M. Poole, V. Tsepelin, and A. J.
Woods, Phys. Rev. B 89, 014515 (2014).

[23] S. Backhaus and E. Y. Backhaus, J. Low Temp. Phys. 109, 511
(1997).

[24] S. Backhaus, K. Schwab, A. Loshak, S. Pereverzev, N. Bruckner,
J. C. Davis, and R. E. Packard, J. Low Temp. Phys. 109, 527
(1997).

[25] L. A. DeLorenzo and K. C. Schwab, New J. Phys. 16, 113020
(2014).

[26] A. Duh, A. Suhel, B. D. Hauer, R. Saeedi, P. H. Kim, T. S.
Biswas, and J. P. Davis, J. Low Temp. Phys. 168, 31 (2012).

[27] X. Rojas, B. D. Hauer, A. J. R. MacDonald, P. Saberi, Y. Yang,
and J. P. Davis, Phys. Rev. B 89, 174508 (2014).

[28] R. J. Donnelly and C. F. Barenghi, J. Phys. Chem. Ref. Data 27,
1217 (1998).

[29] M. H. W. Chan, M. Ryschkewitsch, and H. Meyer, J. Low Temp.
Phys. 26, 211 (1977).
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